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Background: Pancreatic ductal adenocarcinoma (PDAC) is most aggressive among all gastrointestinal tumors.
The complex intra-tumor heterogeneity and special tumor microenvironment in PDAC bring great challenges
for developing effective treatment strategies. We aimed to delineate dynamic changes of tumor microenvi-
ronment components during PDAC malignant progression utilizing single-cell RNA sequencing.
Methods: A total of 11 samples (4 PDAC I, 4 PDAC II, 3 PDAC III) were used to construct expression matrix.
After identifying distinct cell clusters, subcluster analysis for each cluster was performed. New cancer associ-
ated fibroblasts (CAFs) subset was validated by weighted gene co-expression network analysis, RNA in situ
hybridization and immunofluorescence.
Findings: We found that ductal cells were not dominant component while tumor infiltrating immune cells
and pancreatic stellate cells gradually accumulated during tumor development. We defined several new Treg
and exhausted T cell signature genes, including DUSP4, FANK1 and LAIR2. The analysis of TCGA datasets
showed that patients with high expression of DUSP4 had significantly worse prognosis. In addition, we iden-
tified a new CAFs subset (complement-secreting CAFs, csCAFs), which specifically expresses complement sys-
tem components, and constructed csCAFs-related module by weighted gene co-expression network analysis.
The csCAFs were located in the tissue stroma adjacent to malignant ductal cells only in early PDAC.
Interpretation: We systematically explored PDAC heterogeneity and identified csCAFs as a new CAFs subset
special to PDAC, which may be valuable for understanding the crosstalk inside tumor.
Funding: This study was supported by The Natural Science Foundation of China (NO.81572339, 81672353,
81871954) and the Youth Clinical Research Project of Peking University First Hospital (2018CR28).

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Pancreatic cancer
scRNA-seq
Tumor microenvironment
Cancer associated fibroblasts
Intra-tumor heterogeneity
yangyinmosci@163.com

pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Introduction

Pancreatic ductal adenocarcinoma (PDAC) has the highest mortal-
ity among all gastrointestinal tumors. Based on annual cancer statisti-
cal reports, there has been only a slight improvement in the
prognosis of PDAC with a 5-year survival rate of 8-9% recently [1].
This plight is mainly attributed to the lack of reliable markers for
early diagnosis, low surgical resection rate and chemoradiotherapy
resistance of PDAC, and only 15�20% patients with pancreatic cancer
are eligible for radical excision, which is the only potential curative
therapy [2,3]. The majority of PDAC patients have major vascular
invasion and distant metastasis at the time of diagnosis. Even after
curative resection, most of patients still suffer from local recurrence
or systematic metastasis within a short time, with a 5-year survival
rate of only 20-30% [4]. Despite recent paradigm shifting from the
traditional "surgery first" approach to the modern "multi-disciplin-
ary" that improved the short-term prognosis of PDAC patients, the
multi-disciplinary approach did not contribute enough for their long-
term survival [5]. Therefore, it is imperative to further explore patho-
logical features of PDAC to develop effective treatment strategies.

Recently, single cell RNA-sequencing (scRNA-seq) made it increas-
ingly possible to unveil the complex heterogeneity in PDAC microen-
vironment with unprecedented resolution [6�9]. The scRNA-seq can
be used to determine new cell types and their marker genes based on
the availability of genome-wide expression data, indicate the devel-
opmental trajectories of specific cells by pseudotime analysis (Mono-
cle2) [10], and identify gene-gene co-regulated network [11�13]. For
example, scRNA-seq revealed plenty of distinct immune cell subsets
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Research in context

Evidence before this study

A growing body of studies revealed the extensive intra-tumor
heterogeneity in breast cancer, liver cancer, lung cancer and
pancreatic cancer using bulk-seq. However, little is known
about dynamic changes of tumor microenvironment during
PDAC malignant progression using single cell sequencing
(scRNA-seq). CAFs play a pivotal role in facilitating tumor sur-
vival and migration, while many therapeutic strategies to
deplete fibroblasts failed. It is imperative to further understand
the role of CAFs.

Added value of this study

We systematically explored the dynamic changes of tumor
microenvironment from early PDAC to late PDAC using scRNA-
seq analysis, and identified a new cancer-associated fibroblasts
(CAFs) subpopulation, named as csCAFs. Weighted gene co-
expression network (WGCNA) was applied to verify their iden-
tification and biological function. More importantly, we also
confirmed the existence of the new CAF subset and analyzed
their location in human pancreatic cancer tissue.

Implications of all the available evidence

Together, our study may provide a valuable clue to understand
the CAF heterogeneity and help develop new anti-CAF drugs
for improving the prognosis of PDAC patients.
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with different state in breast tumor microenvironment, which pro-
vided new insight that different immune cell subsets play a different
role in promoting and opposing tumor progression [14]. In fact, PDAC
is characterized by complex immune microenvironment comprised
of multiple types of inflammatory cells, such as macrophage, T cell
and B cell. Many studies have demonstrated that the regulatory T
cells (Tregs), regulatory B cells (Bregs) and tumor associated macro-
phage (TAMs) in PDAC play a vital role in tumorigenesis and tumor
progression, which are potential therapeutic targets [15�19]. More-
over, there are dense stroma consisted of proliferating cancer associ-
ated fibroblasts (CAFs) and abundant extracellular matrixes in PDAC.
This natural barrier impedes drugs delivery and compresses the space
of blood vessels, creating a pro-tumor milieu [20�22]. However, the
depletion of aSMA (+) myofibroblasts could reduce desmoplasia but
enhance hypoxia, epithelial-to-mesenchymal transition (EMT), and
shorten animal survival [23]. Some clinical trials and in vivo studies
demonstrated that the inhibition of Hh pathway could not improve
the prognosis of PDAC but even accelerate disease progression
[24�26]. Therefore, it is necessary to further understand the hetero-
geneity and biological function of CAFs.

