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Abstract

The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets
by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based
approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the
retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for
biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two
terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not
unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up
by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the
five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic
cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was
relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1–
22.2%) and OTU (3.5–3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1–V2 and V3–V2 datasets of
the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed
33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain
40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse
cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity,
and should be considered when comparing different datasets. Finally, a high number of OTUs could not be classified using
the RDP reference database, suggesting the presence of a large amount of novel diversity.
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Introduction

With its severe physical, chemical, and climatic conditions [1],

Antarctica is characterized by harsh environmental settings and

hosts communities of well-adapted microbiota that are capable of

withstanding selective pressures, such as high UV-radiation,

drought, light limitation and extremely low temperatures. These

adaptations may therefore be potentially of biotechnological and

economical value [2,3]. Until now, studies have mainly used

culturing approaches [4,5] and a number of culture-independent

techniques such as Denaturing Gradient Gel Electrophoresis

(DGGE) [6], Terminal Restriction Fragment Length Polymor-

phism (t-RFLP) [7,8], Automated Ribosomal Interspacer Analysis

(ARISA) [9] and clone libraries [8,10,11,12] to shed light on

Antarctic bacterial diversity. These studies reported taxa that are

new to science [4,5,13] and/or revealed that – as in other regions

and environments [14] – Antarctic microbial diversity is much

larger than previously thought.

Whereas Next Generation Sequencing (NGS) techniques have

now found their way to nearly every environment, ranging from

the deep sea [15] to tropical forest soils [16] and the human

microbiome [17], the Antarctic region remains relatively under-

represented in these microbial diversity studies. This is surprising,

given the fact that the diversity reported with NGS is orders of

magnitude higher than that recovered with traditional culturing

and Sanger sequencing, and at least one order of magnitude

higher than recovered from large clone libraries [18]. More

recently NGS has been used to study Antarctic samples, including
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McMurdo Dry Valley soils [19,20], soils from Alexander Island

[21], rhizosphere bacteria of the only two vascular plants in the

Antarctic Peninsula [22], a study of community turnover due to

global warming [23], a survey of cyanobacterial diversity in

microbial mats [24] and a comparison of seasonal variation in

coastal marine bacterioplankton [6]. The relative paucity of

Antarctic studies is largely due to the remoteness and vastness of

the continent, the harsh environmental conditions and the costs

associated with expeditions. Yet, exactly these limitations have

kept the environment relatively pristine, thus providing excellent

conditions to investigate several questions of particular interest to

microbiologists such as to which extent historical processes shape

microbial biogeography patterns and the degree of endemism.

Moreover, polar regions with their uniquely adapted microbiota

are particularly prone to the impact of global warming

[25,26,27,28] and microbial diversity data are therefore urgently

needed as baseline data for tracking this impact.

Microbial communities typically consist of few high-abundant

taxa, with the majority of taxa belonging to the so called rare

biosphere [18,29,30]. Although it was shown that cultivation is

able to pick up some of these rare community members [31], it is

generally thought that only through the deep sequencing that

NGS offers, this vast diversity can be detected [18,32]. In turn, this

also implies that cultured strains are generally expected to be

recovered by pyrosequencing. Here we aimed to test this

hypothesis by comparing the diversity of heterotrophic bacterial

groups previously recovered from Antarctic microbial mat samples

by cultivation with the diversity of the corresponding groups as

revealed by 454 pyrosequencing. An additional objective was to

assess the impact of the region of the 16S rRNA gene on the

diversity data obtained. This was done by comparing forward and

reverse pyrosequencing datasets and contrasted with a comparison

of forward and reverse data from the cultured strains, where no

effects of the pyrosequencing process could be at work.

Materials and Methods

Samples Used
Details of the study sites have been described previously

[4,33,34]. Briefly, two terrestrial and seven limnetic microbial

mat samples were collected aseptically during different field

campaigns in December/January 2003 (PQ1, TM2 and TM4)

and in January 2007 (BB50, BB115, LA3, SK5, WO10 and SO6).

One sample (PQ1) was collected on Pourquoi-Pas Island off the

west coast of Graham Land (Antarctic Peninsula). All other

samples were collected from Eastern Antarctic habitats. The two

terrestrial microbial mat samples (BB50 and BB115) were taken

near the Utsteinen nunatak in the Sør Rondane Mountains

(Dronning Maud Land). Three samples were from Lützow-Holm

Bay (Dronning Maud Land), namely from a small saline lake in

Langhovde (LA3), from Naka-Tempyo Lake (SK5) in Skarvsnes,

and from a small saline pond (WO10) in West Ongul Island. One

sample (SO6) was taken from Lake Melkoye (unofficial name) in

Schirmacher Oasis (Dronning Maud Land). The two remaining

samples were collected in the Transantarctic Mountains. Sample

TM2 was taken from Forlidas Pond (Dufek Massif, Pensacola

Mountains), while sample TM4 was taken from Lundström Lake

(Shackleton Range). All samples were kept frozen during transport

and stored at 220uC.

