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Automatic classification and segmentation of
single-molecule fluorescence time traces with deep
learning
Jieming Li1,4,6, Leyou Zhang2,5,6, Alexander Johnson-Buck1,3✉ & Nils G. Walter 1✉

Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photo-

physical artifacts that typically necessitate human expert screening, which is time-consuming

and introduces potential for user-dependent expectation bias. Here, we use deep learning to

develop a rapid, automatic SMFM trace selector, termed AutoSiM, that improves the sen-

sitivity and specificity of an assay for a DNA point mutation based on single-molecule

recognition through equilibrium Poisson sampling (SiMREPS). The improved performance of

AutoSiM is based on accepting both more true positives and fewer false positives than the

conventional approach of hidden Markov modeling (HMM) followed by hard thresholding. As

a second application, the selector is used for automated screening of single-molecule Förster

resonance energy transfer (smFRET) data to identify high-quality traces for further analysis,

and achieves ~90% concordance with manual selection while requiring less processing time.

Finally, we show that AutoSiM can be adapted readily to novel datasets, requiring only

modest Transfer Learning.

https://doi.org/10.1038/s41467-020-19673-1 OPEN

1 Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI, USA. 2Department
of Physics, The University of Michigan, Ann Arbor, MI, USA. 3 Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan,
Ann Arbor, MI, USA. 4Present address: Bristol-Myers Squibb Company, New Brunswick, NJ, USA. 5Present address: Google, Pittsburgh, PA, USA. 6These
authors contributed equally: Jieming Li, Leyou Zhang. ✉email: alebuck@umich.edu; nwalter@umich.edu

NATURE COMMUNICATIONS |         (2020) 11:5833 | https://doi.org/10.1038/s41467-020-19673-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19673-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19673-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19673-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19673-1&domain=pdf
http://orcid.org/0000-0002-7301-1275
http://orcid.org/0000-0002-7301-1275
http://orcid.org/0000-0002-7301-1275
http://orcid.org/0000-0002-7301-1275
http://orcid.org/0000-0002-7301-1275
mailto:alebuck@umich.edu
mailto:nwalter@umich.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


S ingle-molecule fluorescence microscopy (SMFM) is a
powerful family of approaches with applications in bio-
physics, analytical chemistry, and super-resolution micro-

scopy1–4. For instance, smFRET is a widely used technique to
measure small-scale distance changes (typically in the range of ~2
to 8 nm) by detecting changes in the efficiency of FRET over time
in each molecule or complex. This approach permits the obser-
vation of equilibrium biomolecular dynamics that would be
inaccessible to ensemble techniques5. In addition, kinetic finger-
printing approaches such as single-molecule recognition through
equilibrium Poisson sampling (SiMREPS)4,6 employ kinetic
probing to achieve highly specific detection of single unlabeled
nucleic acids. SiMREPS in particular has been shown to distin-
guish between a wild-type DNA sequence and C-to-T point
mutation7 with an apparent discrimination factor several orders
of magnitude greater than the theoretical maximum for methods
relying on thermodynamic discrimination8.

Single-molecule fluorescence microscopy data are usually
acquired using a wide-field total internal reflection fluorescence
(TIRF) microscope with sensitive EMCCD or sCMOS camera(s)
(Fig. 1). The raw movie data are saved and stored in an
uncompressed format that takes ~1–10 GB per movie, or perhaps
10–100 GB per experiment. Emission profiles from single fluor-
ophores are localized within the field of view by various spot-
finding methods to identify candidate molecules for analysis9–11.
In the case of two-channel measurements such as most smFRET
experiments9, the signals from the two fluorophores are spectrally
separated using a dichroic mirror and projected onto different
zones of the camera’s sensor, or onto different cameras, and
fluorescent signals originating from the same molecule must be
paired up (or colocalized) using one of several image registration
methods12–14. Next, an intensity-versus-time trace is generated
for each candidate molecule, reducing the size of a typical dataset
to ~10–100MB/movie.