In this study we applied single cell RNA-sequencing approach to
systematically explore dynamic changes of tumor microenvironment
during PDAC malignant progression. A total of 11 samples (4 PDAC I,
4 PDAC II, 3 PDAC III referring to patients with stage I, II and III PDAC
respectively) were used to construct expression matrix for subse-
quent analysis. We found that the proportion of ductal cell, immune
cell, CAF and their gene expression profile had significant changes
from early PDAC to late PDAC. Interestingly, we identified few Tregs,
TAMs/M2 with unique signature genes and compared biological pro-
cess and molecular function in PDAC with different clinical stages by
GO and KEGG analysis. Next we identified three distinct subtypes of
CAFs in PDAC� cCAFs (classical CAFs), csCAFs (complement-secreting
CAFs) and PSCs (pancreatic stellate cells), and we performed
weighted gene co-expression network analysis (WGCNA) to confirm
the identification of complement-secreting CAFs (csCAFs) in PDAC
microenvironment. The csCAF related brown module genes were sig-
nificantly enriched for the components of complement system.
Finally, we analyzed the location of csCAFs in human PDAC tissue by
immunofluorescence (IF) and RNA in situ hybridization (RNA ISH).

Methods

Human PDAC Samples for scRNA Sequencing, RNA ISH, IF and RT-qPCR

The raw expression matrix for single-cell transcriptome analysis
was from GSA (Genome Sequence Archive) database (GSA: https://
bigd.big.ac.cn/gsa), under accession number CRA001160 [27].
According to the article, all patient samples were obtained from
Department of General Surgery of Peking Union Medical College Hos-
pital (PUMCH). In addition, the clinical characteristics of PDAC
patients profiled by scRNA-seq were listed (Supplementary Table S1).

A total of 21 postoperative PDAC specimens for RNA ISH and IF
(3 PDACI, 3 PDACII, 3 PDACIII) and RT-qPCR (4 PDACI, 4 PDACII,
4 PDACIII) were retrieved from the department of general surgery of
Peking University First Hospital in china. The clinical characteristics
of 9 patients for RNA ISH and IF are shown in Table S1.

This study was approved by Ethics Committee of Peking Univer-
sity First Hospital (Approval No. 2019-147) and conducted in accor-
dance with ethical guidelines (Declaration of Helsinki). Written
informed consent was obtained from all participants.

Single cell RNA-seq data Quality Control and Analysis

Gene-cell matrixes were filtered to remove cells
(<200 transcripts/cell, >10% mitochondria genes) and genes (<10
cells/gene). Then the matrix was imported into the R package Seurat
(v 3.1.2) for subsequent analysis [28]. The gene expression levels
were normalized so that the number of unique molecular identifiers
in each cell (UMI/cell) is equal to the median UMI and then natural-
log transformed. Total 2000 highly variable genes were generated for
performing PCA reduction dimension. Significant principle compo-
nents were determined using Jackstraw. Finally, single cell clustering
was visualized by t-SNE (t-Distributed Stochastic Neighbour Embed-
ding) utilizing previous computed principle components 1 to 10.

Gene Ontology and KEGG analysis and PPI network

The package (clusterProfiler) was applied to analyze and visualize
functional profiles (GO and KEGG) of gene clusters [29]. We selected
0.05 as the cutoff of p value and q value. The protein-protein interac-
tion network construction in ductal cell subcluster analysis were con-
ducted through STRING online tool (STRING: https://string-db.org).
All functions were run using default parameters.

TCGA and HPA database Analysis

The differential analysis, survival analysis and correlation analysis
were performed with GEPIA (Gene Express Profiling Interactive Anal-
ysis) online tool, using a standard professing pipeline [30]. These data
were from the prevalent TCGA and GTEx PDAC samples. In addition,
we also detected the expression level of COL12A1, SDC1 and CTHR1
in normal pancreas tissue and pancreatic cancer tissue by IHC from
HPA database (The Human Protein Atlas; HPA: https://www.protei
natlas.org) [31].

Pseudotime Analysis

R package (Monocle 2) was applied to conduct cellular trajectory
analysis with the assumption that one-dimensional ‘time’ can
describe the high-dimensional expression values, so called pseudo-
time analysis of single cells. The clusters identified as T cell and
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fibroblast cell were loaded into R environment. And we presented
cell trajectory and position with tree structure in two-dimension
space after log normalization and DDDTree reduction dimension.
Then we set the pattern of each cell in the plot according to specific
markers expression level.

Weighted Gene Co-expression Network Analysis

We randomly picked out 30�50 cells from cCAFs, csCAFs and PSCs
respectively to construct gene expression matrix for WGCNA analy-
sis. A signed network was constructed using any genes that was
expressed at UMI value of 1 or higher at least 5 samples. After con-
structing the adjacency matrix and selecting appropriate soft-power
(b = 3), we calculated the topological overlaps matrix (TOM). Genes
with high similar co-expression relationship were grouped together
using average linkage hierarchical clustering upon TOM. Through
Dynamic Tree Cut algorithm, we completed the construction of gene
network and identification of modules. Next we proved brown mod-
ule was significantly associated with csCAFs subpopulation by scatter
plot of Gene Significance (GS) vs Module Membership (MM) and
eigengene adjacency heatmap. Finally, the hub genes representing
csCAFs in brown module were exported to perform GO and KEGG
analysis and visualization by Cytoscape software (v 3.6.0).

