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Abstract 
 
Human gastrulation is a critical stage of development where many pregnancies fail due 

to poorly understood mechanisms. Using the 2D gastruloid, a stem cell model of human 

gastrulation, we combined high-throughput drug perturbations and mathematical 

modelling to create an explainable map of gastruloid morphospace. This map outlines 

patterning outcomes in response to diverse perturbations and identifies variations in 

canonical patterning and failure modes. We modeled morphogen dynamics to embed 

simulated gastruloids into experimentally-determined morphospace to explain how 

developmental parameters drive patterning. Our model predicted and validated the two 

greatest sources of patterning variance: cell density-based modulations in Wnt signaling 

and SOX2 stability. Assigning these parameters as axes of morphospace imparted 

interpretability. To demonstrate its utility, we predicted novel teratogens that we validated 

in zebrafish. Overall, we show how stem cell models of development can be used to build 

a comprehensive and interpretable understanding of the set of developmental outcomes. 
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Introduction 
 
Human gastrulation, which involves two symmetry breaking events and the specification 
of the germ layers, has been hypothesized to be a go, no-go decision for the embryo–
acting as an early test of the fidelity of developmental processes that are essential for 
proper formation later.1,2 Indeed, as many as 30% of human pregnancies are predicted 
to fail at this critical stage,3,4 yet because of anatomical differences between human and 
other vertebrate models of gastrulation,5 as well as ethical constraints on experimentation 
with human embryos,6 we lack a comprehensive view of the key parameters that govern 
human gastrulation and how perturbations to these parameters lead to failure.  
 
Inborn errors of gastrulation can lead to either spontaneous abortion or congenital 
malformations.7,8 In fact, there are more deaths attributed to errors of development than 
all pediatric cancers9 and the mortality rate attributed to congenital malformations is 
higher than deaths caused by stroke, Alzheimer’s disease, and diabetes combined.10,11 
These trends have persisted over the past 15 years,12 with little progress in reducing 
mortality rates or advancing our ability to prevent or treat congenital malformations. This 
problem persists, because the causes of congenital malformations remain poorly 
understood, with 50-80% having no known etiology.13,14 Despite this public health burden, 
state-of-the-art methods to assess the teratogenicity of compounds have not advanced 
beyond exposing model organisms, such as rats, mice, and zebrafish, to potential 
teratogens and assessing gross changes in morphology. Notably, such models do not 
capture the human-specific teratogens–mice and rats are notoriously resistant to 
thalidomide-induced birth defects15,16–and therefore constitute a dire need for quantitative 
methods to predict, even minor harm to the developing embryo.  
 
Unbiased characterization of state-space manifolds, in the context of development 
referred to as morphospaces17 are an emerging set of methods that show promise for 
understanding the various ways in which development can fail, how to predict these 
failures a priori, and, potentially, open up avenues for treatment. Three key experimental 
characteristics are essential to build a morphospace representation: (1) a quantitative, 
high-dimensional measurement of the system state, (2) a reproducible set of initial 
conditions, and (3) a diverse and unbiased set of perturbations. Such methods allow for 
a “first principles” style approach to understanding the set of possible system states and 
their inter-relationships and offer a framework for organizing the vast number of possible 
phenotypes in a manner that allows for quantitative models that can both predict the 
effects of perturbations on embryonic development and suggest what system parameters 
can be targeted to avoid such errors.  
 
The rise of synthetic models of human development have generated a number of 
engineered systems with which to explore human morphospace.18 Stem cell-based, 3D 
models including  post-gastrulation structured stem-cell-based embryo models (SEMs),19 
post-implantation embryoids,20  peri-gastruloids,21 post-implantation amniotic sac 
embryoids (PASE),22 blastoids,23 gastruloids,24 and somitoids,25 represent distinct 
developmental events and differing in their ability to recapitulate anatomical structure, 
morphological organization, and function. However, 3D embryo models suffer from high 
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levels of variability and low formation efficiencies (0.42% of starting aggregates possess 
proper structural organization and morphology),19 and therefore, under current protocols, 
would require the generation of an impractical number of constructs for high-throughput 
screening. On the other hand, 2D26 or 2.5D27 models that leverage lithographic 
micropatterned surfaces achieve near uniform formation of 103-104 constructs per 
experiment,28 albeit at the cost of altering the topology of the developmental tissue. Of 
note, the 2D gastruloid, a micropatterned disc of embryonic stem cells is an exceptional 
model of the human primitive streak noted for its ability to reproducibly differentiate into 
radially patterned germ layers and recreate all cell types of the gastrulating human 
embryo.29 The 2D gastruloid is thus a prime candidate model with which to map the 
morphospace of human gastrulation. 
 
Despite the potential advantages of 2D models in studying human morphospace, 
capturing the full complexity of these systems requires innovative computational 
approaches to determine underlying relationships in the data. Linear covariance-based 
methods, such as principal component analysis (PCA), are sensitive to scaling and 
struggle with datasets where the relationships between variables are non-linear. On the 
other hand, more recently developed low dimensional embedding algorithms, such as 
Uniform Manifold Approximation and Projection (UMAP)30 and t-Distributed Stochastic 
Neighbor Embedding (t-SNE),31 which can capture local neighborhood structure and 
overcome the linearity assumption of PCA, construct axes which lack interpretability. To 
address these challenges, we sought to “go beyond the manifold” by combining the 
predictive power of partial differential equations with dimensional embedding algorithms, 
aiming to construct an explainable map of human gastruloid morphospace.  
 
Here, we integrate computational modeling with high-throughput experimental techniques 
to construct a detailed and predictive map of human gastruloid morphospace. By coupling 
partial differential equation models of BMP, Wnt, and Nodal signaling dynamics with 
dimensionality reduction algorithms like t-SNE, we systematically explore how various 
perturbations influence cell fate patterning within the 2D gastruloid model. We identify two 
key parameters, cell density and SOX2 stability, that define the major axes of pattern 
variability, and reveal how these factors interact to influence developmental outcomes. 
We demonstrate that these parameters explain both canonical and non-canonical 
patterning of the 2D gastruloid, including specific failure modes linked to teratogenic 
drugs. This framework not only advances our understanding of the molecular 
mechanisms underlying human gastrulation but also provides a quantitative, human-
specific platform for predicting teratogenic risk, identifying potential therapeutic targets, 
and evaluating developmental toxicity in a high-throughput, scalable manner. 
 

Results 
 
A platform for high-throughput perturbations and analysis of the 2D gastruloid 
 
Many questions about human gastrulation remain unanswered due to ethical constraints 
on large-scale experimentation with human embryos, as well as significant differences in 
both embryo anatomy and signaling between humans and mouse, our closest 
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mammalian model. We sought to leverage the 2D gastruloid model in a high-throughput 
screen to map the morphospace of human gastrulation based on prior demonstrations 
that the model mimics the cell fate decisions of human gastrulation and produces well-
defined spatial regions of differentiation that correspond to cell fate specification of the 
primitive streak (Figure 1A-B). We reasoned that mapping the differentiation outcomes to 
a wide variety of perturbation would answer the following outstanding questions: (1) What 
are the failure modes of human gastrulation? (2) What physiochemical variables are 
required to accurately model germ layer patterning? (3) What developmental parameters 
explain the variability in patterning outcomes? And finally, (4) can we build a quantitative 
model that predicts human teratogens? 
 

 
 
Figure 1: Framework for quantitative characterization and perturbation of morphological 
phenotypes in 2D gastruloids. (A) Schematic of human embryo showing cell fates observed during 
gastrulation: amniotic ectoderm (blue), embryonic disk (green), and mesoderm (red). The schematic is 
based on Carnegie Embryo #7801 from the digitally reproduced embryonic morphology (DREM) project 
(https://www.ehd.org/virtual-human-embryo/). (B) Representative BMP4-treated 2D gastruloid with 
immunofluorescence staining for GATA3 (amniotic ectoderm, blue), BRA (mesoderm, red), and SOX2 
(embryonic disk, green). (C) Schematic showing the combinatorial drug screening approach used to perturb 
gastruloid patterning, testing the effects of various drug treatments on cell patterning. (D) Approach for 
quantifying cell patterning in 2D gastruloids by segmenting radial sections into 50 azimuthal bins from edge 
to center. The intensity of each bin reflects the mean nuclear intensity of all nuclei located within that radial 
bin. A sample line plot shows average signal intensity profiles for GATA3, BRA, and SOX2 across the colony 
radius, demonstrating spatial organization of cell dates. (E) Heatmap representing the 150-dimensional 
vectorized morphological features of colonies, with bins 1-50, 51-100, and 101-150 representing GATA3, 
BRA, and SOX2 mean signal intensity from colony edge to center, respectively. (F) Schematic illustrating 
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hypothetical morphological phenotypes, highlighting potential variations in patterning outcomes due to 
combinatorial perturbations. Scale bars: (A) 50 μm, (B) 100 μm. 

 
We chose to perturb BMP4-initiated gastruloids with compounds from a library of 210 
drugs annotated for their activity against stem cell signaling pathways (Figure 1C). While 
it is possible that a given drug may have multiple protein targets, our approach is target-
agnostic and only requires a large diversity of perturbations to capture the variation in 
outcomes. To quantify phenotypes, we chose to use immunofluorescence staining of 
germ layer markers: GATA3 for amniotic ectoderm, Brachyury (BRA) for mesoderm, and 
SOX2 for the undifferentiated embryonic disk. We imaged ~10 colonies per drug condition 
and used a custom image segmentation algorithm to identify the levels of each cell fate 
marker in every nucleus of each colony (Figure S1A), collecting both cell fate and location 
for ~2 million cells across 2,025 colonies.  
 