Processing of 16S rRNA Gene Sequences of Cultures
The cultured heterotrophic bacterial diversity of these samples

was reported earlier [4,33,34,35]. From these, we selected 1,666

high quality sequences for comparison with pyrosequencing. To

allow this comparison, the sequences from bacterial cultures were

aligned to the Silva reference database [36], and trimmed so as to

cover the alignment of the sequences obtained using pyrosequen-

cing (see below). They were further processed together with both

forward and reverse pyrosequencing datasets.

Pyrosequencing
To allow direct comparison, DNA was extracted from the same

frozen samples previously used for the cultivation experiments

using 5 g per sample. Extracellular DNA was first removed as

described by Corinaldesi et al. [37] and DNA extraction was

subsequently performed according to Zwart et al. [38]. Sequencing

of the 16S rRNA V1–V3 regions was performed using forward

primer pA (AGAGTTTGATCCTGGCTCAG 8–27) [39] and

reverse primer BKL1 (GTATTACCGCGGCTGCTGGCA 536–

516). Because it proved impossible to concatenate the comple-

mentary reads due to insufficient overlap, the forward and reverse

sequences were analyzed separately. The forward reads hence

cover the complete V1 and V2 regions, whereas the reverse reads

cover the V3 and part of the V2 region for the longest sequences

[40].

Multiplexing was done with barcodes proposed by Parames-

waran et al. [41]. Each PCR mixture contained 1–2 ml of template

DNA, 2 ml of fusion primers and barcodes (10 mM), 2.5 ml dNTPs

(10 mM), 1.5 ml of 10x buffer, 0.25 ml of 5 U/ml FastStart High

Fidelity Polymerase (Roche) and was adjusted to a final volume of

25 ml with sterile HPLC-water. PCR cycling included 3 min at

94uC, followed by 35 cycles of 94uC for 30 s, 55uC for 60 s and

72uC for 90 s and finally 8 min at 72uC. PCR products were

purified using a High Pure PCR Product Purification Kit (Roche).

Finally, pyrosequencing was performed on a Roche 454 GS FLX

Titanium machine at NXTGNT (Ghent, Belgium) after quality

control of the DNA with a Qubit 2.0 Fluorometer (Life

Technologies) and a Bioanalyzer (Agilent Technologies).

Raw sequences are available from the NCBI Sequence Read

Archive under accession numbers SRR1146576 and

SRR1146579.

Processing of Pyrosequences
The obtained reads were processed using Mothur [42] version

1.27.0, generally following Schloss et al. [43] and the Mothur SOP

(http://www.mothur.org/wiki/454_SOP; version of 6 November

2012). The data were denoized using Mothur’s PyroNoise [44]

implementation with 450 flows as the minimal flow length and

trimming of the longer sequences to this length [43]. Overall, the

minimal required sequence length was set at 200 nucleotides (nt).

To avoid poor sequence quality, no ambiguous bases (N) were

allowed [45] and sequences with homopolymers longer than 8 nt

were culled, as it is known that long homopolymers are

problematic for 454 pyrosequencing [43,46,47]. The sequences

were aligned using Mothur’s alignment command, based on the

GreenGenes NAST aligner [48] with default parameters and the

Silva reference database [36], which takes into account the

secondary structure of the 16S SSU rRNA. The starting and

ending positions of the alignment were checked to ensure that

sequences were overlapping the same alignment space. Sequences

not starting at the correct position or ending before 95% of all the

sequences were removed from the analysis. To increase compu-

tational speed and decrease data size, duplicate (identical)

sequences were temporarily removed using the unique.seqs

command. Further correction for erroneous base calls was done

using single linkage preclustering according to Huse et al. [49].

Next, we used Uchime [50] with default parameters for intra-
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sample de novo chimera checking. Positively identified chimeric

sequences were removed from further analyses.

Sequence Identification and OTU Clustering
Sequences were identified using Mothur’s implementation of

the RDP classifier [51] by means of the modified RDP training-set

release 9 (available at http://www.mothur.org/wiki/

RDP_reference_files) at an 80% bootstrap value. The RDP

database was chosen so that a comparison with the original

cultivation data was possible, despite its known limitations because

of its small size [52,53], possibly overestimating the number of

unclassified OTUs. This training set too was first aligned and

trimmed to the alignment space of the query sequences, increasing

confidence values and reducing the number of unclassified

sequences [52]. Non-cyanobacterial ‘‘chloroplast’’ sequences were

removed from the dataset. Distances were calculated (dist.seqs

command, default settings), after which the sequences were

clustered using the average neighbor joining algorithm to generate

OTUs at a 97% cutoff level [54].

