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As sexual transmission of human immunodeficiency virus-1 (HIV-1) occurs via the mucosa, an

ideal HIV-1 vaccine should induce both mucosal and systemic immunity. We therefore sought to

evaluate the induction of mucosal responses using a DNA env prime–gp120 protein boost

approach in which sequential nasal and parenteral protein administration was performed with two

novel carbohydrate-based adjuvants. These adjuvants, Advax-M and Advax-P, were specifically

designed for mucosal and systemic immune enhancement, respectively. Murine intranasal

immunization with gp120/Advax-M adjuvant elicited gp120-specific IgA in serum and mucosal

secretions that was markedly enhanced by DNA priming. Boosting of DNA-primed mice with

gp120/Advax-M and gp120/Advax-P by sequential intranasal and intramuscular immunization, or

vice versa, elicited persistent mucosal gp120-specific IgA, systemic IgG and memory T- and B-

cell responses. Induction of homologous, but not heterologous, neutralizing activity was noted in

the sera of all immunized groups. While confirmation of efficacy is required in challenge studies

using non-human primates, these results suggest that the combination of DNA priming with

sequential nasal and parenteral protein boosting, with appropriate mucosal and systemic

adjuvants, could generate strong mucosal and systemic immunity and may block HIV-1 mucosal

transmission and infection.

INTRODUCTION

Mucosal transmission of human immunodeficiency virus
(HIV)-1 often leads to rapid depletion of activated
CD4+CCR5+ T-cells in mucosal tissues and establishes a
major reservoir for virus persistence in gut-associated
lymphoid tissues (Brenchley et al., 2004; Chase et al., 2007;
Pandrea et al., 2007). This indicates that an HIV vaccine
should induce strong and long-lasting mucosal immunity
at both the B- and T-cell level. Induction of HIV-specific
IgA and CTL at critical mucosal sites should provide a first
line of defence to block mucosal penetration, with systemic
HIV-specific IgG and CTLs defending against parenteral
HIV-1 transmission (Belyakov et al., 2006; Shattock et al.,
2008; Srivastava et al., 2008; Vajdy, 2006).

Limited HIV-1 vaccine studies have shown that mucosal
immunization can elicit secretory IgA, CTL and memory
B- and T-cell responses in mucosal compartments that are
dependent on the vaccine regimen, route of immunization

and adjuvants used (Alving & Rao, 2008; Lai et al., 2007;
Manrique et al., 2009; Vajdy & Singh, 2006). Mucosal
adjuvants that have been studied extensively include the
secreted enterotoxins of Vibrio cholerae and Escherichia coli,
and mutated forms thereof [e.g. cholera toxin, Escherichia
coli heat-labile toxin (LT), LTK63 (non-toxic LT mutant)
and LTR72 (non-toxic LT mutant)] (Connell, 2007; Glenn
et al., 2007; Stevceva & Ferrari, 2005). However, the use of
these toxins as mucosal adjuvants has been impeded by
safety issues, most notably cases of facial palsy in human
trials of an LT-adjuvanted nasal influenza vaccine (Couch,
2004; van Ginkel et al., 2000, 2005). Many parenteral
adjuvants such as CpG oligodeoxynucleotides, polymerized
liposomes, microparticles and interleukins [such as IL-12
and granulocyte macrophage colony-stimulating factor
(GM-CSF)], are currently being evaluated as mucosal
adjuvants. However, none of these appear to be as
successful as CT or LT in induction of mucosal immunity
(Ahmed et al., 2005; Bradney et al., 2002; Manrique et al.,
2008; Matyas et al., 2009; Staats et al., 2001). Until recently,
relatively little attention has been given to the potential use3These authors contributed equally to this paper.
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of carbohydrate compounds as mucosal adjuvants. Two
highly promising carbohydrate-based adjuvant systems
currently in advanced-clinical and preclinical testing are
Advax-P and Advax-M, respectively. These adjuvants are
derived from natural sugar-containing compounds
extracted from plants (Advax-P) and marine sponges
(Advax-M) that have potent immune-enhancing activities
(Fujii et al., 2006; Kobayashi et al., 1995; Petrovsky, 2006),
and have favourable safety profiles in animal models and
humans (Cooper, 1995; Cooper et al., 1991; Veldt et al.,
2007). Advax-P is a microparticulate adjuvant formulation
based on d-inulin and is specifically designed for parenteral
administration. Advax-P has previously proved successful
for enhancing neutralizing immune responses against
Japanese encephalitis virus (Lobigs et al., 2010) and
seasonal and pandemic H1N1/2009 influenza virus (N.
Petrovsky, personal communication), while exhibiting
good tolerability. In contrast, Advax-M is a glycolipid
adjuvant formulation based on a-galactosyl ceramide and
is specifically designed for mucosal administration.
Galactosyl ceramide and its analogues are potent natural
killer T-cell agonists, enhance mucosal IgA production via
a mechanism dependent on interleukin (IL)-4 and have
been shown to enhance protection against heterologous
influenza-virus challenge when nasally administered with
an inactivated influenza antigen (Kamijuku et al., 2008).

