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Cryo-EM as a tool to study bacterial efflux systems and the 
membrane proteome
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Abstract

Antibiotic resistance is an emerging threat to global health. Current treatment regimens for these types of bacterial infections 
are becoming increasingly inadequate. Thus, new innovative technologies are needed to help identify and characterize novel 
drugs and drug targets which are critical in order to combat multidrug-resistant bacterial strains. Bacterial efflux systems 
have emerged as an attractive target for drug design, as blocking their export function significantly increases the potency of 
administered antibiotics. However, in order to develop potent and tolerable efflux pump inhibitors with high efficacy, detailed 
structural information is required for both the apo- and substrate-bound forms of these membrane proteins. The emergence of 
cryo-electron microscopy (cryo-EM) has greatly advanced the field of membrane protein structural biology. It has significantly 
enhanced the ability to solve large multi-protein complexes as well as extract meaningful data from a heterogeneous sample, such 
as identification of several assembly states of the bacterial ribosome, from a single data set. This technique can be expanded to 
solve the structures of substrate-bound efflux pumps and entire efflux systems from previously unusable membrane protein sample 
preparations. Subsequently, cryo-EM combined with other biophysical techniques has the potential to markedly advance the field 
of membrane protein structural biology. The ability to discern complete transport machineries, enzymatic signal transduction 
pathways, and other membrane-associated complexes will help us fully understand the complexities of the membrane proteome.
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Introduction
The widespread prevalence of multidrug-resistant (MDR) bacteria  
is an emerging threat to global health. Data released by the 
Centers for Disease Control and Prevention show that in the  
United States there are more than 2.8 million new cases of  
antibiotic-resistant infections each year1 with considerably 
more worldwide2. With the continual exposure of antibiotics  
given in standard treatment regimens, MDR, extensively 
drug-resistant (XDR), and totally drug-resistant (TDR) bacte-
rial strains have emerged3,4. These drug-resistant strains are  
especially problematic in hospital settings, where immuno-
compromised and other high-risk patients are extremely sus-
ceptible to bacterial infections. This is highlighted by a recent  
analysis of lungs harvested for use in transplant procedures; 
almost 60% of donor lung tissue had bacterial contamination, 
and about 5% of those contained MDR strains5. Whereas these 
pathogens currently can be eliminated with a tailored antibiotic  
treatment, it is well established that hospital-borne MDR bacteria 
such as Acinetobacter baumannii6–8, Staphylococcus aureus9–11, 
and Escherichia coli12–15 can develop resistance mutations 
through natural evolution, leading to the continual need to 
develop new antibiotic treatments. To help combat these super-
bugs, unique antibiotics and potent inhibitors of critical bacterial  
survival systems need to be developed. A common method for 
identification of new biocides is to conduct a blind screen for  
potential compounds from established chemical libraries and 
then test them in in situ bacterial systems16,17. The binding 
capabilities of these compounds to their identified targets are 
often verified through docking studies and molecular dynam-
ics simulations based upon previously determined protein  
structures18. Thus, the greater the number of high-resolution  
structures available for these modeling studies, the better the 
odds of identifying potent inhibitors and antibiotics through 
rational drug design, as opposed to random hits from a large 
chemical screen. Concurrent with this, the development of 
innovative biophysical and biochemical methods to produce  
high-quality structural data is critical to help identify and  
characterize unique targets for drug development.

Targeting efflux pumps to mitigate antibiotic resistance
Drug-resistant infections are the result, in part, of the alarm-
ing frequency in which bacteria can alter their genomes.  
Mutations19, as well as mobile genetic elements20,21, are mecha-
nisms that allow bacteria to acquire antibiotic resistance. These 
genetic changes often decrease the permeability of the outer 
membrane of the cell as well as increase the rate at which anti-
biotics are expelled22, and the latter is principally regulated 
through the function of bacterial efflux systems. These efflux 
systems are critical for survival by removing harmful agents  
detrimental to the cell23. Additionally, in several infectious 
bacteria such as Mycobacterium tuberculosis, these export-
ers are also designed to transport lipid from the interior of 
the cell to the outer membrane for membrane biogenesis24.  
Among various types of efflux systems, members of  
the resistance–nodulation–cell division (RND) superfamily 
are the most important in mediating antibiotic resistance in  
Gram-negative pathogens25. The traditional architecture of an 
RND-type bacterial efflux system consists of an outer membrane  

channel protein (OMP), a periplasmic membrane fusion  
protein (MFP), and an inner membrane efflux pump (IMP)  
(Figure 1A). The canonical structure of the RND-type IMP  
consists of 12 transmembrane helices that span the inner mem-
brane of Gram-negative bacteria and several periplasmic domains 