SIMPROF Analysis
In order to compare the community composition obtained using

culturing versus pyrosequencing a SIMPROF analysis [55] was

performed using Primer 6 [56]. SIMPROF is a permutation-based

procedure that ranks the pairwise similarities in each group and

tests the null hypothesis that samples were all drawn from the same

species assemblage. Because the number of sequences is consis-

tently higher in the pyrosequencing dataset, we standardized the

number of sequences in each sample to the lowest number of

sequences obtained in all of the samples (i.e. 119 forward and 116

reverse sequences in sample LA3). To achieve this, we randomly

sampled this number of sequences from each sample with

replacement. This procedure was done 5 times, which resulted

in 5 subsets for each sample. First, a Jaccard similarity matrix was

constructed and subsequently used to undertake a group-average

cluster analysis. Second, to ascertain the level of structure present

in the groups formed by each dendrogram, a SIMPROF test with

10,000 simulations and the stopping rule specified at the 5%

significance level was run. This was done for both forward and

reverse datasets.

Results

Sequence Data of Bacterial Isolates
Of the initial 1,666 sequences, 1,578 remained after the forward

processing together with the pyrosequences. This was mainly due

to the removal of sequences that did not match the correct starting

or ending positions of the alignment space. A total of 342 OTUs in

76 genera from five different phyla were obtained (Figure 1). Most

of the OTUs belonged to the phyla Bacteroidetes and Proteobacteria,

with 107 and 106 members respectively. Actinobacteria was the third

best represented phylum with 78 OTUs, followed by Firmicutes and

Deinococcus-Thermus with 31 and 20 OTUs respectively.

The initial 1,666 sequences were also subjected to the reverse

processing pipeline. In contrast to the 1,578 forward sequences,

this yielded only 1,519 sequences divided over 214 OTUs in 61

genera. The relative proportion of the phyla did not differ

drastically when processed through the forward or reverse pipeline

(Figures 1 and 2), although only 51 genera were shared between

the forward and reverse dataset of the isolates. In total, we

identified 86 genera for the combined processed cultivation results,

while some sequences remained unclassified. Of these 86 genera,

20 (23% of cultivated genera) were not picked up by pyrosequen-

cing.

Heatmaps showing the distribution of the most frequently

recovered OTUs based on the forward (Figure S1) and reverse

(Figure S2) cultivation sequences, revealed that many of these

OTUs were shared between samples.

Pyrosequencing Data
Forward dataset. After processing the forward pyrosequen-

cing data, 23,510 high quality sequences were left (on average

2,6126829 per sample); they were on average 243614 nt long.

The chimera content per sample in the forward dataset ranged

from 0.1% (TM2) to 5.8% (SK5) of sequences (Table S1). For

eight samples, in the non-redundant dataset (i.e. dataset filtered for

duplicate sequences), the percentage of chimeras was higher than

when considering the complete dataset, indicating that many

chimeras were singletons or low-abundant sequences.

We observed 2,940 OTUs of which 947 remained unclassified

at the phylum level (represented by 7,659 sequences) and 2,066

(15,271 sequences) at the genus level. Per sample, the number of

OTUs unclassified at the phylum level varied between 40 (TM4)

and 274 (WO10). The identified OTUs belonged to 220 genera in

19 phyla (Tables S2 and S3 respectively). Proteobacteria, Cyanobac-

teria, Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria and Plancto-

mycetes were present in every sample (Figure 1), although relative

number and OTU richness could differ drastically. Cyanobacteria

were well represented in most samples, but less so in SK5 and

BB115. Deinococcus-Thermus was relatively well recovered and

showed a high richness in the terrestrial samples (BB50 and

BB115).

A total of 2,693 (84.9%) of the OTUs were restricted to one

sample (Figure 3), and 1,464 (46.2%) were effectively singletons

(i.e. represented by only one sequence).

The most abundant OTU (OTU3056) was represented by

2,216 sequences, nearly three times as many as the second most

abundant OTU (OTU0858, 871 sequences), and was found in six

out of the nine samples (BB115, BB50, PQ1, TM2, TM4 and

WO10). It was not picked up through cultivation and was not

identified using our RDP training set. A separate blast against the

GreenGenes database [57], however, revealed that it was identical

to Phormidium autumnale str. Arct-Ph5 (Cyanobacteria, a group not

targeted by the cultivation experiments). None of the OTUs was

found in every sample through pyrosequencing in the forward

dataset. One OTU (OTU2885; Rhizobacter, Gammaproteobacteria)

was found in seven samples. Five OTUs were recovered by

pyrosequencing from six samples, including the aforementioned

cyanobacterial OTU3056, a Polaromonas (OTU2491, which was

also cultured) and a Herbaspirillum species (both Betaproteobacteria),

and a Methylobacterium species (Alphaproteobacteria) and finally

OTU2399, identified as Brevundimonas sp. (Alphaproteobacteria), which

was actually retrieved from every sample (i.e. it was recovered

through either cultivation, pyrosequencing or in some samples by

both). All other OTUs were only recovered from five samples or

less.