Real-time PCR Assay

Total RNA was extracted from human PDAC tissue and adjacent
normal tissue by TRIzol reagent (Invitrogen, USA). First-strand cDNAs
were synthesized from the 2 ug total RNA with ReverTra Ace� qPCR
RT kit (TOYOBO, Japan) according to the manufacturer’s instructions.
And the quantitative real-time polymerase chain reaction (RT-qPCR)
was conducted using SYBR Green Realtime PCR Master Mix (TOYOBO,
Japan). Each sample was tested in triplicate wells in triplicate experi-
ments. The relative expression level of C3 and C7 were normalized by
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and calculated
by the 2- DDCt method. The following primers were used: C3 (Forward
primer: CGGATCTTCACCGTCAACCA, Reverse primer:
GATGCCTTCCGGGTTCTCAA), C7 (Forward primer:
CCTCTTTGCTGGGCAGATCA, Reverse primer: AAGCCGGGCACA-
TAAATGGA), GAPDH (Forward primer: GTATTGGGCGCCTGGTCACC,
Reverse primer: CGCTCCTGGAAGATGGTGATGG).

RNA in Situ Hybridization and Immunofluorescence Assay

RNA ISH was performed on freshly prepared 4% paraformalde-
hyde (DEPC water) fixed paraffin-embedded tissue sections. Sections
were treated by protase K (20 ug/ml) for 8 min at 37°C, then washed
three times in PBS. Each section was added hybridization buffer and
incubated at 37°C for 1 h, then sections were incubated with probe
against C3 (TTACCAGGGTCCTCCCAGCGGTTCTTATCT) and COL1A1
(CGCAGGTGATTGGTGGGATGTCTTCGTCT) overnight. After washing,
sections were stained with DAPI (Servicebio, China) for 8 min in the
dark and mounted.

IF was also performed on freshly prepared 4% paraformaldehyde
fixed paraffin-embedded tissue sections. Deparaffinization and anti-
gen retrieval were conducted according to the IF protocol. The 3%
H2O2 was used to block endogenous peroxidase at room tempera-
ture for 25 min, then sections were blocked with 3% BSA at tempera-
ture for 30 min. After removing blocking solution, sections were
incubated with primary antibodies for C3 (Abcam, 1:100 dilution)
and COL1A1 (Servicebio, 1:200 dilution) overnight at 4°C, and
washed with PBS, then stained with TSA-FITC (Servicebio, China) and
TSA-CY3 (Servicebio, China) secondary antibodies for 1 h at room
temperature. DAPI was used as counterstain.

RNA ISH and IF imaging of fixed tissue were conducted with Nikon
Eclipse CI and Nikon DS-U3. All sections were scanned and then
analyzed by CaseViewer 2.0 software. A total of 5 pictures for each
section were obtained randomly to calculate the relative number of
csCAFs in PDAC tissue with different stages.

Statistical Analysis

All data were presented as mean values and standard deviation
(SD). Comparison of three group for PDAC with different stages was
performed by one-way ANOVA in RNA ISH, IF and Real-time qPCR
assay. Spearman's rank correlation was used to analyze the relation-
ship between IL2RA and Treg/Exhausted T cells signature genes. The
Kaplan-Meier method and the corresponding log-rank test were per-
formed to identify the prognostic value of marker genes. All statistical
analyses were conducted using SPSS version 22.0 software (SPSS, Chi-
cago, IL, USA). Statistical significance was defined as *p < 0.05,
**p < 0.01, ***p < 0.001.

Role of Funders

The funders had no role in study design, data collection, data anal-
yses, interpretation, or writing of report.

Results

Single-cell analysis uncovers cellular component and evolution during
PDAC progression

To comprehensively analyze dynamic changes in tumor microen-
vironment during PDAC malignant progression, 18555 cells from
PDAC with different clinical stages were sequenced by single-cell
RNA-seq approach (Fig. 1A and Supplementary Table S1 and 2). We
performed gene filtering, normalization, principle component analy-
sis, and finally identified 9 distinct clusters, including ductal cell,
macrophage, B Cell, endothelial cell, stellate cell, T cell, fibroblast, aci-
nar and endocrine cell (Fig. 1 B-D and Supplementary Fig.S1A-D). Sig-
nature genes for each cluster were in accordance with well-known
cell markers recorded in the literature (Fig. 1 E-G and Supplementary
Fig.S1E and Table S3).

Then we counted each cluster in three groups, which represented
the samples with different clinical stages, and found that the majority
of cells in PDAC I were ductal cells (44.88%), and identified only a
small number of immune cells (17.06%). Interestingly, the number of
ductal cells gradually decreased with tumor stage progression
(44.88%-36.04%�18.95%) (Fig. 1 H and Supplementary Table S4),
while the proportion of immune cells, including T cell, B cell and mac-
rophage, increased gradually (17.06%-36.15%�43.14%) (Fig. 1 I). It
suggested that ductal cell would not be the major component in
tumor microenvironment when the tumor developed toward higher
malignancy, immune cells migrated and accumulated in tumor,
reflecting human immune system’s response for tumor lesion. In
addition, the amount of cancer-associated fibroblasts (CAFs) con-
sisted of fibroblasts and stellate cells decreased gradually (23.49%�
17.09%�15.12%), but the stellate cells evolved into predominant pop-
ulation in PDAC III, which could account for abundant extracellular
matrix in advanced PDAC (Fig. 1 J).