We leveraged the fact that colonies are generally radially-symmetric to build a data 
structure for downstream pattern analysis. Inspired by approaches that vectorize animal 
behavior,32 we reasoned that we could meaningfully compress colony morphology 
through averaging cell fates over a set of 50 azimuthal bins, each ~5 µm in width, ranked 
by their position, from the edge to the center of each colony (Figure 1D). This yielded a 
150-dimensional vector for each colony containing the average azimuthal signal for 
GATA3, BRA, and SOX2 as a function of colony position (Figure 1E). We hypothesized 
that this data structure would allow use to easily categorize a wide variety of potential 
phenotypes, ranging from expansion and retraction, to inversion and even completely 
mixed orientation of a germ layer fates (Figure 1F). As controls, we included several 
BMP4-only and untreated (no-BMP4) colonies from multiple independent wells, as well 
as a Wnt-activating (CHIR-98014) positive control which, as expected, differentiated the 
entire colony into mesoderm (Figure S1B). These controls demonstrated that patterning 
phenotypes were relatively reproducible across multiple wells, and days of running the 
assay (Figure S1C), confirming that the 2D gastruloid model analyzed in this way meets 
the criteria for constructing a morphospace map. 
 
Human Gastruloid Morphospace  
 
Upon visual inspection of the drug-treated gastruloids, we noticed a variety of deviations 
from the canonical patterning observed in the controls. We sought to develop an 
unsupervised algorithm that would (1) project each colony down to 2 dimensions and (2) 
identify groups of perturbations that result in similar phenotypes so that they could be 
evaluated as potential failure modes. Inspired by previous methods,33 we coupled t-SNE 
to an unsupervised clustering procedure which applies watershed segmentation to the 
two-dimensional embedding after convolution with a gaussian kernel (Figure S2A, 
Methods). This method does not impose a fixed number of clusters, as other clustering 
algorithms do (k-means, Gaussian mixture models, spectral clustering, etc.), and thus 
produces a set of groups that reflect the local variations in phenotype without supervision 
(Figure 2A). We identified 12 clusters (C1-C12) which we call morphological phenotypes.  
 
To visualize the phenotype of each cluster, we generated composite images by taking the 
mean pixel intensity for each cell fate marker from all colonies in each cluster (Figure 2B). 
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This allowed us to build a coarse-grained understanding of colony patterning across the 
entirety of morphospace. Clusters could be divided into two major categories. The first 
group, describing the majority of colonies (C2-C10), displayed changes in the relative size 
of each region marked by cell-fate markers but did not alter the basic topology of the 
patterns. We termed this central region of morphospace the canonically patterned region. 
The second group, colonies outside of this region (clusters C1, C11, and C12), displayed 
either the loss of a cell-fate marker and/or loss of radial symmetry (Figure 2B-C). Since 
either of the aberrations captured in these clusters would result in a failure of gastrulation, 
we termed each of these clusters to be gastrulation failure modes. For more examples 
see Figure S2B-C and for the entire dataset visit https://max-
wilson.mcdb.ucsb.edu/research/gastruloid-morphospace.  
 

 
 
Figure 2: Mapping the morphospace of 2D gastruloids to identify human gastrulation failure modes. 
(A) t-SNE plot of individual 2D gastruloids, each represented as a point and clustered by morphological 
phenotype based on high-dimensional image analysis. An unsupervised clustering algorithm was applied 
to identify distinct clusters, resulting in the identification of 12 unique morphological phenotypes. (B) Mean 
cluster images for each morphological phenotype, generated by averaging all colony images within a 
cluster. This approach highlights essential features of canonical cell patterning and failure modes, 
facilitating the identification of key morphological differences, such as loss of SOX2, loss of BRA, or loss of 
radial symmetry. (C) Representative colony images and associated drug treatments for each of the 12 
clusters, accompanied by radial line plots showing the spatial distribution of cell fate markers (GATA3, BRA, 
SOX2) from edge to center of the colonies. The distinct and recurring patterns observed within each cluster 
underscore the effectiveness of this framework in defining and categorizing morphological phenotypes, 
revealing how various perturbations impact patterning in the 2D gastruloid. 

 
Cell density explains mesoderm positioning and rescues malformation-inducing 
drugs 
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Figure 3: Impact of cell density on mesoderm patterning and rescue of drug-induced failure modes 
in 2D gastruloids. (A) Analysis of cell density effects on patterning in BMP4-treated control colonies. 
Colonies are plotted in morphospace and colored by cell density, with the inset showing a strong correlation 
(R² = 0.69) between cell density and the inward shift of the BRA (mesoderm) peak. Representative images 
of highlighted colonies illustrate a clear trend of decreasing mesoderm band thickness with increasing cell 
density. (B) Heatmap showing edge-to-center mesoderm staining intensity for BMP4-treated controls, 
ranked by cell density. Results reveal mesoderm expansion and inward shift at lower densities. (C) Clusters 
C2-C10 are shown in morphospace, colored by cell density, with the inset revealing a significant correlation 
(R² = 0.96) between mesoderm peak location and cell density in mean cluster representations. Images of 
mean clusters further confirm that mesoderm location and width are influenced by cell density across the 
canonical patterning region. (D) Heatmap of mesoderm width in mean cluster representations of C2-C10, 
demonstrating that lower cell densities are associated with broader mesoderm bands across the canonical 
patterning region. (E) The impact of cell density on rescuing or exacerbating gastrulation failure modes. (I) 
High-density conditions can rescue colonies from failure mode clusters (e.g., (-)-Blebbistatin-treated 
colonies from C1 and C12 are driven back into canonical patterns). (II) Conversely, low-density conditions 
can push drug-treated colonies (e.g., DEL-22379) into failure modes. These results suggest that cell density 
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plays a significant role in modulating patterning outcomes and can potentially correct aberrant gastrulation 
phenotypes. 
 

We next turned our attention to determine the causes of variance in the canonical 
patterning region. We observed that one of the most obvious sources in this region is the 
width of the mesoderm band (Figure S3A-B). From previous observations on the 
importance of 2D gastruloid density in determining patterns,28,34-36 we hypothesized that 
mesoderm band width could be regulated by cell density. This implies that a significant 
number of perturbations influence pattern formation by simply altering the rates of cell 
division or death during the 48-hour differentiation. Thus, we first examined experimental 
fluctuations in cell density.  
 
The number of cells that attach to each micropattern is Poisson distributed, thereby 
providing a natural variation in the cell density parameter. This allowed us to test the cell 
density hypothesis in our BMP4-treated controls. Indeed, the distribution of these control 
colonies in morphospace is explained by their density (Figure 3A). We also observed a 
correlation (R2 = 0.69) between cell density and the location of the peak of the mesoderm 
band (Figure 3A). Finally, ranking the edge-to-center mesoderm staining for each BMP4 
control colony by density also revealed a clear trend of mesoderm expansion as cell 
density decreased (Figure 3B). Other drug treatments, targeting a variety of signaling 
pathways, also displayed this relationship at the single-colony level (Figure S3C-I). 
 
To determine if this relationship was also true across all colonies in the canonical 
patterning region, we performed a similar analysis on the composite colonies for each 
cluster. Again, we observed a clear relationship between cell density and a colony’s 
location in morphospace and an even more significant correlation (R2 = 0.96) between 
the mean cluster density and the location of the mesoderm band peak when plotted by 
cluster (Figure 3C). Finally, we again confirmed this relationship by ranking the mean 
edge-to-center mesoderm vectors for each cluster by their mean cell density (Figure 3D). 
Thus, both within single-drug treatments and across all canonically patterned phenotype 
clusters a major source of variance is explained by cell density. Ultimately, density is 
regulated by the balance between cell division and death, processes which incorporate 
information from many parallel pathways and thus encompass a large number of drug 
targets.  
 
Given the impact of cell density on patterning, we hypothesized that it might be strong 
enough to override the effects of drug treatment. If correct, we would expect colonies to 
be rescued back into the canonical patterning region by increased density or driven out 
into failure modes by decreased density, demonstrating the capacity of cell density to 
modulate drug-induced patterning outcomes. To this end, we observed (-)-Blebbistatin 
treated colonies, which were typically in failure mode clusters C1 and C12, that could be 
rescued through increasing the cell density (Figure 3E I). We also observed colonies 
driven to the edge of the canonical patterning region by a drug treatment (e.g. DEL-22379 
and additional examples in Figure S3J) drop-out of the canonical patterning region when 
their density becomes too low (Figure 3E II). Overall, these observations suggest that 
density is causal of a large amount of variation in 2D gastruloid patterning and could be 
used as a target for correcting aberrant gastrulation.  
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A mathematical model of density-induced variations in morphogen signaling 
dynamics explains mesoderm band variation 
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Figure 4: Modeling the impact of cell density on morphogen dynamics and cell fate determination 
in 2D gastruloids. (A) Reaction-diffusion model describing the density-dependent spread of morphogens 
BMP, Wnt, and Nodal in 2D gastruloids. The model incorporates cell density effects by modifying Wnt 
reaction terms. (B) Logic-based schematic diagram of cell fate determination rules based on integrated 
morphogen dynamics. Notably, cells respond to the integral of BMP and Wnt (concentration-dependent), 
but to the integral of the partial derivative of Nodal, or the rate of Nodal concentration change (rate-
dependent). Initial SOX2 levels (C1) and SOX2 stability (Cs) modulate the response of cells to these signals, 
influencing differentiation outcomes. (C) Simulated concentration profiles of BMP, Wnt, and Nodal over time 
in 2D gastruloids at varying cell densities (750, 950, and 1150 cells). The simulations reveal that lower cell 
densities lead to faster and deeper penetration of Wnt and Nodal signals into the colony, influencing 
mesoderm patterning. (D) Simulated versus experimental cell fate outcomes for different densities, 
demonstrating the model's ability to replicate patterns observed in our screen. Three examples of 
simulations (left) compared to experimental images (right) with accompanying line plots show matching 
spatial distributions of cell fate markers (GATA3, BRA, SOX2). (E) Experimental investigation of density-
dependent Wnt dynamics using CRISPR-tagged β-catenin (β-cat) hESC lines. Live-cell time-lapse imaging 
over 48 hours shows the effect of cell density on Wnt signaling. Scale bars = 100 μm. (F) Mean kymographs 
of Wnt signaling activity across 8 colonies per cell density range, demonstrating that lower cell densities 
result in a faster and broader spread of the Wnt signal. (G) Quantification of BRA staining intensity profiles 
across different densities, taken from the same colonies used to generate the kymographs. The shapes of 
the curves show that BRA signal penetrates further inward as cell density decreases, and the area under 
the curve (AUC) analysis confirms increased total BRA signal at lower densities, validating our model’s 
prediction of density-induced variations in mesoderm dynamics. 
 