The combined number of OTUs from forward pyrosequencing

and cultivation was 3,172 (totaling 25,088 sequences). Only 110

OTUs were shared between both approaches and 232 were

restricted to the cultivation data. A heatmap (Figure S3) showing

the distribution of the most frequently recovered pyrotag OTUs,

revealed that few of these OTUs were shared between samples. In

fact, most of these high-abundant OTUs were merely recovered

from one or two samples. The SIMPROF analysis revealed that

the community structure in all samples assessed using pyrosequen-

cing is significantly different from that analyzed using culturing

(Figure S4). Not unexpectedly, given cultivation bias, the similarity

between samples analyzed with the culturing approach is higher.
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However, these observations were consistent when taking into

account only the five phyla that were recovered by both

approaches (data not shown).

Reverse dataset. Reverse pyrosequencing starting from the

end of the V3 region resulted in 22,778 high quality sequences

after processing. The chimera content was generally higher than

for the forward pyrotags for all samples (Table S1). Particularly in

sample SK5, up to 43.4% of the non-redundant sequences were

identified as chimeras by Uchime, resulting in the removal of 23%

of all sequences in that sample. Also for sample PQ1 23% of all

sequences were removed, while only 19.6% of the unique

sequences were flagged as chimeras, indicating a substantial

Figure 1. Overview of the distribution of the phyla per sample for the forward sequencing dataset. Circle area is a log2 transformation of
the number of sequences ([log2(N)*5/PI], with N the number of sequences in that phylum). Color intensity reflects the number of OTUs per phylum
(total OTUs/total sequences), with a darker hue indicating a higher relative richness. The first two columns show the total number of sequences and
diversity of each phylum for pyrosequencing and cultivation separately. The phyla are ordered according to decreasing total number of sequences.
The yellow to red scale shows pyrosequencing data, the blue-purple scale the cultivation data.
doi:10.1371/journal.pone.0097564.g001
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Figure 2. Overview of the distribution of the phyla per sample for the reverse sequencing dataset. Circle area is a log2 transformation of
the number of sequences ([log2(N)*5/PI], with N the number of sequences in that phylum). Color intensity is an approximation for the number of
OTUs per sequence (total OTUs/total sequences). The first two columns show the total number of sequences and diversity of each phylum for
pyrosequencing and cultivation separately. The order of the phyla is as in Figure 1 and additional phyla were added at the bottom. The yellow to red
scale shows pyrosequencing data, the blue-purple scale the cultivation data.
doi:10.1371/journal.pone.0097564.g002
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proportion of chimeras in this sample. We obtained only 1,983

OTUs overall, of which 485 remained unclassified at phylum level

(2,776 sequences) while the rest belonged to 22 phyla (Figure 2,

Table S3). We were able to identify 197 genera in the reverse

dataset (Table S2). The taxonomy at genus level remained

unresolved for 1,376 OTUs (12,295 sequences). Although

considerably fewer OTUs were observed in the reverse dataset,

the distribution over phyla were similar to these observed for the

forward pyrosequences (Figure 2, Table S3). The number of

sequences unclassified at phylum level (485 OTUs, 2,776

sequences) was much smaller than in the forward sequencing

(947 OTUs, 7,659 sequences) and represented 24% versus 32% of

the OTUs, respectively. Compared to the forward dataset,

Deinococcus-Thermus was additionally picked up from samples

LA3, SO6 and especially SK5 (Figure 2). Also Cyanobacteria and

Chloroflexi were generally more abundantly picked up by the

reverse sequencing, and additionally, three extra bacterial phyla

were recovered: WS3, OP11 and BRC1. Phylum BRC1 was

obtained from four different samples (BB50, PQ1, TM4 and

WO10) with six OTUs in total; WRC3 was represented by two

OTUs, one from SO6 and a second one from WO10; OP11 was

also found in these two latter samples. The number of singleton

OTUs was lower for the reverse dataset: 476 (24%) here vs. 897

(31%) in the forward dataset. This discrepancy equals 44% of the

difference in the total number of OTUs obtained between both

datasets (1,983 in the reverse dataset compared to 2,940).