Ductal cell heterogeneity during PDAC progression

To reveal changes of ductal cells during PDAC malignant progres-
sion, we conducted the subcluster analysis for ductal cells. A total of
5800 ductal cells were analyzed, which were divided into different
clusters with unique gene signatures upon t-SNE analysis (Fig. 2 A
and C). Furthermore, t-SNE plot indicated that ductal cells from dif-
ferent tumor stage formed the markedly different clusters (Fig. 2B),
suggesting gradual changes in gene expression pattern of ductal cells
during PDAC malignant progression. Common ductal cell markers



Fig. 1. scRNA-seq delineats the dynamic changes of tumor microenvironment components during PDAC progression. (a) Workflow described by flow diagram. PDAC samples with
different clinical stages were dissociated into single cells, all cells were subjective to capture, library preparation, RNA-seq using 10 £ Genomics platform, then the QC, normaliza-
tion, PCA and subsequent bioinformatics analysis were conducted. (b-d) The t-distributed stochastic neighbor embedding (t-SNE) plot showing clustering information in PDACI, II,
III respectively. (e-g) Violin plots demonstrating the identity of each cluster through analyzing the expression of well-known cell type specific markers. (h) The proportion of cells
changing from PDAC I, II to PDAC III. (i) The proportion of immune cells (T cell, B cell and macrophage) gradually increased from PDAC I, II to PDAC III. (j) The bar chart showing the
proportion of pancreatic stellate cells (PSCs) in all cancer associated fibroblasts (CAFs) in PDAC I, II, III separately.
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such as SOX9 and epithelial cell marker EPCAM were expressed in all
ductal cell subpopulations, confirming ductal cell identity (Supple-
mentary Fig.S2A).
We then compared ductal cells from PDAC II with those from
PDAC I, and detected 502 upregulated and 259 downregulated genes
(Fig. 2 D), and 144/502 of the upregulated genes were also



Fig. 2. Late PDAC is characterized by Epithelial-Mesenchymal Transition (EMT) and Cancer Stem cell (CSC) properties. (a-b) The t-SNE plots showing ductal cell subpopulations in
subcluster analysis, according to clustering distribution in the a, sample source in the b. (c) Heatmap presenting the marker genes expression levels among ductal cell subpopulation.
(d) Volcano plot showing the differential expression genes (DEGs) of ductal cells between PDAC I and II, red and blue dots represented the genes upregulated and downregulated
respectively (PDAC II vs PDAC I). The names of top 10 up/downregulated genes were marked. (e) Venn diagram indicating the intersection between upregulated genes (PDAC II vs I)
and those (PDAC III vs I). (f-g) Gene ontology analysis showing molecular function terms for genes upregulated in PDAC II and III in the f, in PDAC I in the g. (h) Violin plot demon-
strating late PDAC had significantly higher expression levels of mesenchymal and cancer stem cell markers, and EPCAM (ductal cell marker) confirming their ductal cell identity.
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significantly upregulated in ductal cells from PDAC III (Fig. 2 E and
Supplementary Fig.S2B). GO analysis indicated that the upregulated
genes in late PDAC (PDAC II and III) were significantly enriched for
several cancer-related terms, such as cell adhesion, cytokine activity,
chemokine receptor binding, chemokine activity and R-SMAD bind-
ing (Fig. 2 F and Supplementary Fig.S2C and E), suggesting increased
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ability of tumor cells to respond to cytokine and chemokine with
tumor progression. In contrast, the upregulated genes in early PDAC
(PDAC I) were mainly related to normal biological function, including
structural constituent of ribosome, cell adhesion molecule binding,
cadherin binding and rRNA binding (Fig. 2G and Supplementary Fig.
S2D and F).

In addition, we performed gene expression analysis of epithelial
markers (EPCAM), mesenchymal markers (FN1, MMP7 and VIM) and
cancer stem cell (CSC) related markers (CD44, ALDH1A1 and
NOTCH2). The results showed that ductal cells in early PDAC mainly
exhibited epithelial expression profile, in contrast with ductal cells in
late PDAC which were enriched for mesenchymal markers and had
higher expression levels of CSC related genes (Fig. 2 H). These data
supported the notion that epithelial-mesenchymal transition and
cancer stem cell properties gradually accumulated with the progres-
sion of tumor, promoting tumor invasion and metastasis.

New subgroup of Cancer-Associated Fibroblasts was detected

In order to further corroborate the finding that there exist three
main subpopulations of CAF � myCAFs (myofibroblastic CAFs), iCAFs
(inflammatory CAFs) and apCAFs (antigen-presenting CAFs) in PDAC
microenvironment [9,32]. A total of 2958 mesenchymal cells from
PDAC with different clinical stages were analyzed, which formed
three distinct subclusters with unique gene signatures upon t-SNE
analysis (Fig. 3 A-C and Supplementary Fig.S3A and Table S5). Com-
mon markers, such as ACTA2, TAGLN and FN1, were expressed in all
subpopulations, confirming PDACmesenchymal cell identity (Fig. 3D).

In addition, three subclusters were identified according to specific
gene expression profile: cCAFs (classical CAFs) expressed high levels
of COL1A1, LUM (extracellular matrix related components), MMP11
(matrix remodeling molecular), FAP (stromal fibroblast activeted pro-
tein) and SFRP2 (modulators of Wnt signaling), which are involved in
extracellular matrix deposition; csCAFs (complement-secreting CAFs)
showed highly activated transcription of complement system, includ-
ing C3, C7, CFB, CFD, CFH, CFI, which may regulate immune and
inflammation response within the tumor; PSCs (pancreatic stellate
cells) were distinct from both cCAF and csCAF, and expressed marker
genes of stellate cells, such as RGS5, ADIRF, CRIP1, NDUFA4L2,
NOTCH3 and PDGFA (Fig. 3D). Then we analyzed the proportion of
these subpopulations in PDAC with different clinical stages. The
microenvironment in PDAC III contained only one kind of mesenchy-
mal cell (PSCs) but not cCAFs and csCAFs. Furthermore, PSCs were
predominant in PDAC I/II/III and expressed high levels of aSMA
(encoded by ACTA2) (Fig. 3E-F), consistent with previous conclusion
that PDAC is characterized by a dense stroma consisted of proliferat-
ing myfibroblasts (pancreatic stellate cell) and extracellular matrix
components [4].