Various studies have developed models of the effects of individual morphogens on cell 
fates.37-39 While combinatorial morphogen approaches have recently been applied to 
model cell fate decisions in non-patterned stem cells,40 as well as the 2D gastruloid,41 we 
lack a comprehensive model that incorporates combinatorial signaling dynamics and how 
those dynamics are decoded into cell fates. Such a model would enable an unbiased 
analysis of patterning outcomes in the gastruloid based on their fate patterning. Building 
off of previous partial differential equation models of morphogen signaling,41 we utilized a 
reaction-diffusion description of BMP, Wnt, and Nodal dynamics. To model the fate 
choices, we further incorporated equations that describe how the morphogens are 
decoded into each of the three cell fate markers, GATA3, BRA, and SOX2 (Figure 4A-B, 
Figure S4A, and Methods). We note that existing models of cell fate in the 2D gastruloid 
incorporate entire signaling histories, but only focus on a single morphogen,37,40 or 
incorporate multiple morphogens, but neglect dynamics and make heuristic fate 
predictions based only on instantaneous morphogen levels.41 
 
Based on our observations of the importance of cell density, we sought to include its 
effects in our model as well. Because hESCs form a tight monolayer, but also cannot grow 
beyond the bounds of the micropatterned ECM onto which they are plated, multiple 
morpho-mechanical features of cells in the gastruloid change as a function of density (e.g. 
aspect ratio, cortical tension, receptor availability, volume, etc.). We hypothesized that 
Wnt signal secretion, with its reported sensitivity to changes in local mechanics,42 is 
regulated by cell density. Mathematically, we captured this by introducing a function, h(d), 
that linearly decreases all sources of Wnt ligand creation as density, d, increases. For 
details of model implementation and further justification of parameter choices see 
Methods.  
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To test if we accurately captured the effects of density, we simulated morphogen dynamics 
and cell fate determination of three colonies that range in densities, from 750 cells (~10th 
percentile) to 1150 cells (~90th percentile). Kymographs of simulated signaling revealed 
a faster Wnt wave that further permeates the colony interior as density decreases (Figure 
4C). As a result, Nodal, which is created as a function of Wnt, also follows this trend. 
Ultimately, this leads to a deeper penetration of BRA into the center of the colony with a 
corresponding decrease in SOX2 because BRA is a function of both Wnt and Nodal 
(Figure 4D, Video S1). Experimental colonies with similar densities matched simulation 
results across a wide range of density, even at the extremes of density and complete 
inhibition of a morphogen signal (Figure S4B-C). These findings suggest that our 
comprehensive model accurately captures the interactions between morphogen 
signaling, cell density, and cell fate markers.  
 
A central implication of our model is that Wnt signaling is inversely proportional to cell 
density. To test this prediction, we sought to experimentally measure endogenous Wnt 
signaling in 2D gastruloids as a function of cell density. We leveraged a CRISPR-tagged 
β-Catenin (β-cat)43 hESC line (Methods) to observe Wnt signaling in real time. We varied 
initial seeding density and took live-cell, time-lapse images of 8 colonies per condition 
over the 48 hr differentiation (Figure 4E). To extract the β-cat signaling activity we wrote 
a custom image processing algorithm that extracts the active, non-membrane β-cat from 
the inactive, membrane-bound pool, as has been done previously41 (Figure 4SD). Both 
timelapse videos from individual colonies (Figure S4E-G, Video S2) and mean 
kymographs, subset by colony density, clearly demonstrate the impact of cell density on 
the Wnt wave (Figure 4F). Finally, we fixed and stained the same colonies for which β-
cat was imaged and confirmed that their BRA staining also decreased with increasing 
density (Figure 4G). Overall, these experiments validate our choice of model architecture, 
confirm the effects of cell density on Wnt signaling, and suggest that our cell fate rules 
accurately capture the decoding process that occurs in the gastruloid.    
 
Cell density and SOX2 stability explain variance in canonical patterning 
 
The non-parametric approach t-SNE and related dimensionality reduction techniques 
employ to generate embeddings suffer from two important limitations: (1) the lack of 
interpretable axes in the low-dimensional space and (2) the dependence of the 
embedding on the entire dataset, which precludes the addition of new data. We reasoned 
that overcoming these limitations would allow us to place simulated colonies into the 
experimentally-defined morphospace, thereby revealing the relationship between 
developmental parameters and location in morphospace. This would have the added 
benefit of inferring drug mechanisms by mapping changes in model parameters onto 
locations in morphospace where specific drugs reside.  
 
While there is no inverse solution to t-SNE, one can construct a function, 𝜙(𝑥⃑), that 
approximates the low-dimensional embedding. To construct 𝜙(𝑥⃑) we trained a 4-layer 
neural network with ReLu activation functions to minimize the distance between the 
learned location in the low-dimensional embedding and the true location from our original 
t-SNE (Figure 5A, see Methods for details). The learned embedding was able to 
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accurately reconstruct the original morphospace map (Figure S5A). To understand the 
universality of the density effect on patterning, we used  𝜙(𝑥⃑) to project simulated colonies 
with varied density, d, and all other parameters kept constant (Figure 5B). Intriguingly, 
these simulated colonies formed a smooth and continuous curve, suggesting that this 
single parameter describes one of the major axes of variance over the canonical 
patterning region (Figure 5C).  
 

 

 
Figure 5: The Morphospace of 2D Gastruloids is Explained by Two Parameters: Cell Density and 
SOX2 Stability. (A) Schematic showing the projection of simulated colonies into the experimentally defined 
morphospace using a neural network-based function, ϕ(x), trained to map high-dimensional data into the 
low-dimensional t-SNE space. (B) Simulated colonies with varying cell densities, showing how simulated 
spatial patterns align with the experimental trend of decreasing mesoderm thickness as cell density 
increases. (C) Representative simulated colonies projected onto the t-SNE embedding of experimental 
data, matching the expected locations in morphospace. (D) Simulated versus experimental intensity profiles 
of cell fate markers across a range of SOX2 stability values (Cs), with simulated density kept constant at 
1100 cells. The profiles demonstrate how changes in Cs affect patterning, with experimental cell density 
values shown at the top left of each plot, within ±5% of the simulated density. (E) Simulated colonies with 
varying SOX2 stability, but constant cell density. SOX2 stability influences the final expression of SOX2 
relative to GATA3 and BRA. (F) Projection of simulated colonies with varying SOX2 stability values into 
morphospace, forming a curve that appears orthogonal to the cell density axis, suggesting SOX2 stability 
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is a distinct driver of pattern variability. (G-H) Combined plot showing simulated colonies projected along 
variations in both cell density and SOX2 stability, forming a grid that captures the full range of canonical 
patterning outcomes observed experimentally. (I) Comprehensive map of the canonical patterning region, 
with fitted polynomials forming a grid that defines putative axes of morphospace, enabling precise 
description of a colony’s location within morphospace. This approach demonstrates that manipulating just 
these two parameters—cell density and SOX2 stability—recapitulates the majority of observed patterning 
outcomes, making the morphospace interpretable and highlighting the key developmental parameters 
driving pattern variability. 

 
In examining the experimental variation in colonies with similar densities we noticed that 
an independent axis of variation might be described by the shape and level of SOX2 
(Figure 5D). Thus, we hypothesized that the SOX2 stability, represented by the Cs 
parameter in our simulation, forms a second axis. We therefore simulated colonies 
varying only Cs and, after projecting them into morphospace, found that they indeed form 
a second seemingly orthogonal axis (Figure 5E-F). To understand if these two parameters 
alone could explain the entire canonical patterning region, we systematically varied Cs 
and d (Figure S5B). Projecting all simulating colonies into morphospace revealed a grid 
(Figure 5G-H). Fitting polynomials to these simulated colonies demonstrated that the 
entire canonical patterning region is explained by varying just two parameters, Cs and d 
(Figure 5I). Thus, our framework makes the 150-dimensional manifold interpretable and 
describes 72 percent of all patterning outcomes. Of note, while t-SNE is sensitive to the 
hyperparameters chosen for the embedding, the impact of cell density on patterning, as 
well as the Cs and d axes are maintained even when choosing an alternative seed for the 
t-SNE embedding, indicating the robustness and consistency of our approach in capturing 
key drivers of pattern variability, independent of embedding conditions (Figure S5C-H). 
 