Figure 1. General structure of trimeric RND efflux systems.  
(A) The components of a tripartite efflux system (adapted from 
Protein Data Bank ID 5O66) visualized in side view with the inner 
membrane pump (IMP, blue), membrane fusion protein (MFP, 
green) and outer membrane protein (OMP, purple). Pictured is the 
IMP:MFP:OMP subunit ratio of 3:6:3, which is the most common 
assembly pattern. The outer membrane (OM) and inner membrane 
(IM) are designated by dashed lines. (B) A magnified view of 
one subunit of an RND-type inner membrane pump. Periplasmic 
subunits are designated DC (yellow), DN (red), PN1 (light blue), 
PN2 (purple), PC1 (orange), and PC2 (green). The transmembrane 
(TM) and membrane-associated helices are designated blue. RND, 
resistance–nodulation–cell division.
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that occupy about a third of the length of the periplasmic space 
(Figure 1B). Its main function is to capture substrates (antibi-
otics such as tetracyclines, macrolides, and aminoglycosides)  
from the outer leaflet of the inner membrane or periplasm  
(or both) and transport them to the OMP for export, with the 
proton motive force the energy provider to facilitate substrate  
translocation25,26. A subset of these RND-type inner membrane 
pumps is also responsible for the transport of lipids to the outer 
membrane to promote membrane biosynthesis and stability. 
Therefore, the development of compounds that inhibit these 
critical transporters represents a novel and potent strategy to  

combat MDR, XDR, and TDR bacterial infections.

Technical and technological advances for membrane 
structural biology
To date, most of the structural and functional information 
obtained regarding the RND transporters has been from X-ray  
crystallographic and biochemical studies. Our knowledge of 
the three-dimensional (3D) molecular orientation, assembly  
states, and transport mechanisms of this transporter superfamily  
has greatly advanced since the first published structure of  
AcrB, the IMP from the AcrAB-TolC efflux system27, almost 
20 years ago. Since then, the structures of several similar  
yet distinct RND IMPs have been elucidated (Table 1). These 
data have substantiated the importance of the IMPs and have 
provided valuable information on the binding and transport of 
their substrates. Solved IMP structures, in combination with 
large in silico chemical libraries, allow docking tools such as  
AutoDock Vina28, Schrödinger Glide29,30, and UCSF Dock31 to 
effectively identify and assess binding capabilities of potential 
inhibitory compounds. One limitation, however, of using X-ray  
crystallography for 3D protein reconstruction is that the method 
requires the production of a static crystal lattice, providing 
only a singular snapshot of these IMPs, forcing us to piece 

together mechanistic details of substrate transport. To help  
overcome this, molecular dynamics simulations such as protein 
in atomistic details coupled with coarse‐grained environment 
(PACE) have been employed. This technique was successful in  
modeling conformational changes of AcrB (the critical IMP 
from E. coli) upon indole transport and may be an effective tool  
to model the transport mechanisms of IMP inhibitors32.

Despite these efforts, the difficulty of producing high-quality  
crystals suitable for structural determination of membrane  
proteins remains a significant challenge. To solve these struc-
tures via crystallography, investigators typically need to start 
with a high concentration of mostly pure protein33. Many times,  
the concentrations of isolated membrane proteins from  
bacterial or eukaryotic expression systems are insufficient to  
produce high-quality well-ordered crystals, while solubiliza-
tion of the cell membrane for protein extraction often leads to  
impurities that significantly hinder the crystallization process34. 
Historically, a detergent-based buffer has been used to facilitate  
removal of membrane proteins from their cellular membrane 
environment. This is not a trivial step, as both the type and  
concentration of detergent need to be experimentally deter-
mined with the overall goal to extract from the membrane a 
soluble protein in its functional state. Often, this trial-and-error 
method is unsuccessful. Additionally, detergent-based extrac-
tion eliminates the native lipid bilayer that may be required to 
maintain the protein in its native conformation34. As an alterna-
tive, lipid bilayer mimetics such as bicelles35, lipid cubic phase36 
and nanodiscs derived from native cell membrane nanoparticle  
systems (NCMNS)37, and styrene maleic-acid lipid particles  
(SMALPs)38 are being developed and successfully employed to 
help determine protein structures in their native lipid-associated  
state. These detergent-free systems may be beneficial for the 
continued study of RND transporters not only with X-ray  

Table 1. Solved structures of the inner membrane protein component of the RND-type 
of bacterial efflux system.