Analysis of intensity-versus-time traces varies depending on
the nature and goal of the experiment (Fig. 1). For single-channel
SiMREPS experiments, HMM15 is frequently used to fit an
idealized (noiseless) time trace to the noisy raw data in order to
extract kinetic information from each time trace; this information
is then subjected to a thresholding procedure to identify which
candidate traces exhibit kinetic behavior (i.e., frequency and
lifetimes of probe binding events) within the range expected for
the analyte of interest. The traces passing the kinetic thresholding
step are classified as Accepted, and the number of accepted traces
is taken as the number of analyte molecules observed in the field
of view. By contrast, for two-channel smFRET data (Fig. 1) first a
curation step is used to screen out traces with low fluorescence
intensity and/or signal-to-noise ratio to avoid the calculation of
inaccurate FRET values; this can be performed in automated or
semi-automated fashion by simple thresholding. After curation,
researchers typically must manually select time traces of suffi-
ciently high quality to accurately reflect the FRET dynamics of the
experimental system. Following this manual classification step,
only the segment(s) of each trace in which both fluorophores are
capable of continuous excitation and emission (i.e., are not
blinking or irreversibly photobleached) must be selected for
analysis in order to avoid the calculation of spurious FRET values.
This segmentation is often performed manually as well, although
automated segmentation algorithms are available16. The resulting
dataset of segmented, high-quality smFRET traces has usually
dwindled to between ~100 KB and 1MB per movie, and is then
subjected to further analyses (e.g., HMM and/or construction of
FRET histograms) that depend on the specific questions under
investigation.

The power of many SMFM methods thus comes at the price of
a need for extensive data curation and analysis. In some cases,

such as super-resolution microscopy, data analysis has been
automated with satisfactory results17–20. However, in other cases,
such as smFRET and SiMREPS, existing algorithms for single-
molecule trace selection usually result in trade-offs between false
positives and false negatives depending on the values of various
arbitrary thresholds set by the user. This limitation is due to the
sheer diversity of potential artifacts, making it difficult to design
simple criteria that effectively remove all artifactual or defective
time traces while retaining all or most of the relevant data for
further analysis. To mitigate this tradeoff, most laboratories
manually screen hundreds to thousands of single-molecule traces
prior to analysis (Fig. 1), but this will require lengthy training to
become an expert, introduces potential user-dependent error that
will likely evolve with training, and may still consume several
person-hours of effort per experiment (Supplementary Fig. 1).
There is thus a great need for faster and more accurate automated
analytic pipelines for SMFM time traces that can manage the
complexities of single-molecule behavior.

Several groups have developed software tools that automate
some aspects specifically of smFRET analysis16,21–23. One of the
most advanced and full-featured of these programs is SPAR-
TAN16, which automates the curation and segmentation steps of
analysis. However, thresholding parameters for curation are set
by hand in a trial-and-error process, and the user must still
manually select high-quality traces from the curated set, which
can be time-consuming for datasets containing thousands of
traces. In addition, conventional algorithms for characterizing the
kinetic behavior of traces introduce significant errors and biases.
For instance, a regularly used method for kinetic analysis in
SMFM—HMM15—will occasionally mistake the tail of a noisy
intensity or FRET signal as an additional state, resulting in
spurious kinetic transitions. While methods such as hierarchical
clustering of HMM-fitted smFRET trajectories permit automated
classification of even complex single-molecule behaviors24, these
methods are only as accurate as the original fitting method. For
an analytical technique such as SiMREPS, even an occasional
error can have a strong effect on specificity and limit of detec-
tion25. Finally, it is often the case that only a particular time
segment of each single-molecule trace (e.g., prior to photo-
bleaching of the first fluorophore) is useful; these regions of
interest (ROIs) are often selected by hand, slowing analysis
considerably.