Non-canonical gastruloid patterns represent unique failure modes and predict 
teratogens 
 
Having explained the canonical patterning region, we turned our attention to colonies that 
fall outside this part of morphospace: clusters C1, C11, and C12 (Figure 6A). As 
mentioned above, cluster C1 is characterized by BRA overexpression. We noticed that 
drugs inducing this phenotype tend to cause tonic activation of the Wnt pathway (e.g., 
CHIR-99021, CHIR-99014, etc.), inhibit Rho Kinase, and generally appear to be useful 
for increasing regeneration (PDGH-1 inhibitor) (Figure 6B). As Rho-kinase is known to 
alter the cell’s mechanics and perception of its neighborhood,44 this further confirms the 
relationship between mesoderm patterning and cell density. Cluster C12 is characterized 
by low cell number, high GATA3, and a general loss of radial symmetry (Figure 6C). Drugs 
in this cluster appear to be toxic to hESCs, inhibit mTOR (Rapamycin), or induce severe 
malformations (Tretinoin). Protocols designed to differentiate amnion-like cells may 
benefit from drugs in this cluster.  
 
Of all the non-canonical clusters, C11 has by far the largest number of colonies (20% of 
all colonies). Interestingly, colonies falling in this cluster appear to have lost the 
relationship between d and mesoderm, indicating a change to the underlying molecular 
topology (Figure 6D). Confirming this, we found known inhibitors of BMP, Wnt, and Nodal. 
In addition, we found a number of known severe teratogens45-47 that do not directly inhibit 
signaling pathways, but are instead thought to activate developmental pathways such as 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.614192doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614192
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

retinoic acid signaling (Figure 6E). Retinoic acid derivatives in C11 also cause 3D 
protrusion from the 2D gastruloids. Thus C11, appears to describe a failure mode that is 
non-cytotoxic and uncouples developmental signaling pathways from establishing 
mesoderm, thereby describing perturbations that fundamentally alter the molecular 
relationships that determine cell fate.  
 
We noted many drugs in C11 that have not been formally classified as teratogenic and 
wondered if morphological clustering could provide a method to assess teratogenic risk. 
To this end we selected one well known teratogen, Isotretinoin, and two clinical-stage 
molecules of unknown teratogenic risk, Nirogacestat and Ulixertinib, to test in a zebrafish-
based assay of developmental teratogenicity. Analysis of zebrafish developmental 
outcomes has been shown to have 74.19% accuracy (87.50% sensitivity) in comparison 
to mice at 67.74% (75.00% sensitivity),48 and are also faster and easier to test at scale. 
Examination of gross anatomy as well as specific qualitative and quantitative teratogenic 
phenotypes revealed that all molecules tested are highly teratogenic (Figure 6F). Overall, 
these findings demonstrate that morphological analysis of the 2D gastruloid could be a 
highly accurate and quantitative assay to evaluate potential teratogenic risk of a 
compound, especially during gastrulation–the most susceptible window of embryonic 
development.49  
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Figure 6: Identification and Characterization of Non-Canonical Patterning Clusters in 2D Gastruloids 
as Failure Modes of Human Gastrulation. (A) Clusters C1, C11, and C12 are identified as non-canonical 
patterning regions within the 2D gastruloid morphospace, representing distinct failure modes of gastrulation 
characterized by specific morphological anomalies such as loss of SOX2, overexpression of BRA, and loss 
of radial symmetry, respectively. (B) Cluster C1 is defined by colonies with BRA overexpression, often 
induced by Wnt pathway agonists (e.g., CHIR-99021), highlighting a failure mode linked to excessive Wnt 
signaling. (C) Cluster C12 is characterized by colonies displaying low cell numbers, loss of radial symmetry, 
and high levels of GATA3, commonly caused by toxic compounds or drugs targeting Rho-kinase and mTOR 
(e.g., (-)-Blebbistatin, Y-39983 HCl, Rapamycin). (D) Cluster C11 exhibits a failure mode marked by the loss 
of BRA and disrupted cell patterning, regardless of cell density. (E) Known teratogens identified in Cluster 
C11, including Isotretinoin, TTNPB, and Bexarotene, show severe disruptions in gastruloid patterning, 
indicating high teratogenic risk and corresponding failure modes of gastrulation. (F) Zebrafish assays were 
used to validate the teratogenic potential of drugs identified in Cluster C11. Isotretinoin, a known teratogen, 
was selected as a positive control, alongside two other drugs from Cluster C11—Nirogacestat and 
Ulixertinib—that are previously unclassified as teratogens. Treated embryos exhibited qualitative and 
quantitative defects consistent with failure modes in embryonic development, including abnormal body 
curvature (BA), yolk edema (YE), necrosis (NC), craniofacial edema (CE), scoliosis (SC), snout and jaw 
defects (SJ), reduced lateral heart area (LH), and decreased lateral body length (BL), as indicated by the 
color-coded bars. 

 

Discussion 
 
Our understanding of morphogen signaling has evolved from a static picture of standing 
gradients, such as the anterior-posterior-determining Bicoid gradient observed in the 
Drosophila, to a dynamic picture involving waves.41,50 Concurrently, models that predict 
cell fate from morphogen signaling have progressed from static threshold measuring 
mechanisms to dynamic processes such as integral decoding.37,51 Meanwhile, our ability 
to map the state-space of outcomes resulting from these complex, dynamical processes 
has also progressed by coupling high-throughput, high-dimensional measurement 
techniques to manifold embedding and dimensionality-reduction algorithms that enable 
the visualization of high-dimensional data. Here, we applied these techniques to 
comprehensively understand how morphogen dynamics determine developmental 
outcomes in the 2D gastruloid. Our low-dimensional mapping, or morphospace, enables 
the visualization and comparison of patterning outcomes as well as the identification of 
failure modes of human gastrulation. 
 
Going beyond the manifold 
 
While non-linear dimensionality techniques are an excellent approach for identifying 
trends and clusters from high dimensional data, which in the context of the 2D gastruloid 
can be considered phenotypes, there are no existing methods for linking the partial 
differential equations that describe the relationship between state variables to their 
outcomes. As a result, non-linear dimensionality techniques lack inherent explainability–
it is impossible to know which system parameters determine the location of a point in the 
low-dimensional embedding. We overcame this limitation by learning the embedding that 
maps high-dimensional observations to the low-dimensional space. This approach 
allowed us to explain the low-dimensional embedding and establish the parameters that 
describe the axes of this space. This framework may be helpful in applying models to 
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describe other biological state spaces, such as those derived from single-cell 
transcriptomics and high-throughput proteomics. 
 
Leveraging this new approach, we identified cell density and SOX2 stability as two key 
parameters describing the canonical patterning region, which begs the question: why 
these two parameters? Cell density is a parameter that is functionally linked to multiple 
mechanical and chemical signaling pathways, and thereby may serve as a proxy for a 
variety of environmental cues, including number of neighbors, proliferation capacity, and 
tissue stiffness. Importantly, a notable difference between the 2D gastruloid and the 
embryo is that, in the gastruloid, cells are confined to grow on micropatterns. This 
constraint causes cells to spread at low densities and crowd at high densities, leading to 
alterations in mechanical properties known to influence patterning in the 2D gastruloid, 
including membrane tension52 and receptor localization.34 Thus, the coupling of germ-
layer fates to the engineered constraint of cell patterning may increase the sensitivity of 
this system to detecting perturbations.  
 
Our observations revealed increased Wnt signaling and enhanced mesoderm 
specification at low cell densities, suggesting that Wnt signaling may have evolved to 
detect cell density in the embryo through either a chemi- or mechano-sensitive 
mechanism. Supporting this idea, nuclear translocation of β-catenin can be triggered by 
mechanical forces and induce mesoderm differentiation in species ranging from zebrafish 
and Drosophila53 to the sea anemone.54 Together with our findings, these observations 
suggest an ancient, evolutionary conserved role for density-sensing via Wnt signaling that 
dates back at least 600 million years.  
 
The orthogonal parameter in morphospace to cell density is SOX2 stability. Similar to cell 
density, we speculate that it could also serve as a proxy for multiple signaling pathways, 
that can be varied independently of cell density. Typically, as colonies begin to express 
BRA, there is a concurrent decrease in SOX2 expression. However, altering the SOX2 
stability parameter disrupts this balance. At high SOX2 stability values, cells maintain high 
levels of both BRA and SOX2. Interestingly, the methylation and phosphorylation state of 
SOX2, which regulates its degradation and activity,55 provides a potential mechanism 
linking SOX2 stability to broader cellular contexts. Indeed, drugs that decrease SOX2 
stability (Table S1) include histone methyltransferase inhibitors, which can alter chromatin 
structure and affect gene expression, and cyclic AMP inhibitors, which serve as proxies 
for overall cell metabolism. Similarly, drugs that increase SOX2 stability (Table S2) include 
histone deacetylase inhibitors, which support pluripotency by enhancing chromatin 
accessibility. Overall, SOX2 stability appears to capture key aspects of the epigenome 
and cellular fitness, suggesting a complex landscape over which hESCs can modulate 
their pluripotency in response to cell health and the environment.   
 
Cell density sensing in human embryos 
 
Our observations revealed a strong reliance on cell density for patterning outcomes, with 
even minor fluctuations in initial seeding density being sufficient to shift from canonical 
patterning to failure modes. This raises the question of how precise patterning is achieved 
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in the human embryo given the potential for cell density fluctuations. Interestingly, whole-
embryo imaging of mouse gastrulation has revealed that density variance is globally 
minimized at the primitive streak,56 suggesting the existence of a conserved module that 
can sense and regulate the local density of cells. 
 