Organism Inner membrane 
protein

Year Protein Data Bank ID Method

Escherichia coli AcrB 2002 
2006

1IWG27 
2DHH39

X-ray 
X-ray

Pseudomonas aeruginosa MexB 2009 2V5040 X-ray

E. coli CusA 2010 3K0741, 3KSS41, 3KSO41 X-ray

Cupriavidus metallidurans ZneA 2013 4K0E42, 4K0J42 X-ray

Neisseria gonorrhoeae MtrD 2014 
2020

4MT143 
6VKS44, 6VKT44

X-ray 
Cryo-EM

Campylobacter jejuni CmeB 2017 5LQ345, 5T0O45 X-ray

Burkholderia multivorans HpnN 2017 5KHN46, 5KHS46 X-ray

Acinetobacter baumannii AdeB 2019 6OWS47 Cryo-EM

Mycobacterium smegmatis MmpL3 2019 
2019

6OR248 
6AJF49

X-ray 
X-ray

Cryo-EM, cryo-electron microscopy; RND, resistance–nodulation–cell division.
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crystallography but also with additional methods such as 
cryo-electron microscopy (cryo-EM)50, X-ray free-electron  
laser (XFEL)51, and other biophysical techniques34.

Emergence of cryo-electron microscopy as a 
powerful tool to study membrane complexes
X-ray structures essentially portray a protein in a rigid confor-
mation, bound by the energetics and constraints of the crystal  
lattice. These constraints can introduce structural artifacts,  
particularly for protein–ligand interactions and for the spatial  
orientation of multi-protein assemblies52. Owing to these and 
other limitations, how and where substrates bind the RND IMPs 
and how complete RND transporter systems assemble can be 
difficult to structurally observe solely on the basis of X-ray  
crystallography. The emergence of single-particle cryo-EM 
has provided us with a promising alternative and allows many 
of the limitations of X-ray crystallography to be surpassed. 
Improved electron detectors and image processors have empow-
ered cryo-EM to develop from a technique that provides  
“blob-like” low-resolution structures to the ability to compete 
with X-ray crystallography by solving high-resolution struc-
tures of large protein complexes in their native conformation53,54.  
In single-particle cryo-EM, images of individual proteins or 
protein complexes are collected and processed to generate 3D  
reconstructions55. There are at least two major advantages:  
(1) The amount of protein required for cryo-EM is substantially 
less than that for X-ray crystallography. This eliminates many 
of the problems often encountered when trying to produce large 
quantities of recombinant protein. (2) Cryo-EM has the ability  
to visualize more than one conformational state in a sample.  
Since proteins and protein complexes greater than 100 kDa 
are well suited for this technique, this makes RND transport-
ers ideal protein targets for this method. This is highlighted by 
the seminal work detailing the structural assembly of the E. coli  
AcrAB-TolC56 and the Pseudomonas aeruginosa MexAB-OprM57  
tripartite transport systems by cryo-EM. Cryo-EM also has the 
potential to detect substrates bound at multiple locations during 
the transport process, through the capture of intermediate states. 
Indeed, we recently used cryo-EM to solve the structure of the 
A. baumannii IMP component of the AdeABC efflux transporter,  
AdeB47.

The ability to solve protein–antibiotic complexes
Through cryo-EM, we also determined two structures of the 
gonococcal MtrD transporter. We were able to elucidate how 
this multidrug efflux transporter specifically interacts with 
substrates in a more straightforward manner as we did not 
need to optimize crystallization conditions suitable for crys-
tallizing MtrD bound with drugs. In Neisseria gonorrhoeae,  
the causative agent of the sexually transmitted infection  
gonorrhea, the multiple transferable resistance efflux system,  
MtrCDE, exports a wide variety of diverse antimicrobial 
agents from the cell, and its expression is a major contributor to  
β-lactam and macrolide resistance58. The inner membrane efflux  
transporter, MtrD, is responsible for the recognition and trans-
port of substrates in concert with the periplasmic MFP MtrC 
and OMP MtrE. Therefore, targeting MtrD is a viable strategy  
to increase the potency of antibiotics in order to eliminate  

gonococcal infection. Cryo-EM was used to successfully deter-
mine structures of the MtrD efflux transporter, carrying a  
mosaic-like sequence, in the presence of bound antibiotics44. 
These structures enabled us to identify important residues for 
drug recognition, and several of these residues were independ-
ently verified in vivo59, as well as modes of MtrD–drug inter-
actions. The drug molecules were found to bind deeply at the 
distal drug-binding site in the periplasmic domain of MtrD  
(Figure 2A). Important residues that stabilize antibiotic-MtrD 
binding were identified (Figure 2B) and a mechanism of  
substrate transport was able to be postulated. It is likely that 
antibiotics enter the channel from the periplasmic cleft created  
by domains PC1 and PC2, then sequentially bind the proximal  
and distal binding sites. These binding sites guide substrate 