Heatmaps showing the distribution of the OTUs most

abundantly recovered in the reverse pyrosequencing data (Figure

S5) and in the reverse cultivation dataset (Figure S2) reveal

generally similar trends as for the forward sequencing (Figures S1

and S3). However, nine OTUs (1942, 1956, 1959, 2036, 2043,

2044, 2064, 2109 and 2115) in the high-abundant reverse

pyrosequencing selection were also found in the cultivated dataset,

which is considerably more than for the forward dataset.

Especially OTU2109 (Sphingomonadaceae sp., Alphaproteobacteria) was

recovered well through cultivation (not found in sample TM4),

and pyrosequencing (not found in sample BB115). OTU1849

(Methylobacterium, Alphaproteobacteria) was recovered from all pyr-

osequencing samples. Four unclassified OTUs were recovered

from eight samples (three alphaproteobacteria and one actino-

bacterium). The most abundant OTU (OTU1804) with 1,226

sequences was found in five samples. It was classified as an

unknown cyanobacterial order by the RDP training set. Again, a

blast against the Greengenes database resulted in P. autumnale

(strains Ant-Ph68 and Arct-Ph5, both with an identity score of

100). Similar to the forward dataset, both techniques resulted in

significantly different clusters and the variability between the

different samples is higher in the datasets obtained through

pyrosequencing (Figure S6).

Discussion

Comparison of Forward and Reverse Datasets
Two terrestrial and seven aquatic Antarctic microbial mat

samples were subjected to bidirectional pyrosequencing of the V1

to V3 variable region of the 16S rRNA gene. After processing, the

forward dataset spanned the V1 and V2 variable regions, while the

reverse dataset covered the V3 and part of the V2 variable regions.

The comparison of bidirectional sequencing revealed large

differences in the number of OTUs recovered, although the

number of sequences and genera was generally comparable. More

in particular, the number of OTUs was about 50% higher for the

forward dataset compared to the reverse dataset. This is in part

likely due to the V1 region being more variable than the more

conserved V3 region [58,59,60]. Hence, the traditionally used cut-

off values (e.g. 95% as a proxy for genus level, or 97% for species

level) which have proven to be insufficient or inadequate for all

taxa [61], might additionally require modification for different

regions of the 16S rRNA gene. Highly variable regions such as V1

could be clustered using lower values (for example 97%) than more

conserved regions (e.g. V3 or V6), which might require a higher

(e.g. 99%) identity cut-off. These considerations should be taken

into account when selecting the region to analyze, but also when

comparing studies and diversity data based on different variable

regions [62]. Not only did the number of OTUs differ between

both regions, identification was affected too. For example,

although the number of genera identified from the forward and

the reverse dataset was broadly similar (220 vs. 197), only 132 or

67% of the genera identified from the reverse dataset were also

present in the forward dataset, corresponding to 60% of the

genera in the forward dataset. The combined number of genera

based on the RDP training set was 285. Similarly, for the Sanger

sequences of the cultures, comparison of forward and reverse

trimmed dataset revealed 76 and 61 genera respectively, of which

51 were in common. As pyrosequencing artifacts cannot have been

introduced in the cultivation dataset, these differences highlight

the impact of the variable zones covered on the outcome of the

genus identifications. With the continuous development of NGS

techniques, the significance of this problem can be expected to

reduce with increasing read length.

Another striking difference between the sequencing directions

was that the number of chimeras was higher in the reverse dataset

(Table S1). This is probably also due to the differences in

variability of the regions targeted; the more conserved V3 region

might be more likely to function as a template for annealing than

V1, especially between closely related taxa [63,64]. Furthermore,

not only do PCR conditions (such as extension times and the

number of PCR cycles) or conserved regions affect chimera

formation [43,64,65], it has been shown that certain positions in

the 16S rRNA gene are more prone to chimera formation [63].

This implies that chimeras are not necessarily restricted to low-

abundant sequences, questioning the removal of only OTUs with

a low abundance, a common practice to reduce artifacts.

Contrast between Diversity Data from Pyrosequencing
and Cultivation
The comparison of the bacterial diversity estimate obtained by

bidirectional 454 pyrosequencing with the results from previous

Figure 3. Bar chart illustrating the number of OTUs picked up
from one or more samples for the forward dataset. The number
of OTUs is log2 transformed. Blue bars, total sequences (pyrosequences
plus cultivated sequences); red bars, pyrosequences only; green bars,
cultivation sequences only.
doi:10.1371/journal.pone.0097564.g003
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cultivation studies [4,33,34] unsurprisingly confirmed that pyr-

osequencing results in a higher diversity (in total 22 phyla, 285

genera) than obtained through culturing (5 phyla, 86 genera).