Studies on mouse embryos have also shown that the initiation and progression of 
gastrulation are closely linked to reaching a threshold number of epiblast cells.57,58 
Embryos with reduced cell numbers due to impaired proliferation experience delayed 
gastrulation, indicating the necessity of achieving a minimum density for proper 
developmental timing. Conversely, double-sized embryos, formed by aggregating two 8-
cell stage eggs, attain the critical cell number earlier but still initiate gastrulation at the 
same time as normal-sized embryos,59 hinting at the existence of a density threshold 
rather than just cell count for triggering gastrulation. These findings suggest that a density-
sensing mechanism operates to integrate local cell density with developmental cues, 
maintaining the spatial and temporal precision essential for proper patterning. While it 
remains to be demonstrated that aberrant density sensing is responsible for failures of 
human gastrulation, our study of the 2D gastruloid suggests that this module can respond 
to a wide range of fluctuations and modulate germ layer fate patterning accordingly, at 
least in part through changes in Wnt signaling.  
 
A quantitative framework for teratogen screening 
 
Our successful identification of teratogens from cluster C11 serves as a proof-of-concept 
demonstration that stem cell-based models of human embryonic development can 
accurately identify novel teratogenic compounds. Small animal models suffer from 
species-specific differences, are not scalable, and often fail to accurately identify 
teratogens due to the challenge of administering doses that induce birth defects without 
being lethal to the embryo or mother.60 As a result, more than 80% of FDA approved drugs 
lack sufficient data to determine fetal risks,61 and an estimated 1 in 16 pregnancies are 
exposed to teratogenic drugs.62 Although previous attempts have been made to use 
micropatterned hESCs for teratogen testing,63,64 the incomplete understanding of how 
system parameters influence patterning outcomes has hindered the ability to accurately 
distinguish the impact of drugs from other variables. The high-throughput nature of our 
technique makes it highly suitable for scaling the evaluation of environmental hazards 
and pharmaceutical drugs in a cost-effective and efficient manner—an essential need 
given that the USA alone produces an average of 1,500 new substances each year,65 
contributing to an estimated 140,000 chemicals that have been synthesized globally to 
date,66 many of which are toxic in small doses and are infeasible to test using animal 
models. 
 
Limitations of the study 
 
This framework serves as a critical starting point for identifying potential failure modes of 
human gastrulation and offers a means to uncover how specific perturbations impact 
development. However, key signaling pathways, notably FGF signaling,67,68 and detailed 
mechanistic insights remain underexplored. While the framework shows potential for 
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teratogen testing, it was not originally designed for this purpose, and comprehensive 
quantification of sensitivity and specificity has not been performed. Preliminary data using 
zebrafish embryos indicate promise, yet known teratogens like valproic acid, which 
primarily affect neural tube development post-gastrulation,69 were not flagged as 
teratogenic in our assay. Additionally, all compounds were tested at a single active 
concentration (10 µM), which may underestimate failure modes occurring at higher doses. 
Future work will involve standardizing protocols, testing across a broader range of 
concentrations, and expanding the set of known teratogens. In addition, measuring just 3 
transcription factors limited our ability to characterize certain cell fate decisions of rare 
cell types, including primordial germ cells, that emerge during gastrulation.70 To 
characterize these rare, but important events, we plan to integrate additional protein 
markers and small molecule probes, such spatial transcriptomics techniques.71 Despite 
these limitations, our study provides a foundation for future investigations aimed at 
refining teratogen detection and enhancing our understanding of the molecular 
underpinnings of human gastrulation.  
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Resource Availability 
 
Lead Contact 
 
Further information and requests for resources and reagents should be directed to and 
will be fulfilled by the lead contact, Maxwell Wilson (mzw@ucsb.edu). 
 
Materials Availability 
 
Plasmids generated in this study are available upon request to Maxwell Wilson 
(mzw@ucsb.edu) without restrictions. 
 
Data and Code Availability 
 
All code generated during this study has been deposited at the Wilson Github repository 
(https://github.com/mzwlab). An interactive dataset is also available at: https://max-
wilson.mcdb.ucsb.edu/research/gastruloid-morphospace. Any additional information 
required to reanalyze the data reported in this paper is available from the lead contact 
upon request. 
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Supplemental Figures 
 
Supplemental Figure S1 
 

 
 
Figure S1: Automated image processing and quantification of 2D gastruloid patterning with single-
cell resolution. (A) Schematic of the automated image processing pipeline showing single-cell resolution 
detection. DAPI-stained images of 2D gastruloids are processed to detect nuclei, allowing precise 
measurement of each cell's location and expression levels within the colony, rather than averaging staining 
across radial bins. (B) Images and corresponding vector representations of control treatments. (I) BMP4 
treatment leads to canonical radial patterning with GATA3 at the edge, BRA in the intermediate region, and 
SOX2 concentrated at the center. (II) No treatment (No BMP4 or drug) results in colonies maintaining 
pluripotency with high SOX2 expression throughout. (III) CHIR-98014 treatment induces BRA 
overexpression across the colony, disrupting canonical patterning. (C) Principal Component Analysis (PCA) 
of the 150-dimensional vector data demonstrating the ability to reliably separate control treatments (BMP4, 
No Treatment, CHIR-98014).   
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Supplemental Figure S2 
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Figure S2: Unsupervised clustering algorithm and mapping of drug treatments in 2D gastruloid 
morphospace. (A) Schematic of the unsupervised clustering pipeline, which includes: (I) t-SNE embedding 
of high-dimensional data, (II) Gaussian Kernel Density Estimation (KDE) to smooth the data, (III) watershed 
segmentation applied to the smoothed density landscape, and (IV) clustering of colonies by region. (B) 
Location of control treatments (BMP4, CHIR-98014, No Treatment) within the 2D gastruloid morphospace, 
showing their distinct clustering patterns that validate the robustness of the clustering method. (C) 
Representative drug treatments mapped onto morphospace, with each drug’s corresponding cluster color-
coded at the top. The displayed colonies and their radial intensity plots for GATA3, BRA, and SOX2 highlight 
the diverse morphological phenotypes induced by different compounds. 
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Supplemental Figure S3 
 

 
 
Figure S3: Impact of cell density on mesoderm patterning and rescue of failure modes in 2D 
gastruloids. (A-B) Mesoderm (BRA) staining intensity profiles across the colony in BMP4-treated controls 
(A) and mean clusters (B), colored by cell density. (C-I) Sample drug treatments demonstrating that the 
observed density-dependent patterning is not limited to BMP4 controls. (C) Location of colonies treated 
with OAC2, Fraxinellone, TUDC, AZD-5069, PF 4800567, and Ligustroflavone within the morphospace. (D-
I) Images of treated colonies arranged by relative cell count, showing consistent trends of decreased 
mesoderm presence with increasing cell number, emphasizing that cell density dominates the patterning 
outcomes across different treatments. (J) Additional examples of cell density-based rescue and 
exacerbation of gastrulation failure modes. (I) High-density conditions can rescue colonies from failure 
mode clusters, as seen with Tenalisib-treated colonies transitioning from failure mode cluster C1 to 
canonical patterns as density increases. (II) MK-4101-treated colonies show that a low-density outlier 
causes the colony to drop into a failure mode. (III) Low-density conditions exacerbate failure modes, with 
ML264-treated colonies shifting into failure clusters as density decreases.  
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Supplemental Figure S4 
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Figure S4: Morphogen-based cell fate determination and quantification of Wnt dynamics in 2D 
gastruloids. (A) Specific morphogen-based cell fate rules used in the simulations, detailing the equations 
governing the influence of BMP4, Wnt, and Nodal on GATA3, BRA, and SOX2 expression levels, as well 
as the role of SOX2 stability parameters. For more details, see Methods. (B) Additional simulations versus 
experimental comparisons at various cell densities (850, 1050, and 1250 cells), demonstrating the model's 
ability to replicate patterns observed in the screen. Simulated (left) and experimental images (right) with 
corresponding line plots highlight the spatial distributions of cell fate markers (GATA3, BRA, SOX2). (C) 
Validation of the model’s ability to simulate the effects of small molecule inhibition. Shown is a colony treated 
with WIKI4, a Tankyrase inhibitor that blocks Wnt/β-catenin signaling. In the simulation, the cell-fate rules 
remained unchanged, but Wnt autoactivation was set to 0, accurately capturing the observed effects of 
WIKI4 on patterning. Scale bar: 100 µm. (D) Masking strategy for analyzing non-membrane β-catenin, 
showing the sequential extraction from tdmRuby3-β-catenin images to isolate active signaling components, 
separating non-membrane β-catenin from the membrane-bound pool. (E-G) Individual kymographs 
grouped by cell density ranges (low, medium, high) that were used to construct the mean kymographs 
shown in Figure 4F.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.614192doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614192
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Supplemental Figure S5 
 

 