The hypothesis of the current study is that induction of
optimal mucosal and systemic immunity to HIV-1 may
require a multimodal vaccine approach. Initial DNA
immunization would maximize helper T-cell and Bmem

priming. Subsequent intranasal (IN) and parenteral
immunization with protein, using two novel adjuvants,
would boost systemic and mucosal responses. Mucosal and
systemic immune responses were evaluated in mice
following priming with DNA encoding HIV-1 envelope
(env) and boosting with gp120 protein combined with
either Advax-M or Advax-P adjuvants delivered via

mucosal, parenteral or mucosal/parenteral combination
routes. Results presented here demonstrate that this DNA
prime–protein boost vaccine-regimen strategy, incorporat-
ing Advax-M and/or Advax-P adjuvants, elicits robust and
durable immune effector and memory responses in both
mucosal and systemic compartments and may therefore
contribute to enhanced protection against HIV-1.

RESULTS

Generation of systemic and mucosal immune
responses following DNA priming and protein
boosting by mucosal or parenteral routes

To provide a baseline adjuvant comparison, BALB/c mice
were immunized with recombinant-HIV-1Ba-L gp120 for-
mulated in two novel adjuvants, Advax-M and Advax-P1,
delivered by IN and intramuscular (IM) routes, respect-
ively (Fig. 1a). Anti-gp120 IgG was measured in serum and
anti-gp120 IgA was measured in serum, saliva and vaginal
wash samples. Serum anti-gp120 IgA titres were detected in
mice immunized with Advax-M-formulated gp120 but not
with Advax-P1-adjuvanted gp120 (P,0.01; Fig. 2a, upper
panel). A similar trend was noted for pooled saliva from
test groups, in which IgA was only detected in mice
immunized with gp120/Advax-M (Fig. 2a, lower panel).
For vaginal wash samples, anti-gp120 IgA was not
detectable in any groups that had been immunized with
adjuvanted protein alone (Fig. 2a, middle panel). Anti-
gp120 IgG responses were noted in both test groups and
were found to be greater in the Advax-P1 group compared
with the Advax-M group (data not shown).

Earlier studies in mice and macaques demonstrated that, in
DNA-primed animals boosted parenterally with QS-21-
adjuvanted protein, systemic IgG and T-cell responses were
induced (Cristillo et al., 2006; Pal et al., 2005, 2006). A
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Fig. 1. Murine immunization schedule. (a) Mice
(n55) were immunized with recombinant
gp120 (25 mg) via the IM route for Advax-P1
(1 mg) or via the IN route for Advax-M (2 mg) at
weeks 0, 2 and 5. (b) Alternatively, mice (n55)
were immunized with DNA (100 mg) at
weeks 0, 2 and 4, and with adjuvanted
gp120 protein at weeks 9 and 11. (c) Mice
(n510) were immunized intramuscularly with
DNA (100 mg) at weeks 0, 2 and 4 and
boosted with adjuvanted gp120 (25 mg) for
either Advax-M or Advax-P1 via the IN or IM
routes, respectively, at weeks 9 and 11.
Combination delivery strategies were tested
in which gp120 was administered by the IM
route for Advax-P1 at week 9 and by the IN
route for Advax-M at week 11 or vice versa.
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similar DNA prime–protein boost vaccine regimen was
used here to compare mucosal and systemic immune
responses elicited by Advax-M and Advax-P1 given via IN
and IM routes, respectively. Mice primed with three
administrations of DNA were boosted twice with adju-
vanted gp120 by IN or IM routes (Fig. 1b). Serum anti-gp120
IgA levels increased in all test groups relative to adjuvanted

protein-only immunization (P,0.01) and were greatest in
the Advax-M group (Fig. 2b, upper panel). Whereas vaginal
wash samples from mice immunized with adjuvanted
protein showed no detectable anti-gp120 IgA, antibody
levels were markedly augmented in Advax-M and Advax-P1
groups following prime–boost immunization (P,0.05) (Fig.
2b, middle panel). When evaluated further in pooled saliva,
anti-gp120 IgA responses were only detected in the Advax-
M-boosted groups (Fig. 2b, lower panel).

Increased serum-anti-gp120 IgG titres were noted in all
adjuvant groups following DNA prime–protein boost
compared with protein-only immunization (data not
shown). Serum antibody responses, characterized by IgG
subclasses (Table 1), revealed that immunization with
DNA or protein alone resulted in a predominantly IgG1
response. DNA prime–protein boost immunization
incorporating Advax-M or Advax-P1 resulted in a broader
response including IgG1, IgG2a and IgG2b, with minimal
IgG3 responses detected in the Advax-P1 group. The
relative proportions of specific IgG isotypes elicited
following prime–boost immunization varied depending
upon the adjuvant used. Advax-M yielded profiles in which
IgG1.IgG2b.IgG2a and Advax-P1 generated responses in
which IgG1.IgG2a.IgG2b.

Mucosal and systemic responses observed in the Advax test
groups were compared with previous results obtained with
QS-21. No IgA responses were detected in mucosal washes
of mice immunized with QS-21-adjuvanted gp120 or
following DNA prime–protein boost immunization. In
sera, minimal IgA responses were only detected after DNA
prime–protein boost immunization (data not shown).