Indeed, we observed a striking and significant difference in

taxonomic composition and abundance of groups recovered using

both methods, with communities standardized to the lowest

number of sequences (Figures S4 and S6). This likely results from

the obvious bias related to the specific cultivation conditions used,

which were set to target mostly heterotrophic, aerobic and

psychrophilic or psychrotolerant bacteria [4]. Some of the phyla

that were detected by pyrosequencing but not picked up through

cultivation included groups that were not targeted such as

anaerobes (e.g. Clostridium which was frequently recovered in

sample PQ1), phototrophic Cyanobacteria and Chloroflexi, or groups

for which cultivation is not yet optimized and that have very few or

even no cultured representatives (e.g. Acidobacteria, Planctomycetes,

Verrucomicrobia, Armatimonadetes, TM7; see Table S3). Given that

only heterotrophic bacteria had been targeted in the isolation

campaigns and a limited set of cultivation conditions was tested, a

comparison with pyrosequencing is only possible to a very limited

extent. We tried to take this into account by further focusing this

part of the discussion on the OTUs and named genera of the five

phyla picked up by both techniques (Actinobacteria, Bacteroidetes,

Deinococcus-Thermus, Firmicutes and Proteobacteria). This restricted

comparison confirmed the general observation that pyrosequen-

cing can detect more diversity at all taxonomic levels. Neverthe-

less, particularly at lower taxonomic and phylogenetic levels

(OTUs, genera), we found extremely little overlap in the diversity

between both datasets. For example, in the forward sequencing

datasets, of the 342 OTUs recovered using culturing, 232 (67.8%)

were not picked-up by pyrosequencing. For these five phyla, a total

of 204 genera were identified, of which 51 were in common, 131

were unique for pyrosequencing and 22 unique for cultivation.

Thus about 30% of cultured genera were not detected in our

pyrosequencing data (e.g. the Firmicutes genus Paenibacillus; see

Table S2). Reverse sequencing showed generally analogous results.

In addition to the above mentioned cultivation bias, at least

three other non-mutually exclusive processes might underlie the

significant differences between the cultivation and pyrosequencing

datasets. Firstly, manual picking of individual colonies for further

characterization in culture-based approaches introduces an

additional bias. The sheer quantity of isolates makes it nearly

impossible to select and cultivate every colony separately,

especially when the number of samples is high. Phenotypic

(morphological) selection may thus lead to an underestimation of

the genotypic diversity, because macroscopically identical colonies

might in fact represent different OTUs, whether closely related or

not. Secondly, the failure of pyrosequencing to detect the majority

of the cultured organisms could indicate that our sequencing depth

was not large enough (Figures S7 and S8), which is often the case

for large scale surveys [66], or that low-abundant organisms were

missed because they were below the detection limit of the

technique [67]. Thirdly, while sequencing depth is one aspect,

PCR-related biases (e.g. GC-content) and sequencing errors (e.g.

homopolymers) may also contribute to the observed differences

[68,69,70]. A GC-content deviating strongly from 50% may

induce a PCR-bias and this could explain why certain OTUs were

not detected through pyrosequencing. However, calculation of the

%GC of the cultivation-only sequences, in combination with the

high number of such OTUs (67.8% of the cultivation OTUs),

dismissed this hypothesis in our case (Table 1). Although our

preprocessing was done rigorously, e.g. [43,45,50], we cannot

exclude the possibility that some erroneous sequences have slipped

through [32]. Nevertheless, the limited overlap between culturing

and pyrosequencing data is in line with observations from

comparisons of cultivation and other culture-independent tech-

niques (e.g. clone libraries) in other ecosystems [71]. High-

throughput culturing [72] and the use of more diverse growth

conditions [73,74] would probably show that the actual overlap is

(much) larger than our results currently suggest. Indeed, extending

the incubation time (e.g. up to three months) might reveal

additional rare community members [75]. Moreover, cultivation is

even able to detect novel organisms where culture-independent

techniques fail [74]. It has been proposed that 5000 denoised reads

may be needed to describe 90% of the alpha-diversity of 15–

20.000 reads and that because of the huge bacterial diversity,

almost an infinite number of individuals might need to be

identified to accurately describe communities [76].

Our comparison further confirmed that even low-abundant but

widely distributed organisms can be picked up by both techniques.

As an example, Figure 4 shows the distribution of genera in sample

BB115 where, typically, the majority of genera are represented by

only one or two sequences, some are moderately abundant and a

few are very abundant taxa. That cultivation can pick up low-

abundant bacteria may often be the result of cultivation conditions

allowing enrichment of these taxa. For example, OTU 2399

(Brevundimonas sp., Alphaproteobacteria) was recovered from sample

SK5 six times through pyrosequencing, while 38 times through

cultivation. The ability of cultivation to pick up organisms from

the rare biosphere was also demonstrated by Shade et al. [31], and

these and our results show that the nutritional or cultivation

requirements of these rare organisms are not necessarily extensive

[72]. In fact, Escherichia coli is probably the best example to

demonstrate this fact. While readily cultured and even functioning

as a Gram-negative model organism, it is not a very abundant

organism in the human gut [77].

