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Abstract

The extinct Tasmanian tiger or thylacine (Thylacinus cynocephalus) was a large marsupial carnivore native to Australia. Once
ranging across parts of the mainland, the species remained only on the island of Tasmania by the time of European colon-
ization. It was driven to extinction in the early 20th century and is an emblem of native species loss in Australia. The thylacine
was a striking example of convergent evolution with placental canids, with which it shared a similar skull morphology.
Consequently, it has been the subject of extensive study. While the original thylacine assemblies published in 2018 enabled
the first exploration of the species’ genome biology, further progress is hindered by the lack of high-quality genomic re-
sources. Here, we present a new chromosome-scale hybrid genome assembly for the thylacine, which compares favorably
with many recent de novo marsupial genomes. In addition, we provide homology-based gene annotations, characterize
the repeat content of the thylacine genome, and show that consistent with demographic decline, the species possessed a
low rate of heterozygosity even compared to extant, threatened marsupials.
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Significance
The lack of high-quality genomes for extinct species inhibits research into their biology. Moreover, marsupials are under-
represented among sequenced genomes. Here, we present a new, chromosome-scale thylacine genome. This high-
quality assembly is a valuable new resource for studies on marsupial carnivores.

Introduction
The Tasmanian tiger or thylacine (Thylacinus cynocephalus;
fig. 1a) was the largest marsupial predator of the Holocene
(Mitchell et al. 2014; Prowse et al. 2014). While it once in-
habited mainland Australia, by the arrival of European colo-
nists it was restricted to the island of Tasmania (Paddle
2000; Lambeck and Chappell 2001). The thylacine was
considered an agricultural pest and was targeted by an ex-
termination campaign, incentivized by a £1 bounty (fig.
1b). The last known individual died in 1936 and the species
was declared extinct in 1986 (Paddle 2000). The thylacine

was captured in multiple photographs and short films, con-
tributing to its status as an emblem of Australia’s high ex-
tinction rate among native species (Woinarski et al. 2015;
Sleightholme and Campbell 2018).

The relative abundance of thylacine specimens in mu-
seums has facilitated the extensive study of its morphology,
ecology, and evolution (Wroe et al. 2007; Newton et al.
2018; White et al. 2018; Rovinsky et al. 2021). Recently,
it has also become a focal species for genomic research,
with the first genome assemblies being published in
2018, using DNA from a .100-year-old ethanol-preserved
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pouch young specimen (fig. 1c; Feigin et al. 2018). These
assemblies were used to explore the molecular basis of thy-
lacine–canid craniofacial convergence, confirm its phylo-
genetic relationships, and infer its demographic history
(Feigin et al. 2018). Subsequent studies examined enhancer
evolution and characterized the thylacine’s immune gene
complement (Feigin et al. 2019; Peel et al. 2021).
However, the contiguity of the original assemblies was lim-
ited by the fragmentary nature of historical DNA and the
absence of high-quality assemblies from related species
suitable for reference-guided scaffolding (Feigin et al.
2018). This presents a substantial challenge for continued
research into the thylacine’s genome biology (Garrett
Vieira et al. 2020; Peel et al. 2021).

The thylacine (family Thylacinidae) represents the
closest sister lineage to the families Dasyuridae and
Myrmecobiidae (Miller et al. 2009; Mitchell et al. 2014;
Feigin et al. 2018). These groups contain numerous species
of significant interest to the fields of evolutionary, develop-
mental, and conservation biology, such as the Tasmanian
devil, quolls, dunnarts, and the numbat (Fancourt 2016;
Spencer et al. 2020; Wright et al. 2020; Cook et al. 2021;

Stahlke et al. 2021). Moreover, the thylacine’s exceptional
craniofacial similarities with canids, despite their �160 Myr
divergence, make the species an excellent model system to
study the genomic basis of morphological evolution
(Bininda-Emonds et al. 2007; Feigin et al. 2018; Newton
et al. 2021; Rovinsky et al. 2021). Improved genomic re-
sources for this species are thus of considerable value to
the broader genomics community. Here, we leveraged im-
provements in short read assembly tools and newly-available
marsupial reference genomes to produce a chromosome-
scale hybrid genome assembly for the thylacine.