Figure 2. Antibiotic-bound cryo-EM structure of the Neisseria 
gonorrhoeae RND-type inner membrane pump, MtrD (adapted 
from Protein Data Bank ID 6VKS). (A) α-helices (blue), β-sheets 
(wheat), and loops (gray) depict the overall secondary structure of 
MtrD. A hydrolyzed, decarboxylated ampicillin molecule (green) 
is bound deep within the cavity formed by the orientation of the 
periplasmic domains PC1, PC2, PN1, and PN2. The inner membrane–
periplasm lipid boundary is represented by a dashed line. (B) A 
magnified view of the ampicillin-binding region. Important amino 
acid side chains involved in substrate recognition/stabilization are 
shown in orange. Amp, hydrolyzed, decarboxylated ampicillin; cryo-
EM, cryo-electron microscopy; RND, resistance–nodulation–cell  
division.
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movement through the channel and the eventual release to the 
OMP for export from the cell. Through this cryo-EM structural  
approach coupled with genetic studies, we also identified that 
the conserved charged amino acids R714 and E823 are criti-
cal for the recognition of macrolides and provide clinical  
non-susceptibility to azithromycin (azithromycin and ceftriaxone 
are recommended as the first choice for dual treatment of  
gonorrhea60). Interestingly, a global meta-analytical approach 
was used to analyze 4,852 clinical isolates. The study found 
that mutations at positions 714 and 823 of MtrD in these  
isolates led to azithromycin resistance well above the  
Clinical and Laboratory Standards Institute (CLSI) azithromycin  
non-susceptibility threshold61, confirming our hypothesis that 
amino acid changes at MtrD positions 714 and 823 could lead to 
clinically significant levels of azithromycin non-susceptibility  
resistance. Because of the high quality of the structural data, 
we were also able to detail the proton transfer process within  
the proton relay network, which provides the proton motive force 
to power up this multidrug efflux transporter. Taken together, 
these structural studies allowed the correlation of spontaneous 
resistance mutations within MtrD to specific locations within 
the protein and can aid in the design of new and more effec-
tive inhibitory compounds to obstruct the principal multidrug  
efflux mechanism in N. gonorrhoeae.

Cryo-electron microscopy as a tool to study the membrane 
proteome
The purification of membrane proteins to near homogeneity 
can be a difficult and laborious process. This is especially chal-
lenging when trying to express eukaryotic membrane proteins  
using either current cell culture systems or non-eukaryotic  

expression methods. These purifications can lead to dilute, 
impure samples. Although low concentration and purity 
are not necessarily detrimental for reconstructing small  
(<500 kDa) water-soluble protein complexes62, they are often 
roadblocks for obtaining high-quality crystals of larger com-
plexes, especially those that associate with the membrane. In  
many cases, cryo-EM is able to help overcome these homo-
geneity and purity problems. After data collection and  
initial image processing, in silico purification of the particle 
set allows separation of particle classes based of the results of  
2D and 3D ab initio classifications. This process helps to 
separate different views of the target protein from those that  
belong to impurities, which allows map building of the protein 
of interest. While methods have been developed to build maps 
of multiple water-soluble protein complexes from a heterogene-
ous, partially purified sample63–69, we are currently developing  
an iterative methodology to handle impure, heterogeneous 
samples for structural determination of RND transporters and 
other membrane-bound complexes by cryo-EM. To test our  
strategy, we determined cryo-EM structures of the A. baumannii  
70S ribosome70. The intact 70S complex as well as the individ-
ual 30S and 50S subunits were able to be identified in distinct 
2D class averages from a single cryogenic sample (Figure 3A). 
Using 3D variability analysis, we were able to detect the inter-
particle motions of the 70S ribosome in different tRNA-bound  
states (Figure 3B), as well as visualize the ribosome in vari-
ous conformations upon the introduction of ribosomal-specific  
substrates, thus allowing an enhanced understanding of the struc-
tural dynamics of ribosomal function from one sample. These 
techniques can be effectively extended to analyze membrane  
isolates. Indeed, with cryo-EM, it will soon be possible to  

