
British Joumal of Cancer (1998) 78(Supplement 3), 1-7
© 1998 Cancer Research Campaign

New antimetabolites in cancer chemotherapy and their
clinical impact
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Summary It is almost 50 years since antimetabolites were first found to have clinical antitumour activity, with Farber's discovery that
aminopterin could cause remission in acute leukaemia. In the following 10 years, methotrexate, 6-mercaptopurine and 5-fluorouracil (5-FU)
found their way into clinical practice. Subsequently, cytosine arabinoside was found to have activity in acute leukaemia, but, until recently,
other significant developments have involved optimizing the efficacy of existing antimetabolites, including the use of leucovorin with
methotrexate or 5-FU. Recently, new antimetabolites have become a fertile area for anti-cancer drug research. Gemcitabine (GEMZAR®) has
emerged as an important new agent in several tumour types, including pancreatic, non-small-cell lung, bladder, breast and ovarian cancers.
Capecitabine is an intriguing new prodrug, offering tumour selectivity and prolonged tumour exposure to 5-FU. More potent thymidylate
synthase inhibitors have also emerged; raltitrexed is now commercially available for the treatment of colorectal cancer. Others under
development include LY231514, which has other sites of action, hence the acronym MTA (multi-targeted antifolate). A novel target is
glycinamide ribonucleotide formyltransferase (GARFT) and LY309887 and AG2034 are undergoing clinical investigation as GARFT inhibitors.
A critical element with LY309887 appears to be co-administration of folate. It seems entirely possible that several novel antimetabolites will
establish themselves in clinical practice in future for the treatment of solid tumours.
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Antimetabolites have been in use for the treatment of malignant
disease for 50 years, since the discovery by Farber that aminopterin
could cause remission of leukaemia (Farber et al, 1948). Since then,
antimetabolites have been discovered that have found use in a
variety of diseases other than cancer. For example, methotrexate is
used in the treatment of psoriasis (McDonald, 1981) and rheuma-
toid arthritis (Hoffmeister, 1983), whereas trimetrexate has been
used to treat Pneumocystis carinii infections in patients with
acquired immune deficiency syndrome (Allegra et al, 1987a). But
cancer therapy is their main application and for many years,
5-fluorouracil (5-FU) and methotrexate have been the mainstay of
antimetabolite treatment in solid tumours. In recent years, however,
several new antimetabolites have emerged in cancer treatment and
these have provided the basis for further research.
An antimetabolite is defined as a drug that interferes with the

normal metabolic processes within cells. Knowledge of these
processes at a cellular level has increased in recent years, leading to
the identification of a number of potential new targets. The meta-
bolic processes of the cell are complex and involve many enzymes.
Two important pathways exist, which give rise to the synthesis of
purines and pyrimidines. Folate-derived co-factors are also involved
in these processes as the one-carbon fragments provided by folates
are essential to certain transformations, such as the conversion of
deoxyuridine monophosphate (dUMP) to deoxythymidine mono-
phosphate (dTMP). Inhibitors of vital enzymes in these pathways
are being studied, including dihydrofolate reductase (DHFR),
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thymidylate synthase (TS), and glycinamide ribonucleotide formyl-
transferase (GARFI'). These are illustrated in Figure 1, and will be
discussed later. Other pharmacological targets have included the
transport mechanisms responsible for ensuring drug uptake by the
cell and, to this end, drugs have been developed that are better
substrates for the reduced folate carrier (RFC) and the membrane-
associated folate-binding protein (mFBP). These too will be
discussed, along with compounds that have been designed to bypass
these transport mechanisms. Nucleoside analogues, which play their
role after incorporation into DNA and RNA, giving rise to chain
termination and cell death or stasis, are among the most widely used
of antimetabolites and will be reviewed in some detail. However, a
full and complete discussion of every antimetabolite known would
be beyond the scope of this review; therefore, only those examples
that are of greatest interest will be discussed.

