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Abstract: Naphthoquinone-based meroterpenoids are hybrid polyketide-terpenoid natural products
with chemical diversity and a broad range of biological activities. Here, we report the isolation of a
group of naphthoquinone-containing compounds from Streptomyces sp. B9173, and their structures
were elucidated by using a combination of spectroscopic techniques, including 1D, 2D NMR,
and high-resolution mass (HRMS) analysis. Seven flaviogeranin congeners or intermediates, three
of which were new, have been derived from common naphthoquinone backbone and subsequent
oxidation, methylation, prenylation, and amino group incorporation. Both flaviogeranin B1 (1) and B
(2) contain an amino group which was incorporated into the C8 of 1,3,6,8-terhydroxynaphthalene
(THN). Flaviogeranin D (3) contains an intact C-geranylgeranyl residue attached to the C2 of THN,
while the O-geranylgeranyl group of 2 links with the hydroxyl on the C2 site of THN. Four compounds
were selected and tested for antibacterial activity and cytotoxicity, with 3 and flaviogeranin C2 (5)
displaying potent activity against selected bacteria and cancer cell lines. In light of the structure features
of isolated compounds and the biosynthetic genes, a biosynthetic pathway of naphthoquinone-based
flaviogeranins has been proposed. These isolated compounds not only extend the structural diversity
but also represent new insights into the biosynthesis of naphthoquinone-based meroterpenoids.
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1. Introduction

Marine-derived microbial natural products are great sources for the discovery and development
of pharmaceutical agents [1–3]. Marine Streptomyces continue to be the predominant producers,
accounting for up to 69% of new secondary metabolites isolated from marine bacteria in 2018 [4].
Meanwhile, the genome of each Actinomycetes indicates genetic potential to produce 20–30 secondary
metabolites. The rapidly accumulating microbial genomic information and developing bioinformatics
platforms are further stimulating the revolution for natural product discovery [5]. However, the biosynthetic
potential of microbial natural products is significantly underestimated based on the isolated compounds.
It is hampered by the laboratorial cultivation methods, since many of these “cryptic” gene clusters
are only expressed under certain culture conditions. Additionally, metabolite production is strongly
influenced by growth conditions, including production media, pH, temperature, etc. [6,7].

Naphthoquinone-based terpenoids are natural products of mixed biosynthetic origin and exhibit
antimicrobial, cytotoxic, antioxidant, and neuroprotective activity [8]. Examples include flaviogeranin,
furaquinocin, naphterpin, naphthomevalin, and merochlorins, etc. [9] (Figure 1). Flaviogeranin
is a neuroprotective agent against glutamate toxicity and is becoming a candidate for treatment
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of cerebral ischemic disorder [10]. Furaquinocins show cytocidal activity against melanoma cells
in vitro [11]. These naphthoquinone-based meroterpenoids contain a 1,3,6,8-tetrahydroxynaphthalene
(THN) core formed by a type III polyketide synthase (PKS) using malonyl-CoA as a substrate [12–16].
The prenyl moieties are suggested to play important roles in expanding structural diversity and
enhancing biological activities. Simple prenyl groups are derived from geranyl diphosphate (GPP)
or dimethylallyl diphosphate (DMAPP), and geranylgeranyl diphosphate gives rise to diterpenoids.
Prenyltransferases catalyze the attachment of the corresponding polyprenyl group to the THN core [17].
The C3 of THN is not as nucleophilic as C2 and C4. Therefore, THN-derived meroterpenoids can be
divided into C2/C4- prenylation (class I) and C3 prenylation pattern (class II). Successive steps such as
methylation, hydroxylation, and chlorination are catalyzed by multiple modifying enzymes during the
biosynthetic procedure, further enriching the structural diversity of the final products.