Figure 3. Ribosomal structures determined by single particle cryo-EM. (A) Two-dimensional class averages obtained from a single cryo-
EM experiment. Ribosomes were isolated from the Acinetobacter baumannii bacterium and flash-frozen onto a cryogenic grid. Shown are 
three separate classes that differentiate the 70S complex (red squares) from the individual 50S (blue circles) and the 30S (yellow hexagons) 
subunits. (B) Further computational sorting and analysis revealed three separate states of the intact 70S ribosome: tRNA bound at the P-site 
(green spheres), the E-site (red spheres), or empty. cryo-EM, cryo-electron microscopy.
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simultaneously solve structures of several bacterial membrane 
proteins to near atomic resolution67. Non-homogeneous sample  
preparations will no longer be restrictive for these membrane  
isolates, and significant data can be obtained from a single,  
heterogeneous protein sample.

In addition to the generation of high-quality structures of 
protein–substrate complexes that are challenging to solve  
with X-ray crystallography, cryo-EM has the potential to be 
used in a broader scope as a conduit to structural systems  
proteomics. Many cellular machineries consist of protein  
complexes and enzymatic pathways that span both the inner and 
outer membranes of Gram-negative bacteria as well as eukaryo-
tic mitochondria. With the advancements of cryo-EM as well 
as the recent development of native mass spectrometry71, it is 
now possible to study these proteins within intact membranes.  
It is not unrealistic to foresee how multiple structures of a  
complex or enzymatic chain can be solved simultaneously with 
the help of these cutting-edge technologies. This will enable 
the identification of important protein–protein contacts and 
help discern how these proteins assemble into a functional  
complex. The end result is the development of an integrated  
systems approach to structural biology that will greatly aid  
in elucidating the membrane proteome. This, in turn, will 
significantly advance our knowledge of how cells develop  
multidrug resistance and shed light on new membrane com-
plexes and transport systems as potential targets for the  
development of new inhibitors or biocides or both.

Future prospective
The field of structural biology has developed into a power-
ful tool in the fight against drug-resistant bacterial infections. 
X-ray crystallography has been the standard for protein struc-
tural determination for decades and the foundation on which  
structure-based drug design has been built. With the advance-
ment of additional techniques, such as cryo-EM, cryo-electron  
tomography (cryo-ET)72, microcrystal electron diffraction  
(micro-ED)73, and XFEL51, the ability to generate structural 
data has never been greater. Protein structures in their native 
state as well as structures of protein–ligand and protein–protein  
complexes are becoming easier to determine. It is also possible  
to thoroughly analyze the dynamics of biomacromolecular 

systems via these state-of-the-art technologies. This is espe-
cially beneficial for the study of bacterial efflux systems, whose 
inhibition holds great promise as a method to increase the  
potency of current antibiotic treatment regimens.

Through cryo-EM, it is possible for the IMPs in E. coli,  
N. gonorrhoeae, A. baumannii, and Campylobacter jejuni, 
among others, to be determined in their solution state, with 
and without bound substrate. Combined, these structures will 
allow a more complete description of how these pumps rec-
ognize and transport substrates. The attractiveness of these 
IMPs as potential drug targets is highlighted in a recent study 
that identified 42 new efflux pump inhibitors from a screen of  
about 50,000 diverse compounds74. The ability to determine 
how and where these substrates interact within the pumps 
would greatly enhance the optimization efforts required to  
produce more potent inhibitors, as these compounds have 
been shown to block the substrate transport pathway at 
multiple locations. This example highlights the ability of  
structural biology to be a cornerstone for cooperative scientific  
techniques used in conjunction for inhibitor design and drug  
development.

Although there has been significant success in solving indi-
vidual components of the RND transporter superfamily, it has 
been a formidable task to obtain structural information of a 
completely assembled tripartite efflux complex, which spans 
the entire bacterial cell envelope. The most successful visu-
alizations have been for the AcrAB-TolC efflux system56 by  
cryo-EM and its in situ structure using cryo-ET75. Through 
the utility of these powerful techniques combined with opti-
mized sample preparations, it is likely that additional complete 
transport machineries (Figure 1) will be able to be viewed as a  
complete complex as opposed to each component solved  
separately. This improved methodology will extend to other 
important biological systems such as electron transport chains, 
respiratory complexes, and toxins76–78. The intimate understand-
ing of these transporters, porins, channels, and other proteins 
that make up the membrane proteome will greatly enhance the 
ability to identify new targets and design novel compounds to  
combat the rapid evolution of MDR strains of bacteria.
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