We applied the Monocle 2 algorithm to explore the developmen-
tal trajectories of three subpopulations based on transcriptional simi-
larities [10]. The results indicated that tree structure began with
cCAFs with signature genes of LUM and FAP and csCAFs with signa-
ture genes of C3, C7, CFD, and ended with PSCs with signature genes
of RGS5, ADIRF, NDUFA4L2, CRIP1 and NOTCH3, which demonstrated
the possibility of evolution from cCAFs and csCAFs towards PSCs
(Fig. 3G). Simultaneously, we also found the development trend of
cells from early PDAC to late PDAC, which was in accordance with
tumor progression direction (Supplementary Fig.S3B).

To characterize csCAFs which expressed high levels of comple-
ment, we compared csCAFs and cCAFs, and detected 333 upregulated
and 273 downregulated genes (Supplementary Fig.S3C). KEGG analy-
sis indicated that the upregulated genes were significantly enriched
for key signaling pathways such as MAPK, Rap1, Foxo and p53 signal-
ing pathway (Supplementary Fig.S3D). Moreover, we analyzed a
small subcluster of PSCs which only represented PDAC III (cluster 4)
and found that the marker genes were enriched in biological process
related to IFN gamma mediated response and presentation of peptide
antigen (Supplementary Fig.S3E and Table S6). Furthermore, we uti-
lized TCGA and HPA (The Human Protein Atlas) database to examine
clinical significance of cCAFs marker genes, and found that the
markers including COL12A1, SDC1 and CTHRC1 had higher expres-
sion level in PDAC compared with normal tissue and indicated worse
prognosis (Supplementary Fig.S3F-G).

Landscape of tumor infiltrating immune cells in PDAC

Tumor infiltrating immune cells, including Tregs, exhausted T
cells, tumor associated macrophages (TAMs) and Bregs, play signifi-
cant role in tumorigenesis and metastasis [33�35]. And cancer
immunotherapies aiming at tumor microenvironment, such as anti-
CTLA4 and anti-PD1 therapies obviously improved patients’ progno-
sis in some cancers. However, their therapeutic responses varied
according to cancer types and patients [36]. So it’s imperative to
screen out candidate markers to predict the response to treatments
and develop new immunotherapy strategies based on further under-
standing to tumor microenvironment. Therefore, we analyzed total
1521 T cells in PDAC, which formed 11 distinct subclusters with
unique signature genes upon unsupervised clustering (Fig. 4A-C and
Supplementary Table S7). Based on specific cell markers, the relative
proportion of subsets, including CD4+T cell, CD8+T cell, Th1/2, Treg,
cytotoxic T cell, effector T cell, memory T cell and exhausted T cell,
were investigated. PDAC II/III presented more cytotoxic T cells, effec-
tor T cells and memory T cells than PDAC I. Simultaneously, the
results showed more Tregs and exhausted T cells accumulated in the
advanced PDAC as well (Fig. 4D-E). In fact, anti-tumor T cell responses
arose in PDAC but may be disabled during tumor progression by the
negative regulation from accumulated Tregs and exhausted T cells.

In addition, we compared the cluster 2 (representing PDAC III) and
cluster 0 (representing PDAC II), and found 116 upregulated genes
and 114 downregulated genes. The genes with higher expression lev-
els in PDAC II than PDAC III were mainly enriched for T cell activation,
regulation of lymphocyte activation, lymphocyte differentiation and
MHC class II receptor activity based on GO analysis (Supplementary
Fig.S4A-C).

Interestingly, the cluster 7 had enriched expression of known reg-
ulatory and exhausted T cell markers, FOXP3, TNFRSF18, CTLA4,
TIGIT, LAYN, and was therefore identified as Treg/exhausted T cell.
This subpopulation was only a small part of total T cells, and total
481 genes were specifically expressed in this subcluster, and signifi-
cantly enriched in some biological processes, including regulation of
T cell activation, negative regulation of cytokine production, negative
regulation of inflammatory response (Fig. 4F and Supplementary
Table S7). There was an obvious overlap between signature genes for
cluster 7 and Treg and exhausted T cell markers reported in previous
studies on no-small cell lung cancer, colorectal cancer, breast cancer,
melanoma and hepatocellular carcinoma [33,37�39]. Among the 33
common markers from previous studies, 22 genes were identified in
our data (Fig. 4G).

Next we focused on two important signature genes for the diag-
nosis and prognosis of PDAC. IL2RA (encoding interleukin 2 receptor
alpha chain), IL2RB together with IL2RG constitute the high-affinity
IL2 receptor, which is involved in the regulation of immune response
by controlling regulatory T cells (Tregs) [40]. The expression level of
IL2RA in pancreatic cancer samples was significantly higher than that
of normal tissues, and we found a positive correlation between IL2RA
and classical Treg markers � CTLA4, FOXP3, TIGIT (R: 0.66, 0.68, 0.58,
respectively) using TCGA database (Fig. 4H-I). Another marker,
DUSP4 (a member of the dual specificity protein phosphatase sub-
family), exhibited highly specific expression pattern in cluster 7
(Treg/exhausted T cell), but was not found in previous reported com-
mon markers (Fig. 4H). Based on differential expression and survival