POTENTIAL TARGETS FOR
CHEMOTHERAPEUTIC INTERVENTION

Dihydrofolate reductase inhibitors

Methotrexate (Figure 2), one of the earliest antimetabolites
discovered, has been in use in cancer chemotherapy for over
30 years (Jolivet et al, 1983). It is an inhibitor of DHFR, which
occupies a central position in the metabolic pathway. DHFR is
responsible for the conversion of dihydrofolate to tetrahydrofolate
and ultimately to 10-formyl tetrahydrofolate. The last compound
provides the formyl group for glycinamide ribonucleotide formyl-
transferase (GARFT) and aminoimidazole carboxamide ribo-
nucleotide formyl transferase (AICARFT). Thus, the inhibition of
DHFR results in depletion of intracellular pools of reduced folates
and ultimately in reduced synthesis of purines and pyrimidines.
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Figure 1 Folate biosynthetase pathways and inhibitors. Schematic
representation of folate biosynthetic pathways and the enzymes involved.
mFBP, membrane-associated folate binding protein; RFC, reduced folate
carrier; FPGS, folylpolyglutamate synthase; dUMP, deoxyuridine
monophosphate; FH4, tetrahydrofolate; GAR, glycinamide ribonucleotide;
TMP, thymidine monophosphate; FH2, dihydrofolate; TS, thymidylate
synthase; DHFR, dihydrofolate reductase; Glun, polyglutamate; dAMP,
deoxyadenosine monophosphate; dGMP, deoxyguanosine monophosphate;
TTP, thymidine triphosphate

The predominant mechanism of action of methotrexate is uncer-
tain, as polyglutamated forms of the drug also inhibit TS and
AICARFT (Allegra et al, 1987b).

Resistance to methotrexate arises by a variety of mechanisms,
including impaired transport via the reduced folate carrier (Gorlick
et al, 1996). This has inspired the search for other DHFR inhibitors,
and led to the discovery of several methotrexate analogues including
trimetrexate (Marshall and Delap, 1994) and edatrexate (Sirotnak et
al, 1984). Trimetrexate is more lipophilic than methotrexate and is
not dependent on the RFC for entry into the cell. This leads to higher
concentrations of trimetrexate within the cell, although the drug
does not undergo polyglutamylation. Clinical trials with trime-
trexate are continuing; as yet there is no convincing evidence of
superiority over methotrexate. Another DHFR inhibitor that has
shown activity in humans is piritrexim. This is another compound
that does not rely on the RFC, but enters the cell by means of passive
diffusion. It has oral bioavailability of 75%, and clinical schedules
with repeated low doses have been developed because of a relatively
short half-life (3-5 h) (Feun et al, 1991). Activity has been seen for
this drug in phase II trials in urothelial and head and neck tumours,
as well as in melanoma, and evaluation is continuing.

Side-effects seen with this class of drug, as with most anti-
metabolites, consist mainly of toxicity to rapidly dividing cells,
therefore mucositis, myelosuppression and thrombocytopenia are
common. These effects are usually reversible and chemotherapy
can be continued once levels have returned to normal. It has been
known for several years that co-administration of leucovorin can
reduce these toxicities to acceptable levels (Pinedo et al, 1976).
Folic acid antagonists in general are embryotoxic and have caused
spontaneous abortion in animals (Hausknecht, 1995).

Nucleoside analogues

Another drug which has been in use for several decades is
5-fluorouracil (5-FU, Figure 3) (Moertel, 1978). It is a fluoropy-
rimidine, and is a member of the class of agents known as nucleo-
side analogues (Figure 3). In general, these agents function by
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Figure 2 DHFR inhibitors

replacing nucleosides in one or more normal cell functions
because of their similarity to the naturally occurring substrates.
They may fall into one of two main classes, either being incorpo-
rated into DNA and RNA synthesis or being responsible for inhi-
bition of one of the enzymes essential to cell metabolism. The
precise mechanism of action of 5-FU is unclear, and is partly a
function of dose and schedule. However, it is likely that thymidyl-
ate synthase is the main target for the nucleoside of 5-FU, which
binds to the active site of the enzyme in a similar manner to
dUMP. This is followed by incorporation of the folate co-factor
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5, 1 0-methylenetetrahydrofolate that, combined with the fluori-
nated pyrimidine, locks the enzyme into an inhibited conformation
resembling the transition state formed in the process of conversion
of dUMP to thymidine by TS. Cellular levels of thymine are thus
depleted and the enzyme is subsequently unable to function
normally.

Given the importance of TS as a target for 5-FU, it would be of
considerable clinical interest to establish whether prior knowledge
of TS levels in tumour biopsies could predict response to 5-FU-
based chemotherapy. It has been shown in several cell lines that
lower levels of TS are associated with increased sensitivity to 5-
FU (Van der Wilt et al, 1992). Clinical studies have now been
reported in a number of tumour types.