Biomolecules 2020, 10, x FOR PEER REVIEW 2 of 12 

flaviogeranin, furaquinocin, naphterpin, naphthomevalin, and merochlorins, etc. [9] (Figure 1). 
Flaviogeranin is a neuroprotective agent against glutamate toxicity and is becoming a candidate 
for treatment of cerebral ischemic disorder [10]. Furaquinocins show cytocidal activity against 
melanoma cells in vitro [11]. These naphthoquinone-based meroterpenoids contain a 
1,3,6,8-tetrahydroxynaphthalene (THN) core formed by a type III polyketide synthase (PKS) using 
malonyl-CoA as a substrate [12–16]. The prenyl moieties are suggested to play important roles in 
expanding structural diversity and enhancing biological activities. Simple prenyl groups are 
derived from geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP), and 
geranylgeranyl diphosphate gives rise to diterpenoids. Prenyltransferases catalyze the attachment 
of the corresponding polyprenyl group to the THN core [17]. The C3 of THN is not as 
nucleophilic as C2 and C4. Therefore, THN-derived meroterpenoids can be divided into C2/C4- 
prenylation (class I) and C3 prenylation pattern (class II). Successive steps such as methylation, 
hydroxylation, and chlorination are catalyzed by multiple modifying enzymes during the 
biosynthetic procedure, further enriching the structural diversity of the final products.  

 

Figure 1. Representative naphthoquinone-based meroterpenoids. 

Our natural products project is devoted to the discovery of new bioactive metabolites from 
marine-derived actinomycetes. Streptomyces sp. B9173 was isolated from sea sediment collected 
from Chile. By optimization of growth conditions of Streptomyces sp. B9173, several indole 
alkaloids, such as maremycins, FR900452s, tryptanthrin, and meisoindigo, have been identified 
[18–21]. An in-depth bioinformatic investigation of secondary biosynthetic machineries of the 
whole genome yielded 31 gene clusters, clearly implying the biosynthetic potential of this strain 
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Our natural products project is devoted to the discovery of new bioactive metabolites from
marine-derived actinomycetes. Streptomyces sp. B9173 was isolated from sea sediment collected from
Chile. By optimization of growth conditions of Streptomyces sp. B9173, several indole alkaloids, such as
maremycins, FR900452s, tryptanthrin, and meisoindigo, have been identified [18–21]. An in-depth
bioinformatic investigation of secondary biosynthetic machineries of the whole genome yielded 31 gene
clusters, clearly implying the biosynthetic potential of this strain [22]. Here, we report the isolation
and structure determination of a group of flaviogeranin derivatives and pathway intermediates from
Streptomyces sp. B9173 (Figure 2). Three previously undescribed compounds (1–3) with different
oxidations, methylation, or prenylation on the THN core show unique characteristics compared with
the known flaviogeranin. Among them, 1 and 2 are the only members containing an amino group at
the C8 of THN instead of the hydroxyl group. These features expand the structural diversity of the
flaviogeranin family of natural products, and these compounds provide evidence of the biosynthetic
pathway. The new compound 3 showed potent antibacterial and cytotoxic activity.Biomolecules 2020, 10, x FOR PEER REVIEW 3 of 12 
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2. Materials and Methods

2.1. General Experimental Procedures

All 1H, 13C, and 2D NMR (HSQC, 1H-1H COSY, HMBC) spectral data were obtained in CDCl3
with a Bruker Avance 600 MHz spectrometer (Bruker, Rheinstetten, Germany). HPLC was performed
on an Agilent 1260 Infinity LC (Agilent Technologies, Santa Clara, CA, USA) by using a Luna C18
5-µm column (4.6 × 250 mm) (Phenomenex, Torrance, CA, USA) at a flow rate of 0.5 mL/min, which
was used for the routine analysis of extracts and fractions. High-resolution mass spectral data were
obtained using a 6530 Q-TOF mass spectrometer coupled to an Agilent 1260 Infinity LC. Electrospray
Ionization Mass Spectrometry (ESI-MS) was carried out on an Agilent 1100 LC/MS system with a Luna
C18 5-µm column (4.6 × 150 mm, flow rate 0.5 mL/min). Sequence analyses and homologue searching
were performed with PSI-BLAST search and anti-SMASH bacterial version.

2.2. Bacterial Strains, Culture Conditions, and Biochemicals

Producer strain Streptomyces sp. B9173, isolated from a marine sediment sample collected at
the Pacific coast of Chile, was kindly provided by Prof. Ralf Thiericke (Hans Knoell Institute, Jena,
Germany). Streptomyces sp. B9173 was cultured in liquid tryptic soy broth (TSB) for mycelium or
solid MS (2% soy flour, 2% mannitol, 1.5% agar, pH 7.2) medium for sporulation. For the production of
flaviogeranin congeners, Streptomyces spores were inoculated into TSB medium in an Erlenmeyer
flask as seed culture and incubated at 28 ◦C with shaking at 200 rpm. Then, fermentation medium
was inoculated with 8% (v/v) 2-day seed culture for a continuing 7 day. Production of the secondary
metabolites was monitored at various time points during fermentation and analyzed by HPLC-MS.