Th1 cytokine responses were noted in mice immunized
with gp120/Advax-M, with lower cytokine levels (P,0.01
vs Advax-M) observed in mice immunized with gp120/
Advax-P1 (Fig. 3a). For Th2 cytokines, IL-5 was elicited in
mice immunized with protein/Advax-M and to a lesser
extent with protein/Advax-P1 (P,0.01) (Fig. 3a). IL-4
levels were either minimal or not detected in both groups.
Following prime–boost immunization (Fig. 3b), Th1
cytokine levels increased in both groups relative to
adjuvanted protein-only immunization. For the Advax-M
group, tumour necrosis factor a (TNF-a), gamma interferon
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Fig. 2. Generation of anti-gp120 IgA antibodies in serum and
mucosal compartments of mice immunized with DNA and
adjuvanted protein. At 2 weeks post-protein immunization, anti-
gp120 IgA responses, assayed by ELISA, were determined for
serum (upper panels), vaginal wash samples (middle panels) and
saliva (lower panels) following protein (a), and DNA prime–protein
boost (b), immunization. Mean serum titres±SEM values are shown.
For vaginal-wash samples (1 : 2 dilution) and saliva (1 : 5 dilution),
mean A450 measurements±SEM are shown for the diluted samples.

Table 1. Anti-gp120-specific IgG titres

Median values±SEM of anti-gp120 IgG-isotype reciprocal titres.

Vaccine/route IgG1 IgG2a IgG2b IgG3

DNA (IM) only 23 040±6271 980±387 715±415 25±8

gp120/Advax-M (IN) 10 880±1920 10±10 440±147 ,25

gp120/Advax-P1 (IM) 28 160±9406 60±37 920±582 ,25

DNA+gp120/Advax-M (IN) 204 800±153 600 21 920±11 962 56 960±37 868 ,25

DNA+gp120/Advax-P1 (IM) 81 920±30 720 24 320±11 113 8480±2673 170±158

DNA+gp120/Advax-P1 (IM)+gp120/Advax-M (IN) 104 960±41 358 5960±2837 2720±480 ,25

DNA+gp120/Advax-M (IN)+gp120/Advax-P1 (IM) 327 680±122 880 62 120±37 351 14 720±9308 180±155

A. D. Cristillo and others

130 Journal of General Virology 92



(IFN-c) and IL-2 were significantly (P,0.01) augmented
relative to protein-only immunization. For the Advax-P1
group, increased cytokine levels were only statistically
significant for IFN-c and IL-2 (P,0.01). Consistent with
the Th1 cytokines, a trend of greater Th2 cytokine levels was
noted following prime–boost immunization compared with
protein-only immunization (Fig. 3b). This increase in Th2
cytokines was statistically significant in the Advax-P1 but

not Advax-M group. Mice immunized with DNA followed
by QS-21-adjuvanted protein induced comparable Th1 and
Th2 cytokines as noted with Advax-P1 (data not shown).

Induction of persistent mucosal- and systemic-
anti-gp120 antibodies following DNA prime–
protein boost immunization

Given that both systemic and mucosal anti-gp120 IgA
responses were seen in mice immunized with Advax-M or
Advax-P1, an additional study was conducted to evaluate
sequential IN/IM protein boost strategies using these Advax
adjuvants in DNA-primed animals. BALB/c mice were
immunized with DNA at 0, 2 and 4 weeks and adjuvanted
gp120 at 9 and 11 weeks (Fig. 1c). Protein was formulated
either in Advax-M or Advax-P1 adjuvant and delivered by
IN (IN/IN) or IM (IM/IM) routes, respectively, or in
combination (IM/IN, IN/IM). At 2 weeks post-final protein
immunization, serum anti-gp120 IgG was found to be
comparable in the IM/IM, IM/IN and IN/IM test groups
(Fig. 4a, left panel). A trend of lower IgG responses was
noted in the IN/IN group but the difference between these
levels and those of the other test groups was not found to be
statistically significant (Fig. 4a, left panel). To evaluate the
decline in titres over time, as previously noted for DNA
prime–protein boost immunizations (Pal et al., 2006), anti-
gp120 IgG levels were monitored up to week 23 post-boost
immunization. Interestingly, anti-gp120 IgG titres increased
in all test groups between 2 and 23 weeks post-boost
immunization and were comparable in all groups at
week 23. Serum antibody responses, characterized by IgG
subclass, found broad subclass responses for IM/IN and IN/
IM groups, in which IgG1.IgG2a.IgG2b (Table 1). Higher
titres for each IgG subclass were seen in the IN/IM group
compared with the IM/IN group. IgG3 responses were
minimally detected in the IN/IM group but not the IM/IN
group, consistent with the asymmetry of the immune
response according to the specific order in which IN and IM
booster immunizations were administered.

At 2 weeks post-final protein boost immunization (week 13
of the study), anti-gp120 IgA titres were detected in the sera
of immunized mice from all test groups and the levels
persisted up to 23 weeks post-immunization (week 34 of the
study) (Fig. 4a, right panel). A trend for increased serum IgA
titres was observed in mice primed with DNA and boosted
with adjuvanted protein delivered via the IN/IM route
compared with the other test groups; however, this
difference was not statistically significant. Anti-gp120 IgA
was seen in mucosal samples of immunized mice including
pooled saliva (Fig. 4b) and vaginal wash samples (Fig. 4c).
Anti-gp120 IgA in the saliva persisted up to 23 weeks post-
boost immunization. In vaginal-wash samples, IgA titres
were relatively unchanged at 23 weeks post-boost immu-
nization compared to 2 weeks post-boost in all groups.