Figure S5: Validation of neural network accuracy in learning the low-dimensional embedding and 
consistency of morphospace explainability under alternative embedding conditions. (A) Density 
distributions of the true embedding (left, blue) derived from experimental data and the learned embedding 
(right, red) generated by the neural network. The low Jensen-Shannon Divergence (JSD = 0.09) between 
the distributions confirms that the learned embedding accurately replicates the experimental morphospace. 
(B) Simulated colonies showing changes in patterning as a function of cell density and SOX2 stability. (C-
H) Construction of an alternative morphospace using a different seed for the t-SNE embedding, 
demonstrating robustness and consistency despite variations in hyperparameters. (C) The alternative 
morphospace retains the same number of clusters, though their spatial arrangement differs, confirming that 
clustering results are not specific to a single embedding. (D) Mean cluster images from the alternative 
embedding consistently capture canonical cell patterning and failure modes (e.g., loss of SOX2, loss of 
BRA, and loss of radial symmetry). (E-F) Impact of cell density on BMP4-treated controls and canonical 
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patterning clusters (C3-C11) shows the same relationships as the original embedding. (G) Mapping of 
simulated colonies onto the alternative morphospace shows that cell density and SOX2 stability still define 
the two primary axes. (H) The morphospace remains explainable, with fitted polynomials still forming distinct 
axes, validating that observed trends and explainability are inherent to the data rather than artifacts of 
specific embedding parameters. 
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Supplemental Figure S6 
 

 

Figure S6: Teratogenic assessment of Nirogacestat and Ulixertinib in 2D gastruloids and zebrafish 
models. (A) Nirogacestat-treated colonies mapped in morphospace (left), highlighting their positioning 
within failure mode cluster C11 (purple), and representative images of the treated colonies (right), showing 
disrupted patterning consistent with potential teratogenic effects. (B) Mortality rates of zebrafish embryos 
treated with Nirogacestat at different concentrations, measured at 24 and 96 hours post-fertilization (hpf). 
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(C) Qualitative teratogenic phenotypes observed in Nirogacestat-treated zebrafish, including abnormal 
body curvature, yolk edema, and other defects, with a high frequency of positive phenotypes at increased 
concentrations. (D) Quantitative teratogenic phenotypes in Nirogacestat-treated zebrafish, including lateral 
heart area and body length, showing significant alterations in comparison to controls, indicative of 
developmental toxicity. (E) Ulixertinib-treated colonies mapped in morphospace (left), demonstrating their 
clustering in C11, with representative images of the treated colonies (right). (F) Mortality rates of zebrafish 
embryos treated with Ulixertinib at varying concentrations, recorded at 24 and 96 hpf. (G) Qualitative 
teratogenic phenotypes observed in Ulixertinib-treated zebrafish. (H) Quantitative teratogenic phenotypes 
in Ulixertinib-treated zebrafish, showing significant deviations in metrics such as heart area and body length, 
further supporting the teratogenic potential of the compound. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.614192doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.20.614192
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

METHODS 

Cell Lines 

All experiments were conducted using H9 (WA09) human embryonic stem cells obtained 
from WiCell (Cat No. WB66446). For the initial drug screen, H9 cells were utilized to 
assess the impact of various drug treatments on patterning outcomes. Additionally, a 
CRISPR-Cas9 tagged β-Catenin (β-Cat) line was developed using H9 cells specifically 
for the quantification of Wnt signaling dynamics, enabling the study of active, non-
membrane-bound β-Catenin in live cells. 

Cell Culture 

For routine maintenance, H9 cells were cultured on Corning Matrigel hESC-Qualified 
Matrix, LDEV-free (Corning, Cat #: 354277) coated dishes, and grown in mTeSR Plus 
feeder-free maintenance medium (STEMCELL Technologies, Cat #: 100-0276). Matrigel-
coated dishes were prepared by coating them overnight at 4°C, followed by warming at 
room temperature for 1 hour before cell seeding. 

METHOD DETAILS 

Micropatterning 

For micropattern cell culture, custom ordered 500 µm diameter micro-patterned 96 well 
glass bottom dishes (CYTOO Inc, Cat #: A500P650) were first coated with CellAdhere 
Laminin 521 (STEMCELL Technologies, Cat #: 200-0117) at 10 ug/mL for 2 hours at 
room temperature. Established protocols for 2D gastruloid patterning were used.28 Briefly, 
the wells are serially diluted with ice-cold calcium and magnesium free PBS (Thermo 
Fisher Scientific, Cat #: J67802.K2). Cells already resuspended in growth medium with 5 
μM ROCK inhibitor (RI), Y-27632 (STEMCELL Technologies, Cat #: 72307) are then 
immediately plated upon removal of PBS. For cell seeding onto the micropattern, cells 
growing on Matrigel are lifted using ACCUTASE (STEMCELL Technologies, Cat #: 
07920). Cells are centrifuged and 5x105 cells per well are resuspended in RI containing 
media and added to the micropatterned plate. After 4 hours the medium is replaced with 
mTeSR plus without ROCK inhibitor and incubated overnight. 

Drug Screen 

For the drug screen, we utilized the Stem Cell Signaling Compound Library (Selleck 
Chemicals, Cat #: L2100), containing 210 distinct drug conditions. Each compound was 
provided at an initial concentration of 10 mM, either dissolved in DMSO or water, based 
on solubility requirements. The compounds were stored and handled according to the 
manufacturer's recommendations to maintain stability and activity. To prepare the 
working solutions, the compounds were aliquoted into 96-well plates and diluted to a final 
concentration of 10 μM in mTeSR Plus medium supplemented with BMP4 (STEMCELL 
Technologies, Cat #: 78211.1) at 50 ng/mL and without RI. Following the initial 
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preparation of the micropatterned colonies, as described in the Micropatterning section, 
the cells were incubated overnight in mTeSR Plus medium. The next day, the media was 
carefully aspirated, and the BMP4 + drug mixture was added to the micropatterned wells, 
exposing the cells to both the differentiation cue (BMP4) and the specific drug conditions 
simultaneously. The plates were then incubated at 37°C with 5% CO₂ for 48 hours, 
allowing the cells to respond to the combined BMP4 and drug treatment. 

Immunofluorescence 

Wells are fixed with 4% paraformaldehyde and rinsed twice with PBS then permeabilized 
with -80 °C ethanol for two minutes. Wells are then incubated with primary antibody at 4 
°C overnight (For antibodies see Key Resources Table), washed three times in PBS for 
5 minutes each, and incubated with secondary antibody and DAPI nuclear counterstain 
(Thermo Fisher Scientific, Cat #: D3571) for 1 hour at room temperature before being 
washed 3 times with PBS. 

CRISPR-Cas9 fluorescent tagging 

For CRISPR-Cas9 editing in H9 human embryonic stem cells, we utilized Lipofectamine 
Stem Transfection Reagent (Thermo Fisher Scientific, Cat #: STEM00015), to transfect a 
plasmid expressing a gRNA targeting the N-terminus of the CTNNB1 gene, a homology 
template with ~180bp of both upstream and downstream homology to the targeted 
insertion site flanking the tdmRuby2 construct, and the Cas9 enzyme (IDT) according to 
manufacturer’s directions. Edited cells were passaged into a single cell suspension and 
sorted, into ROCKi (5 µM in mTeSR), for tdmRuby2 positive clones using a Sony SH800 
FACS system. Clones we isolated and expanded prior to verification of successful edition 
through PCR followed by Sanger sequencing.  

Confocal imaging of fixed 2D gastruloids from drug screen 

All live and fixed cell imaging experiments were carried out using a Nikon W2 SoRa 
spinning-disk confocal microscope equipped with incubation chamber maintaining cells 
at 37 °C and 5% CO2. We imaged in the four channels corresponding to DAPI, Alexa488, 
Alexa555 and Alexa647 conjugated antibodies. Images were exported as .tiff files and 
analyzed using the custom MATLAB and Python software, enabling quantification of the 
spatial distribution and intensity of cell fate markers across various drug treatments. 

Live-cell confocal imaging 

Cells were seeded at varying densities onto micropatterned plates using the CellVoyager 
CQ1 Benchtop High-Content Analysis System (Yokogawa Electric Corporation). 
Specifically, 5 × 105 cells were resuspended in ROCK inhibitor-containing media and 
added to each well of the micropatterned plate. To achieve variation in initial seeding 
density, cells were diluted to 10%, 25%, 50%, 75%, and 100% concentrations (1:10, 1:4, 
1:2, 1:1.33, and undiluted, respectively), with one well used for each condition. Eight 
colony positions were selected within each well using the CQ1 software, and these 
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positions were saved in the protocol to allow for consistent imaging of the same locations 
after subsequent fixing and staining. The CQ1 system is equipped with an incubation 
chamber maintained at 37°C and 5% CO2 throughout the 48-hour experiment. Time-
lapse imaging was performed with z-stacks acquired every 15 minutes using brightfield 
and 561 nm laser illumination. Laser autofocus was enabled to maintain image sharpness 
and consistency throughout the experiment. Images were automatically saved as .tiff files 
and exported for analysis. Post-acquisition, the images were processed and analyzed 
using custom Python software. 

Confocal imaging of fixed 2D gastruloids with varying density 

Imaging was conducted using the same CellVoyager CQ1 Benchtop High-Content 
Analysis System to maintain consistency with the live-cell imaging setup. The previously 
saved positions from the live-cell imaging protocol were used to ensure that the same 
colonies were re-imaged, allowing for direct comparisons between live-cell dynamics and 
fixed-cell staining outcomes. Z-stacks were acquired for each of the four channels 
corresponding to DAPI, Alexa488, Alexa555, and Alexa647. All images were captured 
using the same incubation settings, with 37°C and 5% CO2 to prevent temperature-
related artifacts during imaging. Laser autofocus was enabled for consistent focal plane 
alignment. Images were exported as .tiff files and analyzed using the custom MATLAB 
and Python software, enabling quantification of the spatial distribution and intensity of cell 
fate markers across varying seeding densities. 