Of the high-abundant OTUs (i.e. having more than 80

sequences) obtained by forward pyrosequencing, only three were

also retrieved through cultivation (Figure S3). OTU2742 (Porphyr-

obacter, Alphaproteobacteria) was detected through pyrosequencing in

samples LA3, PQ1, TM4, SO6 and WO10, and recovered by

cultivation from SK5 and PQ1. A second OTU (OTU1961;

unclassified alphaproteobacterium) found in BB115, BB50 and

PQ1 was also found in two culture samples (SK5 and BB115).

Strikingly, neither of these was found in the pyrosequence data of

sample SK5. Finally, OTU2229 (Sphingopyxis, Alphaproteobacteria)

was recovered from samples TM2 and WO10 through cultivation,

and from samples SK5, SO6 and LA3 by pyrosequencing. In

contrast, most of the OTUs frequently obtained via culturing

(more than 10 sequences) were also picked up from the same

sample by pyrosequencing, although generally at a lower relative

abundance than through cultivation (Figure S1). Moreover, no

OTU was shared and present at a high relative abundance in both

datasets. In the reverse pyrosequencing dataset nine of the

frequently recovered OTUs were also picked up by cultivation.

One of these (OTU2043, unclassified alphaproteobacterium) was

among the high-abundant OTUs in both techniques (Figures S2

and S5).

Notable Diversity Observations
While Cyanobacteria was the dominant phylum of photosynthetic

bacteria in all samples, also the phylum Chloroflexi was present in all

samples. Remarkably, diversity was considerably less in the

forward dataset (47 OTUs including genera Leptolinea and

Chloroflexus) than in the reverse dataset (75 OTUs including

Leptolinea, Levilinea, Caldilinea, Heliothrix, Herpetosiphon, Dehalogenimo-

nas, Sphaerobacter). The genus Caldilinea, originally described for

thermophilic filamentous bacteria [78,79], was present in all
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Table 1. Comparison of the GC content of the cultivation-only sequences with the overall values.

Forward sequencing (V1–V2 regions) Reverse sequencing (V3–V2 regions)

Average (%) Minimum (%) Maximum (%) Average (%) Minimum (%) Maximum (%)

All sequences 54 28 70 56 34 67

Cultivation-onlya 52 43 63 55 51 66

aSequences from cultivation that were not picked up by pyrosequencing.
doi:10.1371/journal.pone.0097564.t001

Figure 4. Rank-abundance plot showing the distribution of genera in a sample, illustrating the difference between techniques.
Sequence numbers are plotted on a log scale. Blue bars are pyrosequencing based, red bars are cultivation based.
doi:10.1371/journal.pone.0097564.g004
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samples (Table S2). The phylum Chlorobi was much less well

represented (2 OTUs in one sample).

The phylum Planctomycetes was also well represented in all

samples: eight genera were detected, although the diversity

differed between samples. Notable is the relatively frequent

presence of the unusual freshwater genus Gemmata [80] with 29

OTUs found in seven of the nine samples in the forward dataset

(Table S2).

The genus Deinococcus was frequently recovered in the terrestrial

samples, which was also especially obvious through cultivation

(BB50). Among limnetic mat samples, this genus was only

recovered from PQ1 and SO6 by cultivation and was not picked

up by pyrosequencing (Table S2). The more exposed nature of

terrestrial sites may provide habitats that are particularly suited to

Deinococcus species which are known for their resistance to radiation

and desiccation [81].

A small number of genera were relatively frequently detected in

the pyrosequencing data of both terrestrial samples (BB50 and

BB115) but rarely in the seven aquatic samples: Hymenobacter (30

OTUs terrestrial vs. 5 OTUs in one aquatic sample), Spirosoma (17

OTUs terrestrial vs. 1 OTU in one aquatic sample) and Deinococcus

(12 OTUs terrestrial samples only). Conversely, a considerable

diversity of the aquatic and clinical genus Legionella was picked up

from the aquatic mat samples (62 OTUs in the forward and 39 in

the reverse dataset from 6 or 5 of the samples) while no Legionella

was detected in the terrestrial mat samples.