HPLC-grade solvents were used for all chromatographic analyses. For column chromatography
(CC), Sephadex LH-20 (GE Healthcare Bio-Science AB, Pittsburgh, PA, USA), silica gel (200–300 mesh,
300–400 mesh, Tsingtao Marine Chemical Co. Ltd., Tsingtao, China), and RP-C18 (ODS-A, 50 µm,
YMC, Kyoto, Japan) were used. Other common biochemicals were purchased from standard
commercial sources.

2.3. Extraction and Isolation of Flaviogeranin Congeners

For small-scale analyses, the Streptomyces cultures were clarified by centrifugation after
fermentation. The metabolites were extracted three times with ethyl acetate (EtOAc) from supernatant,
concentrated by rotary evaporation, and the resulting residue was dissolved in methanol prior to
HPLC-MS analysis, with 0.1% formic acid as solvent A and acetonitrile (ACN) as solvent B. A 46-min
gradient elution condition for HPLC analysis started with a linear gradient from 10% B to 60% B for
13 min, followed by a gradient from 60–95% B for 22 min, and an additional isocratic step for 5 min.
The column was washed by increasing the gradient to 100% B and was equilibrated for 5 min, followed
by equilibration for 5 min under the starting conditions (10% B).

Large-scale fermentation (150 L) was performed using 2-L baffled flasks containing 0.5 L liquid MS
medium with 8% seed culture. The cell pellet was separated from fermentation broth by centrifugation.
The supernatant was extracted three times with half volume of EtOAc, combined together and
evaporated under reduced pressure to yield a 27.1 g dark brown crude extract. The obtained EtOAc
crude extract was loaded onto a silica gel column and eluted using an increasing gradient of 0% to
100% petroleum ether-CH2Cl2 and CH2Cl2-MeOH as mobile phase. Every 200 mL was collected as a
fraction at the 10 mL/min flow rate. In total, 12 fractions (Fr.1–Fr.12) were collected and analyzed by
HPLC. Fr.3 (2.1 g) was further purified using flash RP-C18 column chromatography with an increasing
gradient of 20% to 50% MeOH to give 15 fractions (Fr.3.1–Fr.3.15). Fr3.9 (118.2 mg) was purified by a
Sephadex LH-20 column packed with Sephadex LH-20 resin (40 g) and eluted with MeOH and acetone,
respectively, to yield 6 (13.7 mg) and 7 (18.3 mg). Fr.3.10 (72.6 mg) was separated by a Sephadex
LH-20 column and eluted with MeOH to yield 3 (15.2 mg). Fr.3.8 (853.1 mg) was subjected to an
RP-C18 column, eluted with 50%MeOH in H2O and followed by Sephadex LH-20 separation to yield
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1 (11.1 mg), 2 (10.8 mg), 4 (17.7 mg), and 5 (15.7 mg). The NMR data for new compounds (1–3) are
presented in Figures S3–S5 and summarized in Tables 1–3. The 1H-NMR spectra and HR-ESI MS
data of known compounds (4–7) are listed in Figures S6–S9 and Table S1, which are matched by the
literature [10,23–26].

Table 1. 1H and 13C-NMR, 1H-1H COSY, gHMBC data of 1 (600 MHz, CDCl3).

No δH(Multi, J/Hz) δC(DEPT) 1H-1H COSY gHMBC

1 180.1 (s)
2 159.4 (s)
3 131.6 (s)
4 186.8 (s)

4a 106.1 (s)
5 160.3 (s)
6 6.48 (1H,s) 104.3 (d) 5,7,4a,8
7 155.4 (s)
8 139.9 (s)

8a 107.5 (s)
9 3.97 (3H,s) 56.4 (q) 7

10 2.09 (3H,s) 8.8 (q) 6,2
11 4.07 (3H,s) 61.0 (q) 2

5-OH 14.41 (brs) 4,4a

Table 2. 1H and 13C-NMR, 1H-1H COSY, gHMBC data of 2 (600 MHz, CDCl3).