Zebrafish Embryo Teratogenicity Assay and Phenotypic Analysis 

All experiments were conducted using wild-type AB zebrafish (Danio rerio) maintained at 
28 ± 1 °C with a 14-hour light and 10-hour dark cycle. Fertilized zebrafish embryos were 
collected in E3 1X medium (60X stock is prepared by dissolving 34.8 g NaCl, 1.6 g KCl, 
5.8 g CaCl2·2H2O, 9.78 g MgCl2·6H2O in 2L H2O and adjusting the pH to 7.2 using NaOH) 
in Petri dishes, and abnormal or unfertilized embryos were discarded at 6 hours post-
fertilization (hpf). Healthy embryos were grown up to 96 hpf and exposed to ulixertinib, 
nirogacestat, and isotretinoin at five concentrations (0.01 µM, 0.1 µM, 1 µM, 10 µM, 100 
µM) starting at 6 hpf. 4-Diethylaminobenzaldehyde (DEAB) (MilliporeSigma, Cat #: 
D86256-100G) was used as a positive control at concentrations of 0.1 µM, 0.3 µM, 1 µM, 
3 µM, and 10 µM. 

Mortality was assessed at 24 h and 96 h, and larvae were imaged at 96 hpf using the 
automated VAST system (Union Biometrica). Dead, unhatched, and incorrectly detected 
larvae were excluded from analysis, resulting in a variable number of larvae analyzed per 
condition. Teratogenic effects were quantified by assessing both qualitative and 
quantitative phenotypes. Qualitative phenotypes included body curvature abnormalities, 
yolk edema, necrosis, and craniofacial defects, while quantitative phenotypes such as 
lateral area, eye diameter, pigmentation, and body length were measured using FIJI 
software. Continuous data were transformed to binary outcomes based on interquartile 
range thresholds. 
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LC50 and EC50 values, representing the concentration at which 50% of mortality is 
observed and the concentration at which 50% larvae population show a teratogenic 
phenotype, respectively, were calculated using dose-response models via Proast 
software, allowing for the determination of the teratogenic index (TI) as the ratio between 
LC50 and EC50 for the most sensitive phenotype. The Lowest Observed Effect 
Concentration (LOEC) was identified for each compound, with effects within 20% of 
biological range considered non-significant. 

Image Analysis 

All image analysis was performed using custom software written in MATLAB and Python. 
The quantification of each imaged colony was performed in MATLAB using the same 
general workflow: background subtraction > dilation > nuclei detection > measurement. 
Subcellular segmentation of nuclear fluorescence was performed using DAPI brightness, 
size, and circularity to mask nuclei. Mean fluorescent intensity of regions of interest were 
measured and subsequently processed. 

Patterning quantification (MATLAB) 

We developed in-house MATLAB software to extract intensity and positional intensity of 
imaged colonies. We first extract the DAPI image from the stack and rescale it into a 
binary image. Prior to true nuclei detection, we run the image through a background noise 
clean up algorithm, which is described as the following: using a morphological structuring 
element method, we define the nuclei criteria for detection. We then use a standard nuclei 
detection and enhancement pipeline, fill, dilation with our structuring element, followed by 
a final fill to get a grain free mask of the nuclear image channel. We lastly use MATLAB’s 
connected component detector (bwconncomp) to extract all nuclei positional and count 
information. With the generated mask, we go through a secondary segmentation step 
where once again use a morphological structuring element to enhance the binarized 
nuclei image followed by a regional maxima filter to extract the final nuclei positions. 
Intensity data is extracted by masking the generated segmentation across the imaged 
channels and finding the intensity values for each respective germ layer stain. To extract 
colony edge information, we can find the centroid information of all the nuclei before using 
a boundary detection algorithm to detect the edges of the colony along with each cell’s 
nearest border. Using the location data, we establish 50 bins that run from the center of 
the colony to the edge and fill each with the average intensity of cells in each bin for each 
channel. Lastly, we export both the raw intensity information and the binned intensity 
information. 

Dimensionality reduction (Python) 

To extract trends from the imaged data set, we first apply robust scaling to the bin-wise 
data, normalizing each parameter within specific ranges (GATA, BRA, SOX) based on 
the 25th and 75th percentiles, and adjusting for each plate independently. This 
normalization is implemented using the pandas and numpy libraries, where 
numpy.percentile is used to calculate the 25th and 75th percentiles, and the data is scaled 
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using scikit-learn’s RobustScaler. Normalizing by plate is crucial to account for plate-to-
plate variability, ensuring that differences in experimental conditions or batch effects do 
not confound the analysis. This scaling method adjusts the data relative to the 
interquartile range (IQR), effectively minimizing the influence of outliers and centering the 
data on its median distribution. After scaling, we apply t-Distributed Stochastic Neighbor 
Embedding (t-SNE) using the TSNE function from the sklearn.manifold module to 
visualize high-dimensional data in a 2D space. The t-SNE output is refined using a custom 
unsupervised clustering algorithm that incorporates Kernel Density Estimation (KDE) with 
scipy.stats.gaussian_kde followed by watershed segmentation from 
skimage.segmentation, specifically using watershed and peak_local_max. This approach 
dynamically identifies distinct morphological phenotypes without requiring a 
predetermined number of clusters, distinguishing it from conventional clustering 
algorithms like k-means (sklearn.cluster.KMeans), Gaussian Mixture Models 
(sklearn.mixture.GaussianMixture), and spectral clustering 
(sklearn.cluster.SpectralClustering). The segmentation labels allow us to map and 
visualize clusters, enhancing the interpretability of the morphospace and identifying 
trends that characterize the different colony phenotypes observed in the experiments. 
Visualizations of the clusters and density surfaces were generated using matplotlib.pyplot 
and seaborn, and scatter plots were annotated with matplotlib.patheffects to enhance 
clarity. 
 
Quantifying Wnt signaling (Python) 
 
To quantify active Wnt signaling, specifically the distribution of β-catenin within the cells, 
we developed a custom image processing algorithm to differentiate the active, non-
membrane β-catenin from the inactive, membrane-bound pool. The algorithm was 
implemented using Python with the OpenCV and scikit-image libraries for image 
processing, along with numpy for numerical calculations. The processing pipeline began 
with reading the .tiff images using cv2.imread, followed by background subtraction to 
enhance the signal of the β-catenin staining. The core of the masking strategy involved 
segmenting the images to separate the membrane-bound and non-membrane pools of 
β-catenin. Initially, a Gaussian blur was applied using cv2.GaussianBlur to reduce noise. 
Then, adaptive thresholding (cv2.adaptiveThreshold) was used to generate a binary mask 
of the cell membrane, highlighting the high-intensity areas typically corresponding to 
membrane-bound β-catenin. For the non-membrane (active) β-catenin, the algorithm 
generated a complementary mask by dilating the initial binary mask with cv2.dilate and 
then subtracting this membrane mask from the original signal using cv2.subtract. This 
step effectively removed the membrane-bound signal, isolating the active β-catenin pool 
within the cytoplasm and nucleus. To further refine this mask, morphological operations 
such as cv2.erode were used to minimize any residual membrane signal bleed-through, 
ensuring that only cytoplasmic and nuclear β-catenin contributed to the final 
quantification. The extracted active β-catenin regions were then quantified by calculating 
the mean fluorescence intensity using numpy operations on the masked image arrays, 
providing a direct measurement of Wnt signaling activity. The results were visualized and 
statistically analyzed using matplotlib.pyplot and pandas. 
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Generation of kymographs (Python) 
 
To generate kymographs, a custom image processing pipeline was implemented to 
quantify the temporal dynamics of β-catenin (B-cat) signaling across multiple colony 
positions and time points. The process involved loading time-lapse images and applying 
a series of binning and quantification steps to create visual representations of spatial 
signaling changes over time. Images were first processed using the masking strategy 
previously described, where the active (non-membrane) β-catenin signal was isolated by 
subtracting the membrane-bound component. For each frame, this process was 
conducted using adaptive thresholding and morphological operations (cv2.threshold, 
cv2.dilate, and cv2.subtract) to create masks that accurately distinguished active 
signaling regions. Subsequently, the extracted non-membrane images were analyzed 
using a radial binning approach. Specifically, each colony was segmented into 50 
concentric radial bins, defined by dividing the detected radius of the colony into equal 
segments using numpy.linspace. For each bin, mean fluorescence intensities were 
calculated by applying circular masks (cv2.circle) to the non-membrane β-catenin image, 
focusing on regions between each consecutive pair of radii. This quantification process 
was iterated over the entire set of frames, generating time-series data for each bin. The 
resulting kymographs were plotted using matplotlib.pyplot.imshow, providing a visual 
matrix where the x-axis represented time (in hours) and the y-axis represented the radial 
position of the bins. Color-coded intensity values indicated the level of active β-catenin 
signaling, allowing for clear visualization of temporal and spatial trends within each 
colony. 
 
Simulation of Reaction-Diffusion Models (Python) 
 
The reaction-diffusion models were simulated using a custom Python script to capture the 
dynamic interactions of signaling pathways in the system. The simulation involved 
creating a 2D spatial grid to represent the environment and updating the concentrations 
of key signaling molecules over time. The script utilized Python libraries such as numpy 
for numerical computations, matplotlib for static and animated visualizations, and scipy 
for implementing diffusion and reaction processes. matplotlib.pyplot was used to generate 
heatmaps and plots of concentration profiles, while matplotlib.animation.FuncAnimation 
was employed to create time-lapse animations of the simulated morphogen distributions. 
Standard numerical techniques were applied to compute diffusion, reaction, and 
degradation processes, updating the system in small time steps. Custom functions 
handled boundary conditions and interactions between signaling molecules. 
 