Results and Discussion

Genome Assembly and Assessment

The new thylacine assembly is composed of seven large
scaffolds, corresponding to each of the six dasyuromorph
autosomes and the X chromosome (supplementary table
S1, Supplementary Material online), together comprising
�93.25% of the sequence content (Deakin 2018). The
gap-free assembly size is �3.04 Gbp and G+C content is

FIG. 1.——(a) Adult thylacines in captivity. The thylacine was noted for its canid-like morphology. (b) A wild thylacine killed by a hunter. A bounty on
thylacines contributed to their extinction. (c) Thylacine pouch young specimen C5757 (Melbourne Museum; Victoria, Australia) provided DNA used for gen-
ome sequencing. (d) Assembly metrics for the improved thylacine genome. (e) Comparison of the BUSCO gene recovery from the thylacine genome and
several recently-released marsupial assemblies. Asterisk indicates assemblies incorporating long reads.
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36.26%, comparable to that of the Tasmanian devil (fig. 1d
and supplementary table S2, Supplementary Material on-
line). Scaffold N50 and N90 are high (629 Mbp and
479 Mbp, respectively), reflecting the large size of dasyuro-
morph autosomes (Deakin 2018). Contig N50 was 5-fold
higher than that of the original de novo draft assembly,
and similar to that of several other recent marsupial assem-
blies (supplementary table S2, Supplementary Material on-
line). A tail of small scaffolds comprising �203.5 Mbp
remained unplaced, contributing to a relatively high gap
percentage (�10%; fig. 1d). Nonetheless, the new assem-
bly represents a dramatic improvement in contiguity.

To evaluate the completeness and integrity of the assem-
bly, BUSCO was used to annotate benchmarking mamma-
lian orthologs. This identified 82.3% of BUSCO genes as
complete and single-copy, with little duplication (0.9%).
Another 4.1% were found as partial copies (fig. 1e). This
is a drastic increase over the original thylacine de novo as-
sembly, from which BUSCO recovery was negligible
(,10%), owing to low contiguity (supplementary table
S3, Supplementary Material online). While BUSCO gene re-
covery compares well with several other recently released
marsupial assemblies, particularly those built from short
read-based contigs scaffolded with Hi–C, it lags somewhat
behind a small number of assemblies built using long reads
and Hi–C (fig. 1e, supplementary table S4, Supplementary
Material online). Unfortunately, the century-long room-
temperature preservation of all existing thylacine tissue
samples, and corresponding DNA fragmentation, limits
the potential for long-read sequencing to be applied pro-
ductively in this species.

Repeat Classification and Genome Annotation

Repetitive regions in the thylacine genome were annotated
with RepeatMasker, using a custom database of species-
specific and curated marsupial repeats (fig. 2a; Ellinghaus
et al. 2008; Tarailo-Graovac and Chen 2009; Hubley et al.
2016; Flynn et al. 2020). Interspersed repeats constituted
�56% of the assembly (supplementary table S5,
Supplementary Material online). Consistent with the highly
conserved genome organization of dasyuromorphs, the
thylacine had similar overall repeat composition to its living
relatives (Tian et al. 2022). The dominant repeat class was
LINE elements (�36.5%), occurring at a frequency compar-
able to that of the Tasmanian devil (�39%), though some-
what lower than that of the brown antechinus (�45%)
(Tian et al. 2022). Interestingly, we observed that long ter-
minal repeats were sparse in the thylacine genome
(�1.51%) compared to previously studied marsupial
species (which ranged from 6.53% to 18.89%;
supplementary table S5, Supplementary Material online)
(Tian et al. 2022).

To provide gene annotations for the new thylacine as-
sembly, we identified orthologs to Tasmanian devil genes
using a homology-based annotation liftover procedure
(see Materials and Methods). Ortholog recovery was high,
with �96% of gene models being successfully transferred
to the thylacine genome, comparable to or exceeding
that of other dasyuromorphs (supplementary table S6,
Supplementary Material online). Interestingly, we observed
disparities in the detection of different short RNA classes. In
particular, micro-RNAs (miRNAs) showed nearly complete
recovery from the thylacine genome (�98%), compared
with �71% of small nucleolar RNAs and just �37% of
small nuclear RNAs (snoRNAs and snRNAs, respectively;
supplementary table S6, Supplementary Material online).
A similar pattern was observed among other dasyuro-
morphs, which showed lower snoRNA and snRNA recovery
(particularly in species more distantly related to the
Tasmanian devil), while generally retaining high miRNA re-
covery (supplementary table S6, Supplementary Material
online). Taken together, this suggests that while many
miRNAs are ancestral to Dasyuromorphia (hence having
orthologs across species) and have remained conserved
over time, the evolution of snRNAs and snoRNAs in this lin-
eage has potentially been more dynamic, with accelerated
sequence divergence and/or more rapid turnover of individ-
ual elements among species.