First, and independent of drug response, clear correlations have
been drawn between high TS levels and a poor prognosis. This
may reflect an association with increased rates of tumour cell
proliferation, or with post-transcriptional regulatory functions of
TS protein. Large-scale studies in early-stage breast cancer

(Pestalozzi et al, 1997), gastric cancer (Lenz et al, 1995) and
primary rectal cancer (Johnston et al, 1994) all reach similar
conclusions, with TS expression being measured either immuno-
histochemically, or using PCR to measure genetic expression of
TS mRNA.

Second, correlations have also been drawn with response to
5-FU-based chemotherapy, in these and other studies. In studies in
gastric cancer (Lenz et al, 1995) and in head and neck cancer

(Johnston et al, 1997), 65 and 70 patients, respectively, received
5-FU-based neoadjuvant chemotherapy, and in both cases there
was a significant (P < 0.001, P = 0.02, respectively) inverse corre-

lation between TS expression level and response. A similar
conclusion was drawn in a smaller study of 22 patients with
advanced colorectal cancer (Leichman et al, 1995), in which a

significant association (P = 0.004) between high TS expression
and lack of response to infusional 5-FU was noted.

Conversely, in those studies that have attempted to correlate TS
expression level with outcome of adjuvant chemotherapy; the
opposite has been seen, i.e. patients with high TS levels have a
better outcome with that therapy. This has been seen both in 278
node-positive breast cancer patients receiving CMF (cyclo-
phosphamide, methotrexate, 5-FU) (Pestalozzi et al, 1997) and in
194 patients with Dukes' B and C rectal cancer receiving MOF
(methyl CCNU, 5-FU vincristine) chemotherapy (Johnston et al,
1994). The reasons for the apparent paradox are not clear, but the
data reported to date would certainly justify further translational
studies to clarify the predictive role of TS expression; it remains
quite possible that this will vary according to the type of tumour
being treated.

Other recently developed nucleoside analogues include the 5-
FU prodrug capecitabine (Figure 3) (Miwa et al, 1990). This cyti-
dine analogue is administered as an oral formulation and passes
unchanged through the intestinal mucosa. It is activated through a
series of enzymatic steps in the liver and in tumour cells, with
conversion to 5-FU in a potentially tumour-selective manner by
the enzyme thymidine phosphorylase. Phase I studies of oral
therapy with capecitabine in adult patients with a variety of
advanced and/or metastatic solid cancers have shown that the drug
is well tolerated (Hughes et al, 1996). Dose-limiting toxicities
(DLT) included nausea, mucositis, diarrhoea and neutropenia.
Palmar-plantar dyserythrodysthesia has also been seen.
Pharmacological data indicate that to an extent, capecitabine simu-
lates an i.v. protracted infusion of 5-FU; there is also clinical
evidence of selective uptake in tumour biopsies after drug admin-
istration (Schuller et al, 1997). Evidence of response was seen in a
variety of tumours, including breast, colorectal and oesophageal
cancers, and occurred over a wide range of doses. Phase II trials
have confirmed activity in breast and colorectal cancer, and
randomized phase III studies are in progress.

Deoxynucleoside analogues are also finding an expanding
application in cancer chemotherapy. The first of these agents was
cytosine arabinoside (cytarabine). This is commonly used in the
treatment of acute myeloblastic leukaemia (Keating et al, 1982)
but has no significant action in solid tumours. After activation
to the triphosphate, cytarabine has a range of modes of action,
including incorporation into DNA and subsequent chain termina-
tion, stimulation of apoptosis and inhibition of DNA polymerase.
Side-effects of treatment with cytarabine can include pancyto-
penia, alopecia, nausea, vomiting, fever, myalgia and bone and
chest pain, and the drug is clearly schedule dependent in terms of
toxicity and efficacy.