In recent years, deep learning has provided innovative solu-
tions for single-molecule analysis, with applications ranging from
the acceleration of super-resolution microscopy19,26 to identifi-
cation of single molecules in noisy fluorescence microscopy
images27,28, improvement of the accuracy of nanopore-based
DNA sequencing29 and classification of kinetic single-molecule
barcodes for multiplexed microscopy30. Here, we adapt a recur-
rent neural network (RNN) known as Long Short-Term Memory
(LSTM)31 to the analysis of experimental SiMREPS datasets
where the experimental ground truth (presence or absence of a
mutant DNA sequence spiked into the matrix) is known, and
show that the LSTM algorithm yields consistently higher sensi-
tivity and specificity than conventional HMM followed by
application of signal-to-noise ratio and kinetic thresholds. Fur-
thermore, we compare LSTM with a convolutional neural net-
work (CNN)32 for the classification and segmentation analysis of
single-molecule FRET traces, and show that the concordance
between the classifications made by users and the algorithms
remains high (~90%). Finally, to facilitate the application of our
deep learning networks to new SMFM systems we implement
Transfer Learning, achieving high concordance (~90%) for a
distinct smFRET-monitored biomolecular system without the
need for a large training dataset. Our results suggest that deep
learning approaches provide a valuable means of both
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accelerating and improving the classification and parsing of
single-molecule time trajectories for biophysics and analytical
chemistry. We make our software, named AutoSiM, available
upon request as a MATLAB executable, allowing end users with
no machine learning background to easily apply it to their
own data.

Results
An LSTM classifier improves analysis of SiMREPS time traces.
As a challenging data analysis case that provides a useful
experimental ground truth against which to judge the perfor-
mance of the algorithm, we tested the potential of deep learning
to improve the analysis of SiMREPS data for detection of the
EGFR mutation T790M18 (Fig. 2). The SiMREPS assay distin-
guishes among surface-immobilized mutant and wild-type DNA
sequences on the basis of different kinetics of probe interaction
with the mutant sequence, wild-type sequence, and the surface
itself. Distinguishing the T790M mutation from wild-type EGFR
sequence at low mutant allele fractions is especially challenging
because it is a C → T transition that is susceptible to interference
from spontaneous deamination of C to yield U33. The time traces

of mutant and wild-type detection events are potentially very
similar and therefore, due to the stochasticity inherent in single-
molecule kinetics, challenging to distinguish perfectly using a
simple thresholding algorithm. We assigned two labels to training
datasets according to experimental conditions: Mutant for
experiments in which the T790M sequence is spiked into the
matrix, and Wild-Type for experiments in which only wild-type
EGFR sequence is present. Mutant datasets yield many SiMREPS
traces with repeated transitions between high- and low-
fluorescence states, indicating the presence of repeated specific
binding of a fluorescent probe to the mutant sequence (Fig. 2a, c).
By contrast, wild-type datasets comprise time traces exhibiting a
range of different behaviors that reflect partially mismatched
binding of probes to wild-type DNA sequence (Fig. 2a, c). Both
mutant and wild-type datasets contain additional time traces
reflective of nonspecific probe binding to other molecular species
or to the imaging surface.

We trained the LSTM classifier of AutoSiM entailing 5 neural
network layers (Fig. 2b) on a training dataset combining 3 mutant
and 4 wild-type experiments, with 2184 time traces in total. The
objective of training was to (1) abstract time-dependent signal
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features that are highly represented in the mutant dataset, while
poorly represented in the wild-type dataset; and (2) use these
features to assign a score to individual traces that classifies each
trace as a likely mutant or wild-type/non-specific-binding
detection event. During training, we used a weighted cross-
entropy loss function that weakly rewards the acceptance of traces
from the mutant training datasets while strongly penalizing the
acceptance of traces from the wild-type training datasets (Fig. 2b).
The output of the LSTM network is a probability score ranging
from 0 (wild-type-like or background-like) to 1 (mutant-like),
representing the likelihood that each trace represents probe
binding to a mutant molecule. Based on the assigned score, the
LSTM network classifies each trace as accepted (mutant-like) or
rejected (wild-type-like or background-like) (Fig. 2 and Supple-
mentary Fig. 2). An ensemble histogram of scores assigned to
traces in the training datasets (Supplementary Fig. 3a) shows that
the wild-type dataset exhibits scores clustered near 0, while the
mutant dataset contains two well-separated populations with high
and low scores, showing high specificity and certainty, with very
few boundary cases to complicate the classification task. By
default, any trace with a score >0.5 is classified as a positive
mutant detection event, and any trace with a score <0.5 is
classified as likely wild-type or background signal. Inspection of
scores assigned to specific traces in the training mutant dataset
(Supplementary Fig. 2) finds that high-scoring traces tend to
show clear repetitive transitions between two states and good
signal-to-noise ratio, reflecting the distinct time-dependent signal
features present only in mutant detection events. In contrast, low-
scoring traces have disqualifying features such as more than two
intensity states, few transitions between high- and low-intensity
states, or binding events that occur with kinetics that are very
different than those observed for the mutant DNA sequence.
Notably, no traces in the wild-type dataset have scores above 0.5.
While training requires 30–60 min on a typical laptop computer,
this is hands-off time, in contrast to the manual adjustment of
HMM filtering parameters that may take a similar amount of
time but is a hands-on process strongly influenced by the skill of
the experimenter. Application of the trained model to any future
dataset (comprising, in our test below, the classification of 5457
single-molecule traces) takes ~2 min on a laptop computer.