Genetic Diversity

We next sought to gain insights into the thylacine’s genetic
diversity prior to its extinction. Previously, multiple sequen-
tially Markovian coalescent analysis was used to infer the
demographic history of the thylacine. This uncovered evi-
dence of an extended period of genetic decline predating
the arrival of humans in Australia and the thylacine’s isola-
tion in Tasmania (Schiffels and Durbin 2014; Feigin et al.
2018). A decrease in genetic diversity concomitant with
such demographic decline may have left the thylacine vul-
nerable to inbreeding depression, reducing its fitness
against the backdrop of pressures imposed by humans.
To further explore this possibility, heterozygosity was calcu-
lated in nonrepetitive regions of the thylacine genome and
compared to that of extant marsupials with varying conser-
vation statuses. Consistent with reduced genetic diversity
preceding its extinction, the thylacine had the lowest rate
of heterozygosity among the marsupials examined, includ-
ing vulnerable or endangered species (fig. 2b and
supplementary table S7, Supplementary Material online).

Conclusions
The quality of the first draft thylacine assemblies limited
their utility in genomic research. Gene recovery was severe-
ly impaired by low contiguity, and repetitive regions were
not adequately represented (Feigin et al. 2018). By contrast,
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our new thylacine genome has a�5-fold larger contig N50,
comparable to that of many recent marsupial assemblies.
Moreover, we have produced chromosome-scale scaffolds
that enable the recovery of numerous genetic elements
with orthologs in related species. This assembly has also
permitted the first examination of the repeat composition
and heterozygosity of the thylacine genome. Future whole-
genome resequencing studies, empowered by this assem-
bly, have the potential to provide population-level insights
into the thylacine’s demography and level of genetic load
prior to its extinction.

Materials and Methods

Genome Assembly

Thylacine reads were accessed from NCBI Sequence Read
Archive (supplementary table S8, Supplementary Material
online). These data originated from individual C5757,
which we previously used to produce the original
contig-level de novo assembly and a read-mapping-based,
reference-guided assembly of non-repetitive regions (Feigin
et al. 2018). Two libraries were generated using the
Illumina TruSeq Nano Kit, with insert sizes of 350 and
550 bp. Both libraries were sequenced in two runs: 2×
100 bp on an Illumina HiSeq 2000 and 2× 150 bp on an
Illumina NextSeq 5500. Quality filtering and residual adap-
tor trimming were performed using Trimmomatic v0.32
with parameters: ILLUMINACLIP:2:30:10, LEADING:3
TRAILING:3 SLIDINGWINDOW:4:20 AVGQUAL20 (Feigin
et al. 2018).

Denovo contigswere assembledusingMEGAHIT v1.2.9 (Li
et al. 2015) with multiple k-mer lengths (kmers= 21, 29, 39,
59, 79, 99, 119, 141). Purging of redundant haplotypes and
short read scaffolding were performed using Redundans
v0.14a (parameters: identity= 0.8, overlap= 0.8,
minLength= 200 bp, joins= 5, limit= 1.0, iterations= 2)

(Pryszcz and Gabaldón 2016). Purging removed
�178.5 Mbp of sequence.

Dasyuromorphs possess an exceptionally conserved kar-
yotype (2n= 14), with nearly identical chromosome sizes
and g-banding patterns (Rofe and Hayman 1985; Deakin
2018). Moreover, sequence mappability between thylacine
and the Tasmanian devil is high (Feigin et al. 2018).
Therefore, chromosome-scale thylacine scaffolds were pro-
duced by ordering thylacine de novo scaffolds and inferring
gap sizes through alignment against the recently available
Tasmanian devil reference genome (GCF_902635505.
1/mSarHar1.11; O’Leary et al. 2016) using RagTag v2.1.0
(RagTag parameters: scaffold, -f 200, -r, -g 100 -m
10,000,000; minimap2 v2.22-r1101 parameters: -x asm
10) (Li 2018; Alonge et al. 2019; Alonge et al. 2021).