Fig. 3. New cancer-associated fibroblast subset: csCAFs (complement-secreting CAFs) were detected. (a-b) The t-SNE plot showing CAF subpopulations in subcluster analysis,
according to clustering distribution in the a, sample source in the b. (c) Heatmap presenting the marker genes expression levels among CAF subpopulations. (d) Violin plot demon-
strating the identity of each CAF subcluster, pan-CAF common markers (top left), cCAFs markers (top right), csCAFs markers (bottom left), PSCs markers (bottom right). (e) The pro-
portion of CAF subpopulations changing during PDAC progression. (f) Violin plot showing the ACTA2 (aSMA) expression levels of PSC in PDAC I, II, III respectively. (g) Pseudotime
analysis exploring the development trajectories of CAFs, each dot corresponds to a single cell, the CAFs subtype shown according to specific markers expression level.
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analysis by TCGA database, the patients with high expression level of
DUSP4 had significantly worse prognosis than those with low expres-
sion level of DUSP4 (OS: HR = 1.7, p = 0.013; DFS: HR = 1.9, p =0.0061)
(Fig. 4I). In addition, correlation analysis indicated that T cells with
high expression of regulatory/exhausted T cell markers, including
CTLA4, DUSP4, FOXP3, MAGEH1, THADA, TIGIT, TNFRSF4/9/18, had
the lower expression level of Interferon Gamma (IFNG) based on sin-
gle cell sequencing data (Supplementary Fig.S4D), suggesting that
Treg/exhausted T cell may suppress activated lymphocytes by down-
regulating IFNG expression.



Fig. 4. The evolution of T cell subpopulations during PDAC malignant development. (a-b) The t-SNE plots showing T cell subpopulations in subcluster analysis, according to cluster-
ing distribution in the a, sample source in the b. (c) Single-cell profiling heatmap comparing the marker genes expression level among T cell subcluster, each column and row repre-
sented a single cell and gene respectively. (d) T cell subsets proportion in PDAC with different clinical stages. (e) The t-SNE plots showing the expression level of specific T cell
subsets marker gene. (f) GO analysis showing biological process terms for marker genes in Tregs (cluster7). (g) Upsetplot for Treg and exhausted T cell signature genes from different
studies, the box in the upper right enumerated 22 common signature gene among all studies. (h) DUSP4 and IL2RA having specific expression pattern in Treg/exhausted T cell
(clsuter7) based on violin plot. (i) TCGA database indicating the value of IL2RA and DUSP4 as diagnosis and prognosis markers. Scatter plot showing IL2RA has significant correlation
with canonical Treg/exhausted T cell markers (CTLA4, FOXP3, TIGIT). (j) Pseudotime analysis exploring the development trajectories of T cell (naïve T cell � effector T cell � Treg/
exhausted T cell).
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To better understand the functional states and relationship of T
cells, we utilized Monocle 2 algorithm to figure out their develop-
mental trajectories. The pseudotime analysis showed that tree struc-
ture began with naïve T cells with the signature genes of CCR7, LEF1,
followed by effector T cells with the signature genes of GZMK, GNLY
and Treg/exhausted T cells with the signature genes of ENTPD1,
LAYN, FOXP3 and CTLA4 (Fig. 4J). The regulatory and exhausted T
cells mainly were enriched at late T cell development, demonstrating
T cell state transition from activation to suppression and exhaustion,
consistent with previous study [39].

Another important subgroup of tumor infiltrating immune cells is
macrophage, the heterogeneity of which remains unclear in PDAC.
Next we characterized macrophage heterogeneity during PDAC pro-
gression using unsupervised clustering, and revealed 4 distinguished
macrophage subpopulations (Fig. 5 A-C and Supplementary Table
S8). According to the cell markers of macrophage subsets, we counted
the number of these subsets in PDAC with different clinical stages,
including tumor associated macrophage (TAM), M1/2, CD169+ mac-
rophage and TCR+ macrophage. The results showed that late PDAC
(PDAC III) had more M1, M2 and TAM than early PDAC (PDAC I and II)
(Fig. 5 D-E). In accordance with T cell subset analysis, the anti-tumor
components (M1) increased, accompanied by the infiltration and
accumulation of pro-tumor components (M2 and TAM), which cre-
ated immune-suppressive environment. In addition, we compared
macrophage 2 (representing PDAC III) and macrophage 1 (represent-
ing PDAC I and II) and found 296 upregulated genes and 461 downre-
gulated genes (Fig. 5F). The upregulated genes in PDAC III were
chiefly enriched for neutrophil degranulation, neutrophil mediated
immunity, G protein-coupled receptor binding, cytokine and chemo-
kine activity (Supplementary Fig.S4E-F).

Then we analyzed B cell infiltration in PDAC. A total of 1657 B cells
were analyzed upon unsupervised clustering, which formed 6 dis-
tinct subclusters with different signature genes (Fig. 5G-I and Supple-
mentary Table S8). We found no infiltration of B cells in PDAC I, while
B cells in PDAC III showed radical difference with those in PDAC II
based on transcriptional analysis. Thus we speculated that B cell
gradually penetrated into tumor microenvironment during PDAC
malignant development and evolved into different subpopulations
with unique gene expression profiles and pro-tumor or anti-tumor
function. The common marker CD19 was expressed in all B cell sub-
clusters, confirming B cell identity (Fig. 5J). We found no regulatory B
cells (Bregs) in tumor microenvironment according to the expression
of Breg markers, such as CD1D, CD5 and TGFB1. The main forms of B
cells were plasmocyte and memory B cells, expressing high level of
CD27. Simultaneously, there was a subcluster (cluster 1) in PDAC II,
identified as naïve B cell with lack of CD27 expression (Fig. 5J). More-
over, we found that the upregulated genes in PDAC III were mainly
enriched for neutrophil mediated immunity, neutrophil degranula-
tion and activation by GO analysis, and B cells in PDAC III expressed
high level of costimulatory molecules, such as CD40 and CD86, which
may promote T cell activation by interacting with CD40L and CD28
on T cell membrane (Supplementary Fig.S4G-H).