To further understand the basis of the score assignment, we
applied the LSTM classifier to simulated data with randomized
intensity and kinetic parameters, and found that both signal-to-
noise ratio and kinetics strongly factor into the classification of a
trajectory, consistent with the most critical differences between
true positive mutant traces and background traces (Supplemen-
tary Fig. 3b–d). Notably, unlike the conventional kinetic analysis
based on HMM, the LSTM classifier does not apply hard
thresholds to individual kinetic parameters, but makes classifica-
tions based on the simultaneous consideration of multiple
coupled parameters. These results illustrate the capability of
AutoSiM to learn the underlying time-dependent features of
SiMREPS time traces without any a priori assumptions about
binding kinetics.

Important to the robust application of any machine learning
method is the ability to maintain high performance on new,
independent datasets. After training, we tested the trained LSTM
classifier on independent experimental data from detection of the
T790M mutation in the presence of a varying excess of wild-type
sequence25 (Fig. 2c). SiMREPS experiments conducted with four
different ratios of mutant sequence to wild-type sequence (1:10k,
1:100k, 1:1 M and 0:1) were included, comprising 14 experiments
and 5,457 traces in total. Compared to classification based on
HMM fitting followed by kinetic thresholding, the LSTM
algorithm consistently accepts approximately 1.7-fold as many
traces in the presence of mutant sequence (1:10k, 1:100k and 1:1

M), yielding a ~70% increase in sensitivity, while accepting 2.5-
fold fewer traces (2 accepted in LSTM classifier vs. 5 accepted in
the HMM fitting followed by kinetic thresholding) in the absence
of mutant sequence (0:1), suggesting a ~4.25-fold increase in
specificity (Fig. 2d). The LSTM classifier also increased the
sensitivity of a standard curve for the T790M sequence in the
absence of wild-type sequence (Supplementary Fig. 4). We note
that in the training set with only mutant sequence (1:0) the LSTM
approach also accepted more traces than the HMM approach,
while in the training set with only wild-type sequence (0:1) the
LSTM network accepted fewer traces than the HMM approach.
Taken together, these results suggest that AutoSiM can robustly
abstract the underlying time-dependent features with high
certainty, and can improve the effective limit of detection while
also increasing analytical specificity from the same underlying
raw data.

Deep learning accelerates analysis of smFRET time traces. Since
its development over two decades ago1, smFRET has been used to
study the dynamics of many biomolecular systems at the nan-
ometer scale, especially conformational changes involving
proteins34,35 and/or nucleic acids36–39 (Fig. 3a). In these studies,
the need to simultaneously consider the behavior of two fluor-
escence channels (i.e., donor and acceptor fluorophores) and the
lack of an objective experimental ground truth (e.g., presence or
absence of probe binding to a mutant sequence) by which to
judge the output of analysis makes this a more complex task for
an automated classifier than SiMREPS. Since the most time-
consuming tasks in smFRET for most laboratories are the cura-
tion, classification, and segmentation of smFRET time traces
(Fig. 1), we developed a deep learning-based component of
AutoSiM that automates these steps for two-channel smFRET
traces. Since the LSTM neural network is sensitive to time-
dependent signal changes, it can be trained to perform not only
binary curation and classification of traces (Accept or Reject) but
also segmentation to exclude portions of traces exhibiting pho-
tobleaching or photoblinking40 or other sporadic events that
interfere with FRET analysis (Supplementary Fig. 5). Both clas-
sification and segmentation can therefore use the same LSTM
network design with user-defined network structure parameters
such as the preferred network depth that best reflects the given
data complexity and desired prediction granularity. For this
application of AutoSiM (Fig. 3b), we used a 7-layer LSTM net-
work (Supplementary Table 11) for classification based on user-
assigned labels (Accept or Reject, one label for each trace), and an
8-layer LSTM network (Supplementary Table 12) for segmenta-
tion based on the segment(s) of each trace that were selected or
rejected for analysis by the user (i.e., one label for each frame in
the time trace).