No δH(Multi, J/Hz) δC(DEPT) 1H-1H COSY gHMBC

1 180.4 (s)
2 158.7 (s)
3 132.5 (s)
4 186.8 (s)

4a 106.1 (s)
5 160.1 (s)
6 6.47 (1H,s) 104.3 (d) 5,7,4a
7 155.4 (s)
8 139.7 (s)

8a 107.5 (s)
9 3.96 (3H,s) 56.4 (q) 7

10 2.09 (3H,s) 9.1 (q) 2,4
1′ 4.87 (2H,d,7.2) 69.8 (t) 2′ 2,3′

2′ 5.49 (1H,m) 119.8 (d) 1′ 9′,4′

3′ 142.6 (s)
4′ 2.06 (2H,m) 39.6 (t) 5′ 3′,2′,9′

5′ 2.07 (2H,m) 26.3 (t) 4′,6′ 3′,7′

6′ 5.05 (1H,m) 123.7 (d) 5′ 8′,4′,10′

7′ 131.8 (s)
8′ 1.65 (3H,s) 25.6 (q) 7′,10′,6′

9′ 1.70 (3H,s) 16.5 (q) 4′,2′,3′

10′ 1.58 (3H,s) 17.6 (q) 7′,8′,6′

5-OH 14.42 (brs) 4a,5
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Table 3. 1H and 13C-NMR, 1H-1H COSY, gHMBC data of 3 (600 MHz, CDCl3).

No δH(Multi, J/Hz) δC(DEPT) 1H-1H COSY gHMBC

1 199.7 (s)
2 77.9 (s)

3 3.23 (1H,d,16.8)
3.13 (1H,d,16.8) 49.1 (t) 1,4a

4 198.9 (s)
4a 112.0 (s)
5 161.2 (s)
6 119.2 (s)
7 162.1 (s)
8 7.07 (1H,s) 106.5 (d) 4a,6

8a 131.4 (s)
9 2.19 (3H,s) 8.1 (q) 5,7

1′
2.49

(1H,dd,14.5,8.3)
2.38

(1H,dd,14.5,8.3)

38.9 (t) 2′ 2,3′,1

2′ 4.98 (1H,t,6.9) 116.0 (d) 1′ 9′,4′

3′ 141.0 (s)
4′ 1.94 (2H,m) 39.8 (t) 5′ 3′,2′,9′

5′ 2.02 (2H,m) 26.3 (t) 4′,6′ 3′,7′

6′ 5.03 (1H,t,7.5) 123.9 (d) 5′ 8′,4′,10′

7′ 131.3 (s)
8′ 1.67 (3H,s) 25.6 (q) 7′,10′,6′

9′ 1.43 (3H,s) 16.1 (q) 4′,2′,3′

10′ 1.57 (3H,s) 17.6 (q) 7′,8′,6′

4-OH 12.55 (brs) 3,4a,5

2.4. Bioactivity Assay

The antibacterial activities were tested against Streptococcus aureus ATCC 43,300 and Mycobacterium
smegmatis MC2 255 using a gradient dilution assay using 96-well plates. The compounds were dissolved
in DMSO to 10 mg/mL as a stock solution and diluted in culture media to 1 µg/mL as the initial
concentration. The 96-well plates with bacterial inoculation were incubated at 37 ◦C for 8–12 h.
Microbial growth was measured by monitoring OD600 on a Synergy 2 multi-mode microplate reader
(BioTek, Winooski, VT, USA). Erythromycin was used as a positive control.

The compounds were tested for cytotoxic effects with A549 (non-small-cell lung carcinoma cells)
and HeLa cell lines by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay
with minor modifications. The A549 cell line was grown in F-12K media with 10% fetal bovine serum at
37 ◦C under a humidified atmosphere of 5% CO2. Subsequently, 10 uL diluted solutions of compounds
were added to 90 µL aliquots of cell suspension (5 × 104 cells/mL) in 96-well plates after overnight
incubation, and incubation was continued for 72 h. The MTT solution (10 µL 5 mg/mL) was pipetted
into each well and incubated for an additional 4 h. The medium containing MTT was gently removed
and DMSO (150 µL) was added in order to dissolve formed formazan crystals. OD490 was detected by
a microplate reader and the data were analyzed by GraphPad Prism 5.0. Doxorubicin was used as a
positive control. Data are presented as average values from at least duplicate experiments.