Analogues of cytarabine have been developed more recently,
with broader spectrum anti-tumour activity. The first is gem-
citabine, a difluorinated analogue (Hertel et al, 1988). Its activity is
dependent upon the formation of a mononucleotide that is subse-
quently incorporated into DNA (Huang et al, 1991). One more
residue is incorporated into the chain before chain termination
takes place. This mechanism, termed 'masked chain termination',
makes the recognition and excision of the modified DNA very
difficult, and may partly explain the drug's broad activity. In addi-
tion, gemcitabine is capable of 'self-potentiation', whereby accu-
mulation of the active metabolite leads to increased efficacy
through reduction of intracellular pools of dCTP, after inhibition
of ribonucleotide reductase, deoxycytidine deaminase, DNA poly-
merase and CTP synthetase.
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Clinical trials have been carried out to investigate the effect of
schedule on the anti-tumour activity of gemcitabine, with the
result that a weekly schedule was identified as having maximum
potential (Abbruzzese et al, 1991). Preclinical studies have indi-
cated that, unlike cytarabine, gemcitabine had a high level of
activity in solid tumours, and this has been borne out in clinical
trials. Activity has been seen for this agent in a variety of tumours,
including pancreas, ovary, bladder, breast and lung cancers (Kaye,
1994; Abratt et al, 1995; Anderson et al, 1995; Carmichael et al,
1995; Burris et al, 1997). Improvements have been seen in the
quality of life of patients with pancreatic cancer (Burris et al,
1997) and other trials have investigated the effect of gemcitabine
in combination therapy, for example with cisplatin in the treatment
of NSCLC (Steward, 1997).

Other agents in this class include ethynyl uracil (Porter et al,
1992), decitabine (Richel et al, 1988) and the fludarabine analogue
cladribine (Kay et al, 1992), all of which are currently under
clinical investigation.
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Thymidylate synthase inhibitors

This class of compound (Figure 4) has been the subject of intense
research activity in recent years (Takemura and Jackman, 1997).
Thymidylate synthase is essential to the synthesis of deoxythymi-
dine monophosphate (dTMP) from deoxyuridine monophosphate
(dUMP). This process is the sole source ofdTMP in the cell and its
inhibition leads to the depletion of cellular thymidine.
CB3717 was the first quinazoline TS inhibitor to undergo

preclinical and clinical investigation. The compound was found to
have excellent in vitro and in vivo anti-tumour activity (Jones et al,
1981). It enters the cell by means of the reduced folate carrier and
requires polyglutamation for its activity. In phase I studies,
responses were noted in lung and breast cancers, although renal
toxicity was seen to be unpredictable and severe (Sessa et al,
1988). Subsequent phase II trials confirmed this and the develop-
ment of the drug was discontinued (Cantwell et al, 1988). ZD1694
(raltitrexed) is a water-soluble analogue of CB3717 that was
developed with the aim of reducing the side-effects seen in the
parent compound (Kelland et al, 1992). This appeared to be
successful, in that the renal toxicity observed with CB3717 was
absent in raltitrexed, whereas the anti-tumour activity was
retained. Clinical trials have confirmed the activity of raltitrexed
in several tumour types, including breast and colorectal cancers
(Zalcberg et al, 1996; Smith et al, 1994). Side-effects include
neutropenia, transient elevations in transaminase levels, and
gastrointestinal disturbances. Randomized trials in colorectal
cancer have confirmed the activity of raltitrexed in comparison to
standard 5-FU schedules, although the level of activity has been
variable between studies (Pazdur and Vincent, 1997; Zalczberg,
1997). Raltitrexed was approved in the UK in March 1996 for use
in the treatment of colorectal cancer.
A potential successor to raltitrexed is ZD933 1. It, too, is a

water-soluble compound but is not a substrate for folylpoly-
glutamyl synthetase (FPGS); hence it may overcome resistance to
conventional polyglutamated TS inhibitors that may be due to
defective FPGS activity (Stephens et al, 1994). Preclinical studies
have shown impressive in vivo activity against human tumour
xenografts, as well as activity in raltitrexed-resistant cell lines
(Jackman et al, 1995). Phase I clinical trials with this compound
are now underway.
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Figure 4 Thymidylate synthase inhibitors

In recent years, medicinal chemists have used computer-aided
molecular design for the development of new and more potent TS
inhibitors. One example that has undergone extensive testing
is AG337 (Thymitaq) (Webber et al, 1993). The compound is
lipophilic and requires neither the RFC nor FPGS for activity,
entering the cell by passive diffusion. Preclinical studies have
shown activity in a range of human xenografts, though this is
clearly schedule dependent (Webber et al, 1996). Phase I studies
with AG337 have been conducted with a range of oral and i.v.
schedules. Toxicities seen include nausea, myelosuppression and
mucositis. Activity has been seen in head and neck cancer, pancre-
atic cancer and hepatoma (Clendininn and Johnston, 1996), and
randomized trials, using a protracted i.v. infusion of AG337, are
underway.
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Multi-targeted antifolate