Pyrosequencing allowed us to obtain a considerable number of

OTUs which are as yet unidentified at the genus level (e.g. 70.27%

in the forward dataset) in addition to the potentially new taxa

already detected through cultivation [4,33,34]. These might

represent novel diversity adapted to the pristine and unique

environment of Antarctica. This high number of novel sequences

is comparable to other NGS studies in extreme and as yet

understudied habitats. For example, 46% of the sequences from an

acidic Andean hot spring remained unclassified at the phylum

level [82]. However, the high number of novel sequences might in

part also be related to (i) the database used (RDP) which contains a

relatively low number of sequences, but is of high quality, and (ii)

the presence of artifacts that could inflate the diversity. Indeed, in

view of the many possible factors that can increase the sequence

diversity, pyrosequencing data are often extensively filtered to

remove flawed and chimeric sequences [43,44,45,49,50,83]. The

sequence processing pipeline used here might reduce the error rate

down to 0.02% [43]. We therefore assumed that the remaining

sequences are of considerable quality, and that most remaining

sequencing errors would be masked by clustering. Clustering of the

OTUs at 95% similarity did not result in a large reduction of the

number of OTUs or singletons (data not shown), indicating

considerable diversity among the OTUs left. Our chimera filtering

removed 2.5% and 5.7% of the total sequences in the forward and

reverse data respectively. We opted not to remove the singletons

and low-abundant sequences because (i) our approach already

eliminated 16.6% (forward data) and 43.4% (reverse data) of the

non-redundant sequences, and (ii) removing singletons may

eradicate not only low quality sequences, but also biologically

relevant sequences and novel taxa. In fact, 26 out of the 110

OTUs (23.6%) shared by both pyrosequencing and cultivation

were singletons in the forward pyrosequencing data that were thus

readily picked up from one or more samples through cultivation.

In the reverse dataset the singletons comprised 8 of the 77

overlapping OTUs (10%). These high levels indicate that

indiscriminate removal of all singletons would eliminate a

considerable portion of the actual diversity.

Conclusions

Next Generation Sequencing techniques such as 454 pyrose-

quencing allow a much deeper sampling of microbial communities

compared to the more traditional techniques. Our study revealed

many unidentified OTUs and showed that the terrestrial and

lacustrine bacterial diversity in Antarctica is orders of magnitude

larger than previously believed. The comparison between NGS

and culturing revealed that both techniques are complimentary

and that only a limited number of OTUs is shared between both

datasets. Although only a small number of these organisms were

cultured, cultivation was able to pick up organisms from the rare

biosphere, including organisms that were not recovered from

pyrosequencing. With more sequencing depth and increasing read

length, this may improve. It is clear that despite the ongoing

technological developments, cultivation remains a useful method

to uncover unknown diversity, and is currently certainly still

needed for the physiological characterization and unambiguous

identification of these organisms. Our comparison of forward

(covering V1 and V2) and reverse sequences (covering V3 and part

of V2) also revealed considerable differences in diversity obtained

between variable regions and differences in the number of

chimeras present. These aspects should be considered when

comparing different studies.

Supporting Information

Figure S1 Heatmap showing the distribution of the most

abundant OTUs based on the forward cultivation sequences.
These high abundant OTUs are represented by at least 10

sequences. Pyrosequenced samples have the suffix.F.

(TIFF)

Figure S2 Heatmap showing the distribution of the most

abundant OTUs based on the reverse cultivation sequences.

These high abundant OTUs are represented by at least 10

sequences. Pyrosequenced samples have the suffix.R.

(TIFF)

Figure S3 Heatmap showing the distribution of the most

abundant OTUs based on forward pyrosequencing. These high

abundant OTUs are represented by at least 80 sequences.

Pyrosequenced samples have the suffix.F.

(TIFF)

Figure S4 SIMPROF showing the clustering of the forward

dataset. Each sample was subsampled 5 times with replacement to

the lowest number of sequences (119 in cultured sample LA3). Full

(black) lines are significant, dashed (red) lines are not.

(TIF)

Figure S5 Heatmap showing the distribution of the most

abundant OTUs based on reverse pyrosequencing. These high

abundant OTUs are represented by at least 100 sequences.

Pyrosequenced samples have the suffix.R.

(TIFF)

Figure S6 SIMPROF showing the clustering of the reverse

dataset. Each sample was subsampled 5 times with replacement to

the lowest number of sequences (116 in cultured sample LA3). Full

(black) lines are significant, dashed (red) lines are not.

(TIF)

Figure S7 Rarefaction of the forward sequenced samples.

(TIF)

Figure S8 Rarefaction of the reverse sequenced samples.

(TIF)
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Table S1 Per sample chimera content for both sequencing

directions.

(XLSX)

Table S2 Overview of the genera recovered. The number of

OTUs within each genus is shown per sample for both

pyrosequencing and cultivation.

(XLSX)

Table S3 Summary of the number of sequences and OTUs at

the phylum level.

(XLSX)
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