To train these networks with a broad range of FRET dynamics,
we compiled a smFRET dataset composed of 122 raw movies
from four different users and four distinct molecular systems36–39

(Fig. 3a), selected 80% of the traces at random for training, and
reserved the remaining 20% of traces for evaluation. The
combined dataset consists of 5110 distinct traces that were
accepted by the users and 24,285 traces that were rejected,
representing ~140 person-hours of manual classification and
segmentation. To further expand the range of possible FRET
dynamics beyond those observed in this limited number of
molecular systems, the training dataset was supplemented with
5000 simulated Accepted traces with randomized FRET states
and interconversion kinetics. Since there are no objective
expectations for the output of analysis based on an experimental
ground truth as with SiMREPS data, we use the concordance—
calculated as the ratio of the number of traces agreed upon by
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both human and the classifier algorithm divided by the total
number of input traces—as the performance metric for these
smFRET data. For the classification LSTM network, an average
concordance of 90.2 ± 0.9% was achieved for 10 training and test
sets sampled at random from the same experimental dataset
comprising 122 raw movies (Supplementary Tables 1 and 2). For
the segmentation LSTM network, an average frame-to-frame
concordance of ~95% was achieved. In contrast to the pace of 1–5

traces processed per minute by human users (Supplementary
Fig. 1), the trained LSTM networks classify ~1000 traces per
minute and perform segmentation of approximately 1,000 traces
per minute on a desktop with Intel i5 3.4 GHz CPU, accelerating
analysis 100- to 500-fold while maintaining high concordance
with human experimenters.

A hallmark of FRET measurements is to evaluate the degree of
anticorrelation between donor and acceptor fluorophore emission
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Fig. 3 Classification and segmentation of two-color single-molecule FRET traces with the LSTM and CNN deep learning algorithms of AutoSiM. a
Schematics and typical smFRET traces from the four experimental systems used in training and testing, from top to bottom in the panel: a toehold-
exchange-based DNA walker37; a DNA swinging arm36; a preQ1 riboswitch39; and a paused transcriptional elongation complex38. Traces show variable
numbers of anticorrelated changes in donor (blue) and acceptor (red) fluorescence intensity typical of smFRET data. The elevated acceptor fluorescence
from 0 to 5 s in some of the traces is due to direct excitation of the acceptor to confirm its presence prior to the FRET measurement. b LSTM network
structures for classification and segmentation (blue) and CNN network structure (yellow). The LSTM network accepts raw SMFM traces for training and
testing, while the CNN network requires that each trace be converted into a 2-D scatterplot of donor and acceptor intensity, then into a 32-by-32-pixel
image for processing by the CNN. c ROC curves for classification by the CNN and LSTM networks as compared to classifications by human experimenters.
Here, specificity and sensitivity are calculated in relation to manual selection outcomes rather than a known ground truth. AUC > 0.95 for both networks,
indicating strong agreement with manual classification. d Venn diagram showing the concordance among manual selection, LSTM and CNN for a
representative test set of single-molecule trace data. Numbers in the Venn diagram represent the number of traces accepted (rejected) by each method or
combination of methods. e FRET histograms generated by CNN-classified, LSTM-classified, and manually selected traces from the same two original
datasets. Data used is from a paused transcriptional elongation complex experimental system.
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intensity within each single-molecule trace. To directly consider
this feature, we converted the two-channel time series data from
each trace into a two-dimensional scatter plot of donor and
acceptor intensity values, which was then formatted as an image.
These images, whose features reflect not only any correlation
between donor and acceptor intensity within each trace but also
the number of FRET states, signal-to-noise ratio, photobleaching
etc., were used for training and evaluation of a CNN implemented
in AutoSiM (Supplementary Table 13), thus converting the
classification task into one of image recognition (Fig. 3b). Using
the same sampling scheme for training (80% of data) and
evaluation (20% of data) as was used for the LSTM classifier, an
average concordance of 90.7 ± 0.4% with human experimenters
was achieved across 10 trials with different randomly sampled
training and evaluation sets (Supplementary Tables 3 and 4).
Although the CNN yields slightly higher concordance than the
LSTM classifier, it requires more computing power than that of a
typical laptop computer (all the CNN training in this work was
performed using GPUs from Amazon Cloud). To avoid the
necessity of cloud computing, our software allows users to employ
our pre-trained CNN for classification purposes without the need
to comprehensively train a new network. Like the LSTM network,
the trained CNN performs classification much more rapidly than
human users, processing ~8000 traces per minute on a desktop
with Intel i5 3.4 GHz CPU.