Simulation of Cell Fate (Python) 
 
Cell fate simulations were conducted using custom Python scripts designed to integrate 
the dynamics of morphogen signaling with rules for determining cell fate outcomes. The 
Python libraries used included numpy for numerical computations, matplotlib for 
visualizing data, and PIL (Python Imaging Library) for image manipulation and 
compositing. The process involved calculating fate maps based on our cell fate equations 
to determine the expression levels of GATA3, BRA, and SOX2 proteins. Visualization of 
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fate maps was performed by generating heatmaps of normalized expression levels using 
custom color maps to represent each fate (GATA, BRA, and SOX). Separate images were 
created for each morphogen, and a composite image was generated to illustrate the 
combined spatial distribution of all fates within the colony. Additionally, radial intensity 
profiles were computed by binning the colony into concentric rings and averaging the 
protein expression levels within each ring.  
 
Neural Network-Based Approximation of t-SNE Embedding (Python) 
 
To capture trends in high-dimensional data and map them into a low-dimensional space, 
we implemented a neural network-based approximation of the t-SNE embedding function. 
While there is no direct inverse solution to t-SNE, we constructed an approximate 
function, 𝜙(𝑥⃑), to predict the low-dimensional embedding of high-dimensional data points. 
This approximation was achieved by training a 4-layer neural network with ReLU 
activation functions to minimize the difference between the predicted and actual locations 
in the low-dimensional space generated by the original t-SNE. High-dimensional data 
vectors describing the bin-wise distribution of cell fate markers were used alongside their 
corresponding t-SNE embeddings. 
 
Data preprocessing involved loading the datasets, filtering for numeric columns, and 
converting them to PyTorch tensors. We split the data into training and validation sets 
using an 80/20 split and created TensorDatasets and DataLoaders for efficient batch 
processing during training. The neural network consisted of three fully connected layers 
with decreasing dimensions (128, 64, and 2 neurons, respectively), reflecting the desired 
2D embedding output. 
 
Training was conducted over 10,000 epochs using the Adam optimizer with a learning 
rate of 0.001, coupled with mean squared error loss to quantify the difference between 
predicted and true low-dimensional embeddings. A learning rate scheduler with a 
ReduceLROnPlateau strategy was employed to adapt the learning rate based on 
validation loss improvements. Early stopping was implemented with a patience of 50 
epochs to prevent overfitting, saving the best-performing model during training. 
 
To evaluate the accuracy of 𝜙(𝑥⃑), after training, the model was used to predict low-
dimensional embeddings from the original high-dimensional data. Predictions were 
visualized alongside the original t-SNE embeddings, with density surfaces and scatter 
plots generated using Matplotlib and Seaborn. The primary quantitative measure 
employed to compare the predicted and actual embeddings was Jensen-Shannon 
Divergence (JSD), which assessed the similarity between the predicted and true density 
distributions in the low-dimensional space. 
 
To further interpret the structure of the predicted low-dimensional embeddings, polynomial 
fitting was employed to visualize the "axes" of variation across different experimental 
conditions. Specifically, we projected simulated colonies, which were generated across 
multiple cell densities (ranging from 750 to 1250 cells) and varying stability values (Cs 
values ranging from 0.25 to 1.75), into the low-dimensional space using the neural 
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network model. By predicting the low-dimensional embeddings for these simulated 
colonies, we identified trends within these embeddings by fitting polynomials to the 
observed trajectories. 
 
Polynomial fitting was conducted using the numpy.polynomial.Polynomial class, enabling 
us to approximate the trajectory of data points in the reduced-dimensional space. 
Different polynomial degrees were applied depending on the variability and complexity of 
the data clusters: higher-order polynomials (up to third degree) were used to capture non-
linear trends in groups with higher variability, while lower-order polynomials were applied 
where simpler, more linear relationships were evident. This fitting process facilitated the 
visualization of how specific experimental parameters, such as cell density and stability 
values, influenced the positioning of data points within the low-dimensional space, 
effectively revealing the "axes" along which these factors varied. 
 

Mathematical Modeling 
 
Reaction-diffusion model for morphogen spread 

 
Inspired by recent studies examining BMP-Wnt-Nodal dynamics in 2D gastruloids,41 we 
developed a simplified reaction-diffusion model tailored to our experimental observations. 
The model specifically addresses the influence of cell density on mesoderm patterning, 
as we observed that lower cell density shifts the mesoderm peak inward and causes the 
mesoderm region to expand outward. This density-dependent modulation was 
incorporated into our model, accounting for the dynamic interactions between BMP, Wnt, 
and Nodal, and aligning with observed spatial and temporal morphogen patterns. 
 
BMP was modeled with the following equation: 
 

 

 
The BMP signaling dynamics are modeled as a diffusive species within a localized region, 
rloc, which varies based on cell density. Initially, BMP concentration is set to 1 across the 
entire domain, representing the uniform activation phase. After tloc, BMP diffusion is 
restricted within rloc, simulating the feedback inhibition observed experimentally, where 
BMP signaling diminishes centrally but remains active at the periphery.34  In this context, 
Db, represents the diffusion coefficient of BMP, rloc, denotes the radius defining the 
localized BMP diffusion modulated by cell density, and tloc indicates the time point when 
BMP signaling becomes localized. The boundary for BMP signaling, rloc, is defined by 

𝑟𝑟𝑎𝑑 ∗ (1 − 𝑒−𝑎∗𝑑), where and rrad is the radius of the stem cell colony. Here, a is a constant 
that scales the effect of cell density, and d represents the cell density; this formulation 
reflects our observation that the outermost cells spread more at lower densities, 
increasing the localized signaling boundary. The spread of Wnt was modeled by: 
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Where: 

 

 

 

 
The Wnt signaling dynamics incorporate diffusion and autocatalytic activation, modulated 
by the density-dependent scaling function h(d). The term f(u) captures the autocatalytic 
production of Wnt, with inhibition effects included through a saturation term in the 
denominator to limit excessive Wnt production at high concentrations. Here, Du, is the 
diffusion coefficient of Wnt, h(d) is the density-dependent scaling function, su denotes the 
rate of Wnt autocatalytic production, Ku is the saturation constant controlling Wnt 
production, kb represents the contribution of BMP to Wnt production, cu is a constant 
source term for Wnt, and ku is the degredation rate on Wnt. The scaling function h(d) 
modulates Wnt reaction terms based on cell density, where cm is a scaling factor, d is the 
cell density, and cd is a constant representing the mean cell density from the screen. The 
spread of Nodal was modeled by: 
 

 

 
Where: 

 

 
The Nodal signaling dynamics incorporate diffusion and production influenced by Wnt 
activity, as captured by the term g(u,v), which includes a saturation effect to reduce Nodal 
production at high concentrations. Unlike previous models, we chose not to model Nodal 
as autocatalytic due to evidence indicating that Nodal spreads primarily through a relay 
mechanism rather than an autocatalytic loop.72 In this context, Dv, denotes the diffusion 
coefficient of Nodal, sv, is the rate of Nodal production influenced by Wnt, Kv is the 
saturation constant reducing Nodal production at high concentrations, cv represents the 
constant source term for Nodal, and kv is the degradation rate of Nodal. All parameter 
values used in the model can be found in Table S3.  
 
Morphogen-based cell fate determination model 
 
We developed cell-fate determination rules based on the integration of BMP, Wnt, and 
Nodal signaling dynamics. Each fate map was generated by simulating the morphogen 
concentrations over time, followed by applying specific computational rules to map the 
spatial location of fate-markers, GATA3, BRA, and SOX2, throughout the colony. 
Specifically, GATA3 expression was modeled by: 
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The expression of GATA3 is modeled as a response to the integral of BMP signaling over 
time, reflecting the cumulative impact of BMP exposure on cells.37 The denominator 
accounts for the preferential availability of transforming growth factor β receptors at the 
edge of the colony,34 with the steepness parameter modulating the influence of distance 

from the colony edge. Here, √𝑥2 + 𝑦2 represents the radial position within the colony, rloc 

defines the localized region where BMP signaling is most concentrated, and Cg adjusts 
the drop-off rate of GATA3 expression as distance increases from the colony edge 
increased. BRA expression was modeled by: 
 

 

 
BRA expression is governed by the combined influence of Wnt and the rate of change of 
Nodal signaling, capturing the dynamics where Nodal alone does not induce mesoderm 
formation.73 Here, the Wnt concentration must reach a certain threshold, Wntthresh in order 
for the cells to respond to changes in the rate of Nodal concentration. Specifically, unlike 
BMP, which is concentration-dependent, our experimental observations indicate that 
many Nodal targets depend on the rate of concentration change rather than its absolute 
levels. Here, Cb represents the steepness of the BRA activation response to Wnt, Wntthresh 

denotes the threshold level of Wnt required for BRA expression, and 
𝜕𝑁𝑜𝑑𝑎𝑙

𝜕𝑡
 is the rate of 

change of Nodal concentration over time. SOX2 expression was modeled by: 
 

 

 
SOX2 expression is modeled as inversely proportional to the levels of GATA3 and BRA, 
aligning with our observations that SOX2 expression typically decreases as cells begin to 
differentiate. The stability constant, Cs, modulates the persistence of SOX2 under varying 
conditions, reflecting our experimental findings that certain drug treatments allow cells to 
maintain high SOX2 expression despite concurrent BRA expression. In this equation, C1, 
C2, and C3 are constants that adjust the relative influence of GATA3 and BRA on SOX2 
suppression. All parameter values used in the model can be found in Table S4. 
 

ADDITIONAL DETAILS 
 
Our map of 2D gastruloid morphopsace results can be explored via the interactive 
website:  https://max-wilson.mcdb.ucsb.edu/research/gastruloid-morphospace 
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