Genome Annotation

Repeat elements were annotated using RepeatMasker
v4.1.2 (Tarailo-Graovac and Chen 2009; Flynn et al.
2020). Custom thylacine repeat libraries were produced
with RepeatModeler v2.0.2a and LTRharvest v1.6.2, and
were combined with marsupial repeats contained with
the Dfam3.2 database (Ellinghaus et al. 2008; Hubley
et al. 2016; Flynn et al. 2020). RepeatMasker was then
run on each chromosome using this library
(supplementary table S5, Supplementary Material online).
The repeat landscape of the thylacine genome was
visualized using the calcDivergenceFromAlign.pl and
createRepeatLandscape.pl scripts provided with
RepeatMasker. This displays the genome percentage of
each repeat subclass, organized by CpG-adjusted kimura
substitution level (a distance-based proxy for repeat copy
age) (Kimura 1980; Flynn et al. 2020).

Given the thylacine’s extinction, RNA cannot be recov-
ered. However, annotations are essential for many genomic
analyses. We, therefore, employed a homology-based

FIG. 2.——(a) Interspersed repeat landscape of the thylacine genome. The percentage of total genome size and sequence divergence (based on
CpG-adjusted Kimura substitution level) are shown for each repeat subclass. (b) Comparison of the per-base rate of heterozygosity in the thylacine and several
extant marsupials. The thylacine showed the lowest heterozygosity of examined marsupial species.
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approach implemented in the program liftoff v1.6.1 to pre-
dict thylacine orthologs of Tasmanian devil genes (Shumate
and Salzberg 2021). Exons from the Tasmanian devil
RefSeq annotation were mapped to the thylacine genome
assembly with minimap2 (O’Leary et al. 2016; Li 2018).
Thylacine gene models were then produced by linking
mapped exons of a common parent feature, retaining
only those which preserved the structure of their corre-
sponding Tasmanian devil reference annotation (allowing
a distance factor of 4X; parameter -d 4, supplementary
table S6, Supplementary Material online).

Assembly Evaluation and Comparisons

Assembly completeness and integrity were assessed using
Benchmarking Universal Single-Copy Orthologs annotated
by BUSCO (v5.2.2) with the mammalian_odb10 ortholog
database. These results were compared with several recent
de novo marsupial genome assemblies (fig. 1e and
supplementary tables S3 and S4, Supplementary Material
online) (Dudchenko et al. 2017; Johnson et al. 2018;
Seppey et al. 2019; Brandies et al. 2020; Peel et al. 2022;
Tian et al. 2022). Comparison genomes were chosen to re-
present a variety of marsupial lineages and assembly ap-
proaches released within the past 4 years. Genome
assembly metrics (fig. 1d, supplementary table S2,
Supplementary Material online) were calculated using the
stats.sh script in the BBmap package (v37.93) (Bushnell
2014).

HeterozygosityTo calculate heterozygosity across spe-
cies, short reads were aligned to each genome assembly
with bwa-mem2 (-M flag; supplementary table S4,
Supplementary Material online) (Vasimuddin et al. 2019).
Samtools v1.11 was used to filter alignments (view -F
3340 -f 3) and remove duplicates (fixmate -m, markdup -r
-S) (Li et al. 2009). Pileups and variant filtering were per-
formed using bcftools v1.11 mpileup (-q 20 -Q 20 -C 50)
call (-m) and view (QUAL. 20, && DP.N && DP,M,
where N and M represented 0.5× and 2× the average
alignment coverage post-filtering) (Danecek et al. 2021).
Variants within repeats were identified with Red v2.0 and
excluded using bedtools v2.27.1, due to the low accuracy
of reading mapping within such regions (Quinlan and Hall
2010; Girgis 2015). This approach was applied to all gen-
omes for this analysis rather than RepeatMasker alone, as
Red has similar masking sensitivity to RepeatMasker with
orders-of-magnitude lower computational overhead
(Girgis 2015). Per-base heterozygosity was taken as the
quotient of heterozygous positions and total callable gen-
omic positions (fig. 2b).

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.
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