In order to determine the functional properties of the
antibodies elicited by these vaccine regimens, the neutral-
izing activity of sera collected at 2 weeks following the final

Fig. 3. T-cell responses in splenocytes of mice immunized with
DNA and adjuvanted protein. Secreted Th1 (TNF-a, IFN-c and IL-
2) and Th2 (IL-5 and IL-4) cytokines were quantified, by CBA,
following a 24 h ex vivo stimulation of splenocytes with 1 mg Env
peptide pool ml”1, from protein-immunized (a) and DNA prime–
protein boosted (b) mice. Mean cytokine responses for each
group±SEM values are shown.
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immunization was assayed against homologous (SHIVBa-L

and pseudovirus HIV-1BaL.26) and heterologous (AC10.0
and QH0692) HIV-1 isolates. Since the volume of serum
collected for each mouse was limited, neutralization assays
were performed on pooled sera for each immunized group.
For these assays, two types of homologous viruses encoding

HIV-1Ba-L envelope were selected. HIV-1BaL.26 is a
pseudovirus, whereas SHIVBa-L is a live virus capable of
replicating in non-human primates and has been used in
previous vaccine-efficacy studies (Pal et al., 2003, 2006). As
shown in Table 2, homologous neutralizing activity was
detected in all immunized groups against HIV-1BaL.26 and

Fig. 4. Durability of anti-gp120 IgG and serum and mucosal IgA responses following immunization of mice via parenteral,
mucosal and combination routes. Anti-gp120 IgG (a, left panel) and IgA (a, right panel) responses, assayed by ELISA, were
determined for serum samples of DNA prime–protein boosted mice at weeks 13, 15, 18, 22 and 34 of the study. IgA was also
measured at weeks 13 and 34 of the study for saliva (b, 1 : 5 dilution) and vaginal-wash samples (c, 1 : 2 dilution). ELISA titres
and A450 are reported.

Table 2. Neutralizing activity of sera following immunizations of gp120 with Advax adjuvants

A neutralization assay was conducted with pooled sera from each group of animals. Neutralization titres represent the dilution of serum inhibiting

50 % of infection compared with an untreated control infection. The lowest dilution of serum tested was 1 : 10.

Vaccine/route BaL.26 SHIVBa-L AC10.0 QH0692

gp120/Advax-M (IN) 16 70 ,10 ,10

gp120/Advax-P1 (IM) 27 160 ,10 ,10

DNA+gp120/Advax-M (IN) 26 100 ,10 ,10

DNA+gp120/Advax-P1 (IM) 21 92 ,10 ,10

DNA+gp120/Advax-P1 (IM)+gp120/Advax-M (IN) 10 24 ,10 ,10

DNA+gp120/Advax-M (IN)+gp120/Advax-P1 (IM) 32 160 ,10 ,10

A. D. Cristillo and others
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SHIVBa-L, with higher titres against SHIVBa-L. Amongst the
combination delivery strategies, mice immunized by the
IN/IM route elicited higher neutralizing activity compared
with the IM/IN route. Heterologous neutralization against
AC10 and QH0692 was not detected in any of the
immunized groups.

Generation of robust and persistent Th1/Th2
cytokine responses following DNA prime–protein
boost immunization

At 2 weeks post-final immunization, gp120-specific IFN-c-
secreting splenocytes were detected in all immunized mice
(Fig. 5a, left panel). A trend towards increased IFN-c was
noted in mice primed with DNA and boosted with Advax-
M-adjuvanted protein administered via the IN/IN route
compared with the other groups. However, this trend was
only statistically significant when comparing Advax-M
(IN/IN) and Advax-P1 (IM/IM) test groups (P,0.05). Th1
(TNF-a and IFN-c) cytokines, measured by cytometric
bead array (CBA) at 2 weeks post-final immunization (Fig.
5b–f, left panel), were comparable in the IN/IN, IM/IN and
IN/IM test groups but lower in the IM/IM group (P,0.05).
In contrast, IL-2 and Th2 (IL-4 and IL-5) cytokine levels
were not significantly different between groups. Sustained
high levels of gp120-specific IFN-c-secreting splenocytes
were observed at 23 weeks post-final immunization by
ELISPOT (Fig. 5a, right panel) and CBA assays (Fig. 5c,
right panel). For other Th1 cytokines evaluated, TNFa
levels observed at 23 weeks post-immunization were
augmented in all test groups relative to the levels at
2 weeks post-immunization (Fig. 5b, right panel). For IL-2,
IL-4 and IL-5, levels were markedly enhanced only in mice
immunized via IN/IM routes (Fig. 5d–f, right panels).