To more comprehensively evaluate the concordance of these
two classification networks with human judgments as a function
of score threshold, we constructed receiver-operator characteristic
(ROC) curves (Fig. 3c). The area under the curve (AUC) for both
the LSTM and CNN curves is ~0.95, suggesting high proficiency
at predicting the classification choices of a human experimenter.
The concordance between LSTM, CNN, and manual trace
selection for a representative test set of data is shown as a Venn
diagram in Fig. 3d. The overall specificity of the LSTM (94.6 ±
1.0%) and CNN approaches (94.5 ± 0.6%) is comparable, and can
be increased further (97.9 ± 0.3 %) by accepting only those traces
that are accepted by both methods (Supplementary Tables 1–6),
albeit at the expense of lower sensitivity (57.4 ± 4.5%) relative to
manual selection. In addition, FRET histograms generated by one
human user and by the automatic trace selectors (CNN+LSTM)
are shown in Fig. 3e, and suggest reasonable agreement between
the output of the deep learning classifiers and human experi-
menters. FRET histograms for the other three users and systems
show reasonable agreement as well (Supplementary Fig. 6).
Detailed analysis of traces accepted by the LSTM algorithm but
not manual selection (Supplementary Fig. 7) or vice-versa
(Supplementary Fig. 8) suggests that both approaches are fairly
conservative, rejecting traces that may in fact yield useful FRET
data but contain small imperfections such as low signal-to-noise
ratio or intensity changes in one channel without a corresponding
anticorrelated change in the other channel.

Taken together, we so far have demonstrated that deep
learning-based algorithms can automate and bypass the most
time-intensive steps of smFRET data analysis—manual classifica-
tion and segmentation—while exhibiting high concordance with
human researchers for a broad range of molecular systems. These
approaches not only significantly accelerate data analysis but,
perhaps more importantly, also are expected to provide more
consistent results than human judgment because the underlying
algorithms are deterministic. A potential shortcoming is that, as
with other deep learning approaches, ours requires a large
training set: to train the networks on as broad a range of FRET
dynamics and data artifacts as possible, we included 29,395
manually analyzed time traces for training and evaluation.
Requiring such a large training set for analysis of new smFRET
systems would render the approach impractical. However, as we

show in the next section, most of the network layers trained with
this broad dataset can be reused in the analysis of new molecular
systems, which significantly reduces the amount of training data
required when generalizing the method to new datasets.