Gene-network module of csCAF are identified by WGCNA

Weighted gene co-expression network analysis (WGCNA) is a sys-
tem biology method for describing the correlation patterns among
genes in RNA sequencing [41,42]. Here we took advantage of this
powerful tool to figure out the interesting modules, consisting of a
group of highly correlated genes, which represented the biological
functions of subcluster. We randomly picked out 30�50 cells from
cCAFs, csCAFs and PSCs respectively to construct gene expression
matrix for WGCNA analysis, and their group information were listed
as well (Supplementary Table S9). Then we performed cluster analy-
sis for samples and found that the cells belonging to the same cell
type were assigned to one group (Fig. 6A), which was consistent with
the previous unsupervised clustering results in Fig. 3A. After choosing
the soft-thresholding power, the algorithm for gene network con-
struction and identification of modules was conducted, it showed
that 8 modules were identified and there existed significant correla-
tion between modules � MEturquoise, MEbrown, MEblue, and sub-
populations � cCAFs, csCAFs, PSCs respectively (Fig. 6B-C). To better
prove the correlation between Gene Significance (GS) for csCAFs and
Module Membership (MM) in the brown module, a scatter plot of GS
vs MM and eigengene adjacency heatmap were conducted. The
results indicated that brown module could represent subpopulation
csCAFs well (Fig. 6D-E).

Next, to facilitate a biological interpretation, we would like to
know whether the genes in brown module were significantly
enriched in key gene ontologies. Thus we exported a list of gene in
modules to conduct gene ontology and functional enrichment analy-
sis (Supplementary Table S10). The genes in brown module were
chiefly enriched for extracellular structure organization, regulation of
vasculature development and complement and coagulation cascades
(Fig. 6F-G). In addition, the brown module contained many genes
that were the components of complement system, confirming the
identity of csCAFs again. Finally, we exported the top 80 hub genes in
brown module for the visualization of network connections among
these genes by Cytoscape software [43] (Fig. 6H and Supplementary
Table S10).

csCAF are detectable in early PDAC

Following the identification of csCAFs by scRNA-seq and the
detection of csCAF-related module by WGCNA, we decided to dem-
onstrate the existence of these cells and figure out their location in
human PDAC. We utilized the fibroblast marker COL1A1 and comple-
ment molecule C3 to stain human PDAC sections with different clini-
cal stages by RNA ISH (RNA in situ hybridization) and IF
(immunofluorescence). We further identified the presence of csCAFs
and these cells were located in the tissue stroma next to malignant
ductal cells only in PDACI and II (Fig. 7A-B). Then we counted the rel-
ative number of csCAFs in PDAC with different stages, and found that
the PDACI had significantly more csCAF than PDACII and III (Fig. 7C-
D). This suggested that the csCAFs may play a tumor-suppressive role
in PDAC microenvironment and gradually decreased during the pro-
gression of tumor. In addition, we detected the relative mRNA
expression levels of C3 and C7 in human PDAC tissue by RT-qPCR,
and found a declining trend of C3 and C7 expression levels with the
increase of tumor stages (Fig. 7E-F). Collectively, these results identi-
fied a novel CAF subpopulation � csCAFs, which is helpful for better
understanding the heterogeneity of CAFs in PDAC (Fig. 7G). However,
the potential value of these cells still remain to be explored.

Discussion

A growing body of researches have demonstrated the obvious
intra-tumor heterogeneity in PDAC that brings great challenges for
developing effective treatment strategies. Thus we should explore
more precise targeted drugs aiming at the specific subpopulations of
T cell, B cell, macrophage and CAF rather than the whole group. In
this study, we systematically analyzed dynamic changes of PDAC
microenvironment during tumor malignant development by single-
cell sequencing. Notably, the ductal cells were not the dominant com-
ponent, and tumor infiltrating immune cells, pancreatic stellate cells,
and dense extracellular matrixes gradually accumulate from early
PDAC to late PDAC. Based on epithelial, mesenchymal and cancer
stem cell markers analysis, we found that EMT and CSC properties
were key feature of advanced PDAC. Consistent with previous studies
[44,45], anti-tumor immune response arose but were disabled by
negative regulation from Tregs, exhausted T cells, TAMs with the
development of tumor.