Generation of memory B- and T-cell responses
following DNA prime–protein boost with Advax
adjuvants

Persistent levels of anti-gp120 antibodies (Fig. 4) and
sustained T-cell responses (Fig. 5) following prime–boost
immunization led us to assess memory B- and T-cell
responses. Splenocytes from immunized mice (23 weeks
post-immunization) were stimulated with either CpG
ODN2006 or concanavalin A (ConA), which have pre-
viously been shown to activate Bmem to become antibody-
secreting cells (Guan et al., 2009; Slifka & Ahmed, 1996;
Traggiai et al., 2004). Following a 7-day stimulation, anti-
gp120 IgG responses were measured in the media (Fig. 6a,
b). Under both stimulation conditions, anti-gp120 IgG
responses were found to be greater in the IN/IM group
relative to the IN/IN or IM/IM groups, but were not
significantly different from the IM/IN group. As expected,
responses were found to decline with decreasing numbers of
splenocytes used. For memory T-cell responses, both CD8
and CD4 effector memory (CD44hiCD62L2; Fig. 6c) and
central memory (CD44hiCD62L+; Fig. 6d) T-cells producing
Th1 cytokines were observed in all test groups by using

multiparameter FACS analysis. While a trend towards
greater cytokine responses was found in DNA-primed mice

Fig. 5. Durability of gp120-specific Th1 and Th2 cytokine recall
responses. Cellular responses were measured, following ex vivo

Env peptide stimulation, by IFN-c ELISPOT and CBA assays at 2
(left panels) and 23 weeks (right panels) post-protein boost. IFN-c
production, measured by ELISPOT assay (a), and secreted TNF-a
(b), IFN-c (c), IL-2 (d) IL-4 (e) and IL-5 (f) levels measured by CBA,
are shown.
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that were boosted by IM/IM, IM/IN and IN/IM regimens,
relative to the IN/IN regimen, these differences were not
statistically significant.

DISCUSSION

Mucosal immunity is important for protection against
pathogens, including HIV-1 (Asahi-Ozaki et al., 2004;
Ozawa et al., 2009; Tamura et al., 1988; Watanabe et al.,
2002). Early HIV-1 vaccine trials were focused on systemic

immunity and were not designed specifically to elicit mucosal
immune responses. Given the failures (Bradac &
Dieffenbach, 2009; Robb, 2008; Watkins et al., 2008) and
limited successes (Rerks-Ngarm et al., 2009) of HIV-1
vaccines to date, strategies to optimize induction of mucosal
anti-HIV-1 immunity (Holmgren & Czerkinsky, 2005;
Schoenly & Weiner, 2008) are needed. Approaches that have
been explored include immunization via mucosal routes (e.g.
IN), targeting antigens to lymph nodes (Finerty et al., 2001;
Hinkula et al., 2008; Koopman et al., 2007; Lehner et al.,
1999) and administering vaccines with mucosal adjuvants
(Connell, 2007; Glenn et al., 2007; Stevceva & Ferrari, 2005).

While DNA prime–protein boost regimens have been
evaluated for induction of systemic immunity, little is
known about their effect on mucosal responses. We
therefore hypothesized that a multimodal DNA prime–
protein boost approach using parenteral and mucosal
adjuvanted-protein delivery would maximize both mucosal
and systemic immunity. To this end, two promising new
adjuvants (Advax-M and Advax-P), specifically designed
for mucosal and parenteral administration, were tested
with gp120 protein. Similar, but unrelated, vaccine
strategies have shown induction of long-term HIV-1-
specific IgA responses in mucosal secretions and serum
when mice were immunized intranasally with DNA
encoding gp160 and gp41 peptides (Devito et al., 2000).

Our previous studies have demonstrated the utility of DNA
priming prior to protein boost for induction of a strong
systemic anti-gp120 antibody response (Cristillo et al.,
2006; Pal et al., 2006; Wang et al., 2006, 2008). Those
studies used QS-21 adjuvant, which has been found to be
potent but is associated with reactogenicity in humans
(Kennedy et al., 2008; Petrovsky, 2008). Extending these
earlier findings, we now show the importance of the
prime–boost regimen for induction of IgA. This was
evidenced by the fact that strategies that failed to elicit anti-
gp120 IgA responses in vaginal wash (Advax-P1 group) or
serum (Advax-P1 group) samples following protein
immunization alone induced anti-gp120 IgA following
combined prime–boost vaccination (Fig. 2). While par-
enteral DNA immunization has previously been shown to
elicit mucosal and systemic IgA antibodies, responses were
weak and/or short-lived (Lai et al., 2007). To enhance such
mucosal responses, DNA has been administered mucosally
(Bertley et al., 2004; Manrique et al., 2009; Raska et al.,
2008; Wang et al., 2004) and/or adjuvants such as GM-CSF
(Lai et al., 2007), polyethyleneimine (Huang et al., 2007) or
QS-21 (Sasaki et al., 1998) have been used. However, in the
current study, naked DNA was administered parenterally
followed by adjuvanted-protein boost delivered by muco-
sal, parenteral or combination routes. This alternate
multimodal approach elicited robust and persistent
mucosal IgA and systemic humoral and cellular immunity.