3. Results

3.1. Structural Elucidation of Naphthoquinone Family Metabolites

Meroterpenoids are hybrid natural products harboring structurally various terpenoid and
non-terpenoid moieties which diversify the chemical structures and biological activities. Flaviogeranin
is a prenylated naphthoquinone derivative featuring a polyketide-derived naphthoquinone unit
and a geranyl side chain [10]. Generally, the secondary metabolite profile of the certain strain is
medium-dependent. We had previously investigated marine-derived Streptomyces sp. B9173 and found
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that it produced a variety of metabolites under different culture conditions. The growth and sporulation
of Streptomyces sp. B9173 occurs extremely well on MS medium plate, encouraging us to isolate new
natural products in this medium (Figure S1). The strain was cultivated in MS medium at 28 ◦C for
7 days, extracted with a half volume of EtOAC three times, and subsequent column chromatography
resulted in the isolation of seven compounds (Figure 2). Among these naphthoquinone-containing
compounds, three were new, with various modifications including methylations and prenylations
or an unusual amination on the benzene moiety (ring A). Each of the new compounds is named
“flaviogeranin” after the prenylated THN scaffold.

Flaviogeranin B1 (1) was obtained as a violet powder. UV-vis (CH3Cl) λmax (log ε): 242 (3.71),
304 (3.38), 504 (3.34), 536 (3.54), 576 (3.5) nm; high-resolution electrospray ionization mass (HRESIMS)
analysis for 1 afforded an [M + H]+ ion at m/z 264.0868, and the molecular formula of 1 can be
deduced as C13H13NO5 (calcd. 264.0866 for [M + H]+). Interpretation of the 1H, 13C, DEPT, and HSQC
NMR spectra of 1 in CDCl3 revealed one aromatic methine signal (δC 104.3, C-6 and δH, 6.48, H-6),
two methoxy groups (δC 56.4, C-9 and δH 3.97, H-9; δC 61.0, C-11, and δH 4.07, H-11), and one
methyl group (δC 8.83, C-10 and δH, 2.09, H-10). Further analysis of the 1D NMR data revealed the
existence of one hydroxyl group at δH 14.41 that should form a hydrogen bond with a carbonyl group,
two carbonyl carbons (δC 186.8, C-4; δC 180.1, C-1), and seven nonprotonated double-bond carbons
(δC 159.4, C-2; δC 131.6, C-3; δC 106.1, C-4a; δC 160.3, C-5; δC 155.4, C-7; δC 139.9, C-8; δC 107.5, C-8a).
Thus, 1 was identified as a naphthoquinone bearing a hydroxy group, an amino group, one methyl
group, and two methoxy groups. The analysis of the HMBC spectrum revealed the correlations
from H-6 to C-4a and C-8; OCH3-9 to C-7; CH3-10 to C-2 and C-4; OCH3-11 to C-2. The positions
of other substituent groups have been established by NMR, expect the NH2 at C8. According to
the furaquinocin biosynthesis, 8-amino flavin has been confirmed as a cryptic intermediate [23].
Therefore, the amino group is speculated to attach at the C8. Finally, the structure of 1 was established
as 8-amino-5-hydroxy-2,7-dimethoxy-3-methylnaphthalene-1,4-dione (Figure 3 and Figure S3 and
Table 1).
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Figure 3. 1H-1H COSY (bold lines) and HMBC correlation (arrows) supporting planar structures of 1–3.

Flaviogeranin B (2) was obtained as a violet powder. UV-vis (CH3Cl) λmax (log ε): 242 (3.40),
304 (3.07), 504 (3.06), 536(3.27), 576(3.23) nm; HRESIMS analysis afforded an [M + H]+ ion at m/z
386.1969, giving the molecular formula of 2 as C22H27NO5 (calcd. 386.1962 for [M + H]+). The 1D
NMR data of 2 were similar to those of 1, but there were ten more carbon signals including four
double-bond carbons (δC: 119.8 (d); 142.6 (s); 123.7 (d); 131.8 (s)), three CH2 (δC: 69.8 (t); 39.6
(t); 26.3 (t)), and three CH3 (δC: 25.6 (q); 16.5 (q); 17.6 (q)), indicating that 2 contains a geranyl
group. A dimethylallyl group in 2 was constructed by HMBC from two allylic methyls (δH 1.65,
H-8′; δH 1.58, H-10′) to δC 131.8, C-7′ and δC 123.7, C-6′ and a COSY cross-peak between δH 5.05,
H-6′ and δH 2.03, H-5′. Another isoprene unit was identified by HMBCs from δH 1.70 (s, CH3,
H-9′) and δH 2.06 (m, CH2, H-4′) to δC 142.6 (C-3′) and δC 119.8 (C-2′) and a vicinal coupling
between δH 5.49 (m, CH, H-2′) and δH 4.87 (d, 2H, H-1′). The two units were joined between δH
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2.06 (H-4′) and δH 2.03 (H-5′) through COSY spectrum analysis. A geranyl group thus obtained was
connected to 2-O from the correlation between δH 4.87 (H-1′) and δC 158.7 (C-2). Thus, 2 was established
as (E)-8-amino-3-((3,7-dimethylocta-2,6-dien-1-yl)oxy)-8-hydroxy-6-methoxy-2-methylnaphthalene-1,4-
dione (Figure 3, Figure S4 and Table 2).