MTA is a novel pyrrolo-pyrimidine antifolate (Taylor and Kuh,
1992) with early evidence of clinical activity (Figure 5). Its major
mechanism of activity is through the inhibition of TS, but it is also
known to inhibit DHFR and GARFT, and hence has become known
as a multitargeted antifolate, MTA (Shih et al, 1997). Once MTA
has entered the cell, it undergoes polyglutamation that results in
prolonged intracellular retention and enhanced inhibition of TS and
GARFT. Anti-tumour activity has been demonstrated in mouse

leukaemia and colorectal cancer models (Schultz et al, 1996). Three
schedules were explored in the phase I setting, including weekly
times 4 every 6 weeks (Rinaldi et al, 1995), once every 3 weeks
(Rinaldi et al, 1996) and daily times 5 every 3 weeks (McDonald et
al, 1996). In phase I trials, responses were seen in previously
treated patients with colorectal and pancreatic cancer. Minor
responses were demonstrated in patients with NSCLC. The dose-
limiting toxicity was myelosupression. Phase II trials are currently
under way and have confirmed MTA's broad spectrum of clinical
activity (Clarke et al, 1997; Cripps et al, 1997; John et al, 1997;
Miller et al, 1997; Rusthoren et al, 1997; Smith et al, 1997)

Glycinamide ribonucleotide formyltransferase and
aminoimadazole carboxamide ribonucleotide formyl
transferase

These enzymes occupy a pivotal role in the de novo synthesis of
purines. Their function is to catalyse the transfer of formyl groups

from N'Oformyl tetrahydrofolate to tetrahydrofolate, in the case of
GARFT, whereas AICARFT formylates AICAR. Both of these
processes are essential to the formation of purines and DNA
synthesis, and their inhibition leads to depletion of cellular
pools of adenosine monophosphate (AMP) and guanosine
monophosphate (GMP).
The first GARFT inhibitor to advance into clinical trials was

lometrexol, an analogue of methotrexate (Ray et al, 1993). Early
preclinical data suggested that co-administration of folic acid
could reduce toxicity (Mendelsohn et al, 1996a), and these obser-
vations have been borne out in the clinic (Ray et al, 1993;
Laohavinj et al, 1996). Clinical development of lometrexol was

not continued after phase I studies because of the development of a

more potent compound, LY309887. Preclinical studies demon-
strated activity in a broad spectrum of tumours, including
6C3HED lymphosarcoma, C3H mammary tumours C3H mice,
LX- 1 lung and HC 1 colon human xenografts in nude mice
(Mendelsohn et al, 1996b). Phase I studies are ongoing to address
the critical questions of an appropriate schedule, and the dose and
duration of folic acid supplementation.
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Figure 6 GARFT and AICARFT inhibitors

Drug design through computer modelling has also been used in
this field, and three compounds are now in development. These are

AG2032 and AG2034 (Boritzki et al, 1996), both GARFT
inhibitors, and AG2009, an inhibitor of AICARFT (Faessel et al,

1996). Activity has been demonstrated for AG2034 against a range
of human tumour xenografts (Boritzki et al, 1996), and clinical
trials are underway using a range of schedules.

CONCLUSION

There has clearly been a resurgence in the field of antimetabolite
therapy. Information on cellular metabolism, in particular identifi-
cation of the important enzymes involved, has provided new
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targets for chemotherapeutic intervention. There is no doubt that
the development of new nucleosides will have a significant impact
on anti-cancer treatment in the future, as will the new generation
of TS inhibitors. The activity of these classes of drug against solid
tumours previously considered to be refractory to antimetabolite
therapy is particularly noteworthy.

Ultimately, the place for many of these drugs may be in combi-
nation therapy, in which novel mechanisms of action and
improved side-effect profiles will contribute to greater activities
and better quality of life. Clearly, resistance to antimetabolites
remains a formidable obstacle, but increasing opportunities for
translational research, aimed at understanding the mechanisms by
which this arises clinically, offers the prospect of improvements in
this key area in the future.
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