The importance of HIV-specific IgA has been demon-
strated by studies showing that serum and mucosal IgA
from highly exposed, persistently seronegative individuals

Fig. 6. Generation of B- and T-cell memory following immunization
of mice via parenteral, mucosal and combination routes. At
23 weeks post-final immunization, splenocytes (1�105, 2�104

and 4�103) were stimulated for 7 days with a ConA supernatant
mixture with mitomycin-treated splenocyte feeder cells (a).
Alternatively, splenocytes (1�105, 2�104 and 4�103) were
stimulated for 7 days with 4 mg CpG-ODN 2006 ml”1 with
mitomycin-treated feeder cells (b). gp120-specific antibodies
were measured in the media by ELISA, and A450 readings are
shown. Alternatively, splenocytes (1.25�106 cells ml”1) were
stimulated for 24 h with 1 mg Env peptide pool ml”1 at 37 6C,
5 % CO2 in the presence of 1 mg GolgiPlug (BD Bio Sciences) ml”1

for the final 6 h of stimulation. CD8 and CD4 effector memory
(CD44hiCD62L”) (c) and central memory (CD44hiCD62L+) (d) T-
cell responses, as measured by Th1 cytokine production.

A. D. Cristillo and others

134 Journal of General Virology 92



inhibited HIV-1 transcytosis (Devito et al., 2000; Mazzoli
et al., 1999) and could neutralize primary isolates of many
subtypes (Devito et al., 2002). More recently, HIV-specific
serum IgA from long-term survivors of HIV infection was
shown to neutralize genetically diverse HIV-1 strains
(Planque et al., 2010). For IgA characterization in mucosal
samples, we did not discriminate between monomeric or
secretory (dimeric or multimeric) IgA, nor did we
determine whether the origin of IgA was the mucosa or
sera. However, given the effectiveness of IgA from both sera
and mucosa, such discrimination might not be critical in
this instance.

The mechanism(s) by which Advax adjuvants enhanced
serum and mucosal IgA levels following DNA priming has
yet to be characterized. Other related carbohydrate
adjuvants (e.g. c-inulin) have been shown to enhance B-
cell differentiation and antibody production, in part via
activation of the alternative complement pathway (Carroll,
1998; Silva et al., 2004). In addition, galactosyl ceramide
has been shown to enhance mucosal IgA production via
CXCL16–CXCR6-dependent induction of IL-4 by mucosal
NKT-cells (Kamijuku et al., 2008). Mucosal adjuvants,
such as cholera toxin B subunit, promote IgA via
transforming growth factor b1 (Kim et al., 1998) whereas
CpG and polyinosinic:polycytidynic acid promote IgA class
switching through induction of APRIL (a proliferation-
inducing ligand) (Barone et al., 2009; Hardenberg et al.,
2007; He et al., 2007; Shang et al., 2008). Future studies will
investigate whether Advax adjuvants function via these
mechanisms.

Combination mucosal–parenteral delivery strategies using
protein alone have been reported to elicit robust mucosal
antibody and T-cell responses in mice (Goodsell et al.,
2008; Srivastava et al., 2008) and macaques (Barnett et al.,
2008). Consistent with these reports, the current study also
found induction of strong mucosal immunity following
prime–boost immunization (Fig. 4). It is likely that protein
immunization via the mucosal route expands DNA-primed
Bmem and triggers specific homing to mucosal compart-
ments. Subsequent parenteral protein boost further
activates Bmem in spleen and bone marrow, thereby
boosting systemic IgG production. Such distinct compart-
mentalization of mucosal and systemic immune responses
has been described previously (Kantele et al., 1997, 1999;
Qadri et al., 1998; Quiding-Järbrink et al., 1997). Future
studies will examine whether a coordinated, compartment-
driven homing of DNA-primed T- and B-cells occurs
following protein immunization in non-human primates.

Involvement of specific IgG subclasses, including IgG2
(Ngo-Giang-Huong et al., 2001) and IgG3 (Scharf et al.,
2001), in neutralizing HIV-1 and controlling viraemia have
been described. In this study, an adjuvant-dependent
broadening of the IgG-subclass response was noted
following DNA prime–protein boost immunization that
was not seen following administration of DNA or protein
alone. It is likely that such broadening of IgG responses by

our vaccine regimen may ultimately provide better control
of viraemia in non-human primate efficacy studies.

Persistence of T- and B-cell responses will be of key
importance to an effective HIV vaccine, especially for
developing countries, where adherence to vaccination
schedules may be an issue. In this study, the prime–boost
vaccine regimen demonstrated persistent antibody and cell
mediated immune (CMI) response over a 23-week period
following final immunization. This led to the generation of
memory B-cell as well as central and effector memory T-
cells (Fig. 6). Recent studies have suggested that effector
memory T-cells, which are the predominant memory T-cell
population in mucosal compartments, may play a critical
role in protection against SIV infection (Hansen et al.,
2009). Therefore, such long-lived responses may be
important for the containment of HIV-1.