Flaviogeranin D (3) was obtained as orange oil. [α]23
D +16.3 (c 0.10, CH3Cl); UV (CH3Cl) λmax

(log ε): 256 (3.90), 310 (3.46), 353 (3.34) nm; HRESIMS analysis afforded an [M + H]+ ion at m/z 359.1839,
giving the molecular formula of 3 as C21H26O5 (calcd. 359.1824 for [M + H]+). The 13C and DEPT
NMR spectra of 3 suggested the presence of four methyl (δC 8.1, C-9; δC 16.1, C-9′; δC 25.6, C-8′; δC
17.6, C-10′), one oxygenated quaternary carbon (δC 77.9, C-2), four CH2 (δC 49.1, C-3; δC 38.9, C-1′;
δC 39.8, C-4′; δC 26.3, C-5′), two carbonyls (δC 199.7, C-1; δC 198.9, C-4), three olefin CH (δC 116.0,
C-2′; δC 123.9, C-6′; δC 106.5, C-8), and seven nonprotonated double-bond carbons (δC 112.0, C-4a;
δC 161.2, C-5; δC 119.2, C-6; δC 162.1, C-7; δC 131.4, C-8a; δC 141.0, C-3′; δC 123.9, C-6′). A reduced
naphthalene-1,4-dione substructure was constructed through analysis of the HMBC correlation from
δH 7.07 (H-8) to δC 119.2 (C-6), δC 112.0 (C-4a) and δC 199.7 (C-1); δH 2.19 (H-9) to δC 119.2 (C-6),
δC 162.1 (C-7) and δC 161.2 (C-5); δH 3.23 and 3.13 (d, J = 16.8 Hz, H-3) to δC 198.9 (C-4), δC 112.0
(C-4a), and δC 199.7 (C-1). A geranyl group was identified in comparison with the NMR data of 2
and connected to C-2 (δC 77.9) based on the correlation from δH 4.98 (C-2′) to δC 77.9 (C-2); δH 2.49,
2.38 (H-1′) to δC 199.7 (C-1), δC 77.9 (C-2), and 39.1 (C-3). Therefore, the structure of 3 was identified
as (E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-2,5,7-trihydroxy-6-methyl-2,3-dihydronaphthalene-1,4-dione
(Figure 3, Figures S5, and S10 and Table 3).

3.2. Evaluation of Bioactivities

In order to evaluate the structure–activity relationship, four compounds (1–3, and 5) were selected
and tested for their antibacterial activity and cytotoxicity (Table 4). The antibacterial activity was
investigated by using a standard gradient dilution assay against strains Staphylococcus aureus and
Mycobacterium smegmatis, using erythromycin as the positive control. As shown in Table 4, both 3 and
5 showed potent inhibitory activity against S. aureus and M. smegmatis, with the minimum inhibitory
concentration (MIC) values ranging from 5 to 9 µg/mL, which were similar to the MIC of the positive
control, erythromycin. However, the compounds harboring the amino group on the C8 (1 and 2)
showed relatively weaker activity (MIC range from 12 to 35 µg/mL).

Table 4. The MIC values and IC50 values of 4 compounds against microorganism and tumor cell
lines, respectively.

Compound MIC (µg/mL) IC50 (µM)

S. aureus M. smegmatis A549 Hela

1 14.6 ± 0.3 12.4 ± 0.3 25.7 ± 0.4 34.7 ± 0.6
2 28.1 ± 0.4 35.1 ± 0.6 46.6 ± 0.4 50.2 ± 0.5
3 9.2 ± 0.2 5.2 ± 0.2 0.6 ± 0.2 0.4 ± 0.2
5 8.1 ± 0.2 7.7 ± 0.2 0.9 ± 0.2 1.1 ± 0.3

erythromycin 7.6 ± 0.2 4.5 ± 0.2 NA NA
doxorubicin NA NA 0.1 ± 0.0 0.5 ± 0.1

Two cancer cell lines, HeLa and A549, were chosen to test the cytotoxicity, using doxorubicin as
the positive control. Again, 3 and 5 exhibited potent cytotoxic activity towards both cell lines (IC50

ranging from 0.4 to 1.1 µM), while 1 and 2 were inactive (IC50 ranging from 25 to 50 µM). Taken
together, 3 and 5 exhibited potent cytotoxicity and antibacterial activity.