Fig. 5. The evolution of macrophage and B cell subpopulations during PDACmalignant development. (a-b) The t-SNE plots showing macrophage subpopulations in subcluster analy-
sis according to clustering distribution in the a, sample source in the b. (c) Heatmap of macrophage subclusters and marker genes. (d) Macrophage subsets proportion in PDAC with
different clinical stages. (e) The t-SNE plots showing the expression level of specific macrophage subsets marker genes. (f) The DEGs between PDAC III and PDAC I in macrophage
subcluster analysis shown by volcano plot, red and blue dots represented the genes upregulated and downregulated respectively (PDAC III vs PDAC I and II). (g-h) The t-SNE plots
presenting B cell subpopulations in B cell subcluster analysis based on clustering distribution in the g, sample source in the h. (i) Heatmap of B cell subclusters and related marker
genes. (j) Violin plot showing the expression level of common B cell marker (CD19), Breg markers (CD1D, CD5, TGFB1), plasmocyte/memory B cell marker (CD27) among B cell sub-
clusters.
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Fig. 6. Gene-network module of csCAF were identified byWGCNA. (a) Clustering dendrogram of samples based on Euclidean distance. (b) Clustering dendrogram of genes, with dis-
similarity based on topological overlap using Dynamic Tree Cut algorithm, together with assigned merged module colors and the original module colors. (c) The heatmap of module-
trait associations. Each row corresponds to a module eigengene, column to CAF subsets, based on cell type in the left panel, subtype in the right panel. In addition, each box con-
tained the corresponding correlation and p-value. (d) A scatter plot of Gene Significance (GS) for csCAF vs Module Membership (MM) in the brown module. There is a highly signifi-
cant correlation between csCAFs and brown module. (e) Visualization of eigengene network representing the relationships among modules and csCAFs. The upper panel showed a
hierarchical clustering dendrogram of the eigengenes, the lower panel showed the eigengene adjacency. (f-g) Gene ontology and KEGG analysis showing biological process (f) and
pathway (g) terms for genes in brown module (csCAFs hub genes). (h) Visualization of network connections among the most connected genes in the brown module representing
csCAFs using Cytoscape software.
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Fig. 7. csCAF were detected in human PDAC tissue by RNA ISH and IF. (a) The representative immunofluorescence (IF) image for co-staining of COL1A1 (red) and C3 (green) in
human PDAC sections with different stages (3 PDAC I, 3 PDAC II, 3 PDAC III), the nuclear were stained with DAPI (blue), T, tumor glands, arrows were pointing to examples of csCAFs.
(b) The representative RNA in situ hybridization (RNA ISH) image for co-staining of COL1A1 (green) and C3 (red) in human PDAC sections. (c-d) Bar plot showing the relative number
of csCAFs in PDAC with different stages in IF in the c and in RNA ISH in the d. (e-f) The relative expression level of C3 (e) and C7 (f) in PDAC tissue with differnet stages by RT-qPCR.
(g) Illustrated summary of CAF subpopulations and their location in PDAC. The marker genes of each CAF subpopulation were listed in corresponding boxes, csCAFs played a vital
role in tumor microenvironment by secreting complement (C3 and C7).
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Previous studies identified many regulatory and exhausted T cell
markers by single cell sequencing or bulk sequencing [33,37�39].
Compared with these data, our study found 22 common markers and
several new markers, such as DUSP4, FANK1, LAIR2. Through analyz-
ing TCGA datasets, we also found that the patients with high
expression level of DUSP4 had significantly worse prognosis. Tran-
scriptome profiling in Dusp4-deficient mice showed that DUSP4
could enhance the expression of a segment of canonical Treg signa-
ture genes [46]. In addition, a large number of studies revealed that
DUSP4 could impact patients’ prognosis and chemoresistance in
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many types of cancers [47�51]. All these results suggested DUSP4 as
a Treg signature gene is eligible for prognosis marker and potential
therapy target.

A recent study performing cross-species single cell analysis com-
prehensively delineated the CAFs heterogeneity in PDAC and defined
three CAF subsets � myofibroblastic CAFs (myCAFs), inflammatory
CAFs (iCAFs) and antigen-presenting CAFs (apCAFs) [9]. In our study,
we identified a new CAF subpopulation, complement-secreting CAFs
(csCAF), but didn’t find iCAFs and apCAFs. To some degree, there has
similarity between iCAFs reported previously and csCAFs, because
the iCAFs also had enriched expression of complement system com-
ponents � C3, CFD. The divergence between two studies is probably
due to tumor sample heterogeneity, different CAF enrichment
method and analytical perspective. In addition, we detected that the
microenvironment in PDAC III only contained one kind of CAFs
(PSCs), lacking of other CAFs subpopulation. Pseudotime analysis for
CAFs showed the possibility of mutual transformation between dif-
ferent CAF subpopulations. These findings demonstrate CAF has
dynamic plasticity during PDAC progression, which is in accordance
with precious research [52]. It is a noteworthy strategy to make use
of CAF plasticity for the conversion of pro-tumor CAFs into anti-
tumor ones.

The intricate crosstalk between CAFs and other cells in microenvi-
ronment has been explored in the past several decades. Some studies
supported that CAFs could favor tumor growth, survival, migration,
angiogenesis and metastasis by secreting various signaling molecules
and vesicles [53�57]. However, other studies supported the anti-
tumor function of CAFs [58�60]. In fact, there are distinct CAF subpo-
pulations with different secretory phenotypes and functions. We uti-
lized single cell sequencing data and WGCNA to identify a new CAF
(csCAF). These CAFs specifically expressed complement components
� C3, C7, C1R/S, CFD, CFH, CFI, compared with other CAFs. We also
found the csCAFs subpopulation were detectable in human PDAC tis-
sue using RNA ISH and IF. Moreover, a growing body of studies also
identified the CAF subpopulation enriched for complement system
components in different organs [61�63]. Complement system is not
only the important component of innate immunity, but also plays the
pivotal role in modulating cell-cell interaction inside tumor [64,65].
A series of experiments showed that the activation of complement
system could lead to tumor-promoting inflammation [66,67]. Com-
plement protein C3, C7, CFH could promote tumor proliferation, inva-
sion, metastasis and drug resistance by regulating complement-
complement receptors mediated biological processes [68�71]. How-
ever, in this study, we did not further explore the potential function
of csCAFs for PDAC by isolating these cells. We believe that it is con-
siderably valuable to study the crosstalk between csCAFs and cancer
cells, macrophages, T cells, endothelial cells and other CAFs. Under-
standing CAFs heterogeneity, we can develop new effective strategies
and make it more accurate in the process of anti-cancer associated
fibroblast treatment. In addition, there are other limitations in this
study, such as the relative low coverage of 3’end sequencing and lim-
ited sample size. In the section of ductal cell subcluster analysis, we
could not distinguish malignant ductal cells from normal ductal cells,
likely resulting in gene expression bias.

In conclusion, our findings may provide a new insight for delin-
eating the dynamic changes of tumor microenvironment components
during PDAC malignant progression. The further studies about a new
CAF subset (csCAF) are worthwhile for understanding PDAC microen-
vironment and improving patients’ prognosis.
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