Although a detailed characterization of neutralizing
antibodies is difficult to perform in mice, due to limited
availability of immune serum, preliminary neutralization
assays were performed with pooled sera from each
immunized group. While induction of homologous
neutralizing antibodies was clearly noted following
immunization, titres against live virus (SHIVBa-L) were
higher than those against pseudovirus (HIV-1BaL.26). This
finding may be due, in part, to the sequence heterogeneity
amongst these two isolates. Neutralizing titres noted in the
IN/IM group were found to be higher than those noted in
the IM/IN group. Interestingly, the IN/IM group also
demonstrated increased memory B-cell responses com-
pared with the IM/IN group. Such findings, although
preliminary, suggest that our vaccine, delivered via the IN/
IM route, may have the potential to elicit high-titre
neutralizing antibodies and may induce long-term memory
B-cell responses. No heterologous neutralization was
detected in any of the immunized groups. This finding
was not surprising, as the HIV-1Ba-L Env antigen used for
this study has been shown previously to elicit type-specific
neutralization. The purpose of this selected antigen was
primarily to show Env-specific-binding antibody responses
in the periphery and in mucosal compartments. Future
studies will include Env antigens, based on sequence and/or
structural analyses, that yield an immunogen poised to
induce broadly neutralizing antibodies.

One area relevant to HIV vaccine development that was
not addressed in this study is the efficacy of the candidate
vaccine against a defined challenge virus. Specific differ-
ences between the mucosal immune systems of rodents and
primates limit the use of rodent models for the detailed
evaluation of efficacy (Kunisawa et al., 2005; Vajdy &
Singh, 2005). While humanized mice models have been
developed recently for HIV transmission studies (Denton
& Garcia, 2009), the immune responses in these models
have not been characterized extensively, thereby limiting
their use in vaccine-efficacy studies. Thus, the non-human
primate model represents a better alternative for testing the
efficacy of this vaccine regimen and is the subject of

Advax-formulated HIV vaccine-induced immune responses

http://vir.sgmjournals.org 135



ongoing research. Given that neutralization was noted
against SHIVBa-L with the vaccine regimen tested, it is
probable that protection against a homologous challenge
would be noted in non-human primate studies, as has been
observed previously with polyvalent vaccines.

METHODS

Antigens and adjuvants. Codon-optimized HIV-1 env gene

encoding subtype B (HIV-1Ba-L) plasmid DNA and recombinant

gp120 vaccine components were prepared as described (Cristillo et al.,

2006; Pal et al., 2005, 2006; Wang et al., 2006). Recombinant gp120 was

formulated with Advax-M and Advax-P1 adjuvants provided by Vaxine

Pty Ltd by simple mixing prior to administration.

Murine immunizations. For the first study, BALB/c mice (5–

7 week-old females) were vaccinated with either recombinant gp120

alone or by DNA prime–protein boost immunization. For protein-

only immunizations, mice were injected at weeks 0, 2 and 5 with

recombinant gp120 (25 mg) either intramuscularly, formulated in

Advax-P1 (1 mg) adjuvant, or intranasally, formulated in Advax-M

(2 mg) adjuvant. For prime–boost immunizations, mice were

immunized intramuscularly with DNA (100 mg) at weeks 0, 2 and

4, and with 25 mg adjuvant-formulated protein at weeks 9 and 11. At

2 weeks post-final immunization, mice were sacrificed and serum,

vaginal washes, saliva, faecal pellets and splenocytes were collected to

evaluate humoral and cellular immune responses.

For the second study, BALB/c mice (5–7 week-old females) were

vaccinated using DNA prime–protein boost combination strategies.

Mice were immunized intramuscularly with DNA (100 mg) at

weeks 0, 2 and 4, and with adjuvanted gp120 protein (25 mg) at

weeks 9 and 11. Alternatively, combination delivery strategies were

tested in which protein was administered via the IM route at week 9

and via the IN route at week 11, or vice versa. At 2 and 23 weeks post-

final protein immunization, mice were sacrificed and serum, vaginal

washes, saliva and splenocytes were collected for analyses.

Peptides. For the murine study, 79 HIV-1 Env (BaL) peptides (15-

mers) with 11 overlapping residues were synthesized (Infinity Biotech

Research and Resource) that spanned the gp120 Env sequence. These

were resuspended in one peptide pool. For T-cell immune assays, cells

were stimulated using a final per peptide concentration of 1 mg ml21.

IFN-c ELISPOT. The IFN-c ELISPOT assay was performed using

splenocytes and according to the manufacturer’s protocol (U-

CyTech) as described previously (Cristillo et al., 2006, 2008a; Pal

et al., 2005).

CBA. CBA (BD Biosciences) was performed to quantify secreted Th1/

Th2 cytokines from splenocytes, as described previously by Cristillo

et al. (2008a, b).

Measuring gp120-specific IgG responses in serum by ELISA.
Sera were assayed for anti-gp120-specific IgG antibodies using an

ELISA as described previously by Pal et al. (2002). Titres were

determined, by ELISA, as the highest dilution of immune serum that

produced A450 readings greater than or equal to two times the signal

detected with a corresponding dilution of pre-immune serum.