3.3. Isolated New Natural Products Revealing New Insight into Flaviogeranin Biosynthesis

Even though the molecular architecture of these isolated naphthoquinone-containing compounds
is different, the common structural feature indicates that they may use the same early biosynthetic
intermediates and biosynthetic pathway. Formation of the aromatic backbone of naphthoquinone
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utilizes a common precursor which is synthesized by type III PKS [12,13]. To mine the genome for
the biosynthetic genes of these flaviogeranin congeners, we aimed at identifying type III PKS genes
that are essential for the biosynthesis of the THN skeleton and genes encoding prenyltransferases
in the adjacent region [22]. A ~48 kb candidate gene cluster has been found and sequence analysis
revealed type III PKS genes putatively involved in the construction of the naphthoquinone polyketide
core, associated with the biosynthesis and connection of the terpenoid units [22]. Putative regulators,
resistance genes, and genes with unknown function are involved in the cluster too.

THN formed by such type III PKS appears to be an intermediate in the biosynthetic pathways for
various naphthoquinone-containing secondary metabolites [27]. Type III PKS from Streptomyces sp.
B9173 showed 91% identity in amino acid sequence to the chalcone synthase (CHS)-like protein RppA
from Streptomyces griseus [12]. Sequence alignment of the type III PKS with its counterparts from the
gene cluster of naphthoquinone-containing compounds revealed the conserved catalytic triad residues
(Cys138, His270, and Asn303) (Figure S2). The terpenoid origin of the C10 moiety indicated that the
mevalonic acid (MVA) pathway genes in the cluster were responsible for the formation of isopentenyl
pyrophosphate and dimethylallyl pyrophosphate building blocks.

Based on the chemical structures of these flaviogeranin congeners isolated from Streptomyces sp.
B9173, we proposed a biosynthetic pathway, as shown in Figure 4. Type III PKS catalyzes naphthoquinone
ring formation: it selects malonyl-coenzyme A as the start unit, carries out four successive extensions
to form the pentaketide, releases the resulting nonreducing ketide, and cyclizes to form THN.
The symmetric intermediate THN was subsequently oxidized to form 2,5,7-trihydroxy-1,4-naphthoquinone
(flaviolin), which then modified to form various compounds through oxidation, methylation, and
prenylations to produce 3–7. Two putative prenyltrasnferases likely catalyze the prenylation at two
different positions: the prenylation at hydroxyl group on the C7 to generate flaviogeranin A (7) and the
prenylation at the C2 to give flaviogeranin D (3). Isolation of flaviogeranin C1 (4) and flaviogeranin C2 (5)
revealed the oxidation at the C8, followed by successive methylations. An aminotransferase introduced
an amino group on C8 to generate 8-amino-flaviolin (8-amino-2,5,7-trihydroxynaphthalene-1,4-dione)
and dedicated modification enzymes further tailored the scaffold to form flaviogeranin B1 (1) and
flaviogeranin B (2). The divergent pathway represents the formation of diverse architecturally
flaviogeranin family compounds via the common THN precursor.Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 12 
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4. Discussion

Marine microbial metabolites are a prevalent source of bioactive natural products and a
number of entities have been identified with promising therapeutic potential [1,28]. Taking natural
naphthoquinone meroterpenoids, for example, much research has been carried out to test differences
in their biological activity and elucidate their pharmacological profiles. In this work, we checked the
metabolite profiles of marine-derived Streptomyces sp. B9173 in MS medium, set up the large-scale
fermentation, and performed subsequent isolation. Chemical investigations into the fermentation
cultures led to the isolation of a group of naphthoquinone-containing compounds. Among them, 1–3 are
previously unreported naphthoquinone-containing derivatives, and others are biogenetically related
compounds including flaviogeranin A and substituted 5-hydroxy-1,4-naphthoquinones [10,25,26].

The carbon skeleton of naphthoquinone has been established from several metabolic pathways.
One is the direct incorporation of chorismate, derived from the shikimate pathway via formation of
1,4-dihydroxy-2-naphthoate intermediate [29] or through a futalosine intermediate [30]. The other
pathway is through a common THN intermediate which was formed by type III PKS catalyzing
Claisen and aldol condensation [12]. From the point view of the fundamental biosynthetic basis,
naphthoquinone-derived meroterpenoids share a common paradigm in which the THN is formed and
subsequently attached with a terpenoid moiety. THN is preceded by the biosynthesis of several hybrid
meroterpenoids (furaquinocin and napyradiomycin), and previous precursor incorporation studies
demonstrated the polyketide biosynthetic origin of THN. Additionally, it utilizes the mevalonate
pathway for the production of IPP for terpenoids [31]. As seen in flaviogeranin biosynthesis, core
enzymes including type III PKS and prenyltransferases contribute to the naphthoquinone-terpenoid
skeleton formation while tailoring enzymes such as methyltransferases, oxidases, etc., accounting
for the structural diversity. It is conceivable that hydroxylation at the C8 results in intermediate
flaviogeranin C1 (4) and flaviogeranin C2 (5). Isolation of 1 and 2 suggests that 8-amino-flaviolin serves
as a common precursor and an aminotransferase catalyzes the introduction of the amino group to the
C8 of naphthoquinone core. A similar aminotransferase was seen in the furaquinocin biosynthetic
pathway and 8-amino-flaviolin can be detected in the heterologous expression system consisting
of three contiguous genes (Type III PKS, monooxygenase, and aminotransferase) [15,23]. Since no
furaquinocin congeners with the C8 amino group have been reported until now, the isolation of the
amino group containing compounds 1 and 2 in our work confirmed the “cryptic transamination” and
indicated an independent biosynthetic pathway through the precursor 8-amino-flaviolin.

The common and differentiating features of these flaviogeranin compounds are related to their
bioactivities. The biological activities of four flaviogeranins (1–3 and 5) were tested for antibacterial
activity and cytotoxicity. Both 3 and 5 show potent activity while 1 and 2, with the amino group at the
C8, exhibit weaker activity. The true function of transamination at the C8 of naphthoquinone remains
unclear. It is suggested that such modification may confer self-protection for the producers or facilitate
the catalytic efficiency of specific enzymes during biosynthesis.

The remarkable structural variations observed among flaviogeranin congeners derive from the
catalytic activities of diverse enzymes for structural decoration. Multiple modification enzymes
function on the common intermediate THN to generate diverse flaviogeranin congeners. The isolated
flaviogeranin congeners and intermediates further unveil the biosynthetic steps and new modification
enzymes for flaviogeranin family synthesis. Meanwhile, the identified new flaviogeranin congeners
with antibacterial activity and cytotoxicity may start to approach the development of lead compounds.

5. Conclusions

In summary, we have achieved the isolation of seven flaviogeranin congeners, including three new
compounds, from marine-derived Streptomyces sp. B9173, based on the modified fermentation condition
and the chemical profiling. Their structures were elucidated by using spectroscopic technologies,
and two compounds were found to contain an amino group on the THN moiety, which is very rare
in the flaviogeranin family. Identification of these two amino group-containing compounds (1 and
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2) confirmed the cryptic transamination in the flaviogeranin biosynthetic pathway and provided
the opportunity to investigate the incorporation of the amino group into the naphthoquinone ring.
Antibacterial and cytotoxicity assays showed that 3 and 5 potently inhibit selected bacteria and cancer
lines, respectively. The data also show a correlation between bioactivity and chemical structure. These
isolated compounds broaden the understanding of the biosynthetic pathway and enzymatic reaction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/8/1187/s1,
Figure S1: HPLC profile of Streptomyces sp. B9173 metabolites in MS media, Figure S2: Sequence alignment
of the type III PKS from gene clusters of naphthoquinone-containing compounds, Figure S3: NMR spectra of
flaviogeranin B1 (1), Figure S4: NMR spectra of flaviogeranin B (2), Figure S5: NMR spectra of flaviogeranin D
(3), Figure S6: 1H NMR spectrum of flaviogeranin C1 (4), Figure S7. 1H NMR spectrum of flaviogeranin C2 (5),
Figure S8. 1H NMR spectrum of flaviogeranin A1 (6), Figure S9. 1H NMR spectrum of flaviogeranin A (7); Figure
S10. CD spectrum of flaviogeranin D; Table S1. HR-ESI MS of known compounds 4-7.
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