Measuring gp120-specific IgG isotype responses in serum.
Anti-gp120-specific isotype responses in sera were assayed by ELISA

using isotype-specific conjugates. Briefly, recombinant gp120 was

coated onto 96-well plates (100 ng per well) (Greiner) and incubated

overnight at 4 uC. Plates were washed (PBS pH 7.3/0.01 % Tween)

and blocked [PBS/5 % dried-milk powder (DM)] for 1 h at 37 uC.
Diluted (PBS/5 % DM) samples (100 ml) were added to plates and
incubated for 1 h at 37 uC. Specific IgG isotypes were detected using
rat anti-mouse IgG1–HRP (BD Pharmigen), rat anti-mouse IgG2a–
HRP (BD Pharmigen), goat anti-mouse IgG2b–HRP (AbD Serotec)
and goat anti-mouse IgG3–HRP (AbD Serotec). Anti-mouse IgG
isotype conjugates (diluted 1 : 5000 in PBS/5 % DM) were added to
the plates and incubated for 1 h at 37 uC. After washing, 100 ml
Enhanced K-Blue tetramethylbenzidine (TMB) substrate (Neogen)
was added and the plates were incubated for 15 min at 37 uC.
Reactions were stopped with 100 ml 2 M sulfuric acid (LabChem) and
A450 were measured (SpectraMax Plus 384; Molecular Devices).

Measuring gp120-specific IgA responses in serum and muco-

sal secretions by ELISA. Saliva and vaginal-wash samples were
collected from immunized or control mice as described by Kaminski
& VanCott (1999). To rule out blood contamination contributing to
transudated serum IgA (Meckelein et al., 2003), all mucosal washes in
our study were tested with Haemoccult and shown to be negative.
Coating of plates with gp120 and blocking were performed as
described above. Samples (100 ml diluted in PBS/5 % DM at a 1 : 5
ratio for saliva and a 1 : 2 ratio for vaginal washes) were added to
washed plates and incubated for 1 h at 37 uC. Goat anti-mouse IgA-
HRP (100 ml, diluted 1 : 5000 in PBS/5 % DM) (Southern Biotech)
was added to plates and incubated for 1 h at 37 uC. Plates were
developed with TMB substrate as described above.

Neutralization assay. Neutralization activity was measured with
pooled sera (for each group) using a TZM-bl assay where a reduction
in luciferase gene expression was measured after a single round of
infection in the presence of immune serum compared with untreated
control. Viruses were incubated with serial dilutions of duplicate
serum samples (50 ml) in complete Dulbecco’s modified Eagle’s
medium (DMEM) for 1 h at 37 uC. Freshly trypsinized TZM-bl cells
(10 000 cells in 50 ml complete DMEM medium with 60 mg DEAE–
dextran ml21) were added to each well. For controls, wells received
either cells and virus (virus control) or cells alone (background
control). After 48 h, 100 ml lysate was transferred to 96-well black
plates for measurement of luminescence (Bright-Glo Luciferase assay
system; Promega). Neutralization titres are defined as the dilution of
serum at which the relative luminescence units (RLU) were reduced
by 50 % compared with virus control wells after subtraction of
background RLU.

Memory B-cell analysis. At 23 weeks post-final immunization,
vaccine-specific memory B-cell responses were evaluated in spleno-
cytes of immunized mice using two murine-adapted stimulation
protocols, as described previously (Guan et al., 2009; Slifka & Ahmed,
1996; Traggiai et al., 2004). Splenocytes (16105, 26104 and 46103

cells) were stimulated for 7 days with 4 mg CpG ODN2006 ml21 or
ConA supernatant mixture, in the presence of mitomycin-treated
splenocyte feeder cells, to activate murine Bmem to become antibody-
secreting cells as described by Slifka & Ahmed, (1996). Following
stimulation, anti-gp120 titres in the supernatants were determined by
ELISA (Pal et al., 2002).

Memory T-cell analysis. CD8 and CD4 effector (CD44hiCD62L2)
and central (CD44hiCD62L+) memory T-cell responses, measured
by intracellular Th1 (TNF-a, IL-2 and IFN-c) cytokine production,
were evaluated in splenocytes of immunized and naive mice at
23 weeks post-final immunization using multi-parameter flow
cytometry as described by Cristillo et al. (2008b). Splenocytes
(1.256106 cells ml21), stimulated for 24 h with 1 mg Env peptide
pool ml21 at 37 uC and 5 % CO2 (and with 1 mg GolgiPlug ml21 for
the final 6 h), were collected, washed (BD FACS wash buffer; BD
Biosciences) and stained with anti-murine anti-CD3–APC–Cy7,
CD4–PerCP–Cy5.5, CD8–PE–Cy7, CD44–FITC (BD Biosciences)
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and CD62L–PE–Texas Red (Invitrogen). Intracellular staining of cells

was performed using anti-TNF-a2PE, IFN-c2PE and IL-2–PE (BD

BioSciences). Cells (20 000 each of CD44hi+, CD4+ or CD8+

memory cells) were acquired using an LSRII cytometer and data

were analysed using FACS DIVA (BD BioSciences).

Statistics. A two-tailed Mann–Whitney non-parametric test was

performed to assess the statistical significance of the ELISA and CBA

data for mice immunized with Advax-M and Advax-P1 in study I. For

the ELISA, ELISPOT and CBA data from study II, in which multiple

groups of mice were immunized using Advax-M and Advax-P1 by

combination routes, the Kruskall–Wallis non-parametric test fol-

lowed by Dunn’s multiple-comparison post-test was used.
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