Adaptation to new smFRET datasets with minimal training
data. To facilitate the application of our deep learning approach
to novel smFRET systems without requiring large training data-
sets, we exploit Transfer Learning (TL). TL is a training strategy
used in deep learning that transfers knowledge learned from one
problem (dataset) to a different but related problem (dataset) by
reusing most of the trained network layers41. In our AutoSiM
software, we transferred the first 4 layers of the 7-layer classifi-
cation LSTM network (149,800 parameters, representing 99.97%
of the total parameters) and first 5 layers of the 8-layer seg-
mentation LSTM network (342,625 parameters, representing
99.98% of the total parameters) to analyze data from a molecular
system not included in the original training set, a Mn2+-sensing
riboswitch42 (Fig. 4b). During training, we fixed the parameters in
the transferred layers while only training the last 3 layers of the
networks (52 parameters, representing 0.02% and 0.03% of the
total parameters in the classification and segmentation networks,
respectively). With the benefit of transferred layers being trained
with broad FRET dynamics, the training was accomplished within
15 min using only 559 manually analyzed time traces (equivalent
to the number of time traces generated from 1 raw movie,
comprising 69 manually accepted and 490 manually rejected
traces) from the new dataset, only 2.3% of the size of the original
smFRET training set comprising ~24,000 traces. Notably, we used
data only from a single experimental condition (100 mM KCl, 0.1
mM Mn2+) that exhibited a broad range of possible molecular
trace behaviors (Fig. 4c).

After training, the networks were applied to test data
comprising 15 experimental movies and 7146 traces from the
same system under five different buffer conditions resulting in
different FRET dynamics. On average, the networks achieved 91%
concordance with manual classification (Supplementary Table 7),
and FRET histograms constructed for each buffer condition
excluding the training condition were compared to corresponding
histograms from manual selection (Fig. 4e). Two-peak Gaussian
fitting revealed similar estimates of the population of the high-
and low-FRET (docked and undocked, respectively) states across
buffer conditions, with a discrepancy between fitted FRET
population ranging from <1% to 9%. Differences of this
magnitude routinely arise when comparing replicates of the same
experiment collected and analyzed on different days by the same
user, and do not affect the overall conclusion42 that the docked
state of this riboswitch is promoted by higher concentrations of
Mg2+ and especially Mn2+. Closer inspection of the output
reveals that, for all four conditions tested, the TL-trained network
accepted fewer time traces than manual selection. This is expected
because the network is optimized to yield high concordance with
the training data (Supplementary Table 7); since the majority of
traces are rejected in the training set, high concordance generally
requires the network to be conservative in its selections.
Inspection of the individual traces classified differently by the
TL-trained network than by manual selection reveals that these
are often borderline cases in which the signal-to-noise ratio or
stability of the fluorescent signal intensity are poor but perhaps
still high enough for an accurate FRET measurement, and which
are often judged inconsistently even by the same user (Fig. 4d). In
contrast, as a deterministic classifier, the LSTM network makes
more consistent judgements over time and between experiments
than an individual human user, increasing the consistency
between experiments compared to manual classification.
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To compare our software with existing state-of-art software, we
tested the same Mn2+-sensing riboswitch dataset with SPAR-
TAN16, which can automate trace segmentation but not
classification with user-defined threshold values for a list of
software-calculated features (Supplementary Table 10). To
provide a direct comparison with our approach, we used the
same data (559 traces, 69 manually accepted and 490 manually
rejected) from the same buffer condition (100 mM KCl, 0.1 mM
Mn2+) as in the training of LSTM network to manually search for
a set of threshold values that classifies the traces in high
concordance with manual selection. We then applied the
threshold values to the same data used in testing the TL-trained
networks (comprising 7146 traces), which yielded a curated set of
traces exhibiting on average 86% concordance with manual
selection (Supplementary Table 8), somewhat lower than that
observed for the TL-trained network. Note that SPARTAN
provides a functionality for users to manually refine classification
results and manually segment traces before subsequent analysis of
FRET dynamics by inspecting the curated traces individually.
Assuming the user can perform the analysis at 5 traces per min,
the highest continuous pace among the four users we surveyed
(Supplementary Fig. 1), the total user time to generate the
necessary output for analysis of FRET dynamics for all the testing
data is ~4 h with SPARTAN (Supplementary Table 9), only ~16%
of the time required for manual analysis. By comparison, the
LSTM network of AutoSiM both classified and segmented the test
data at a rate of 1,000 traces per min, leading to a total analysis
time of ~15 min (~1 min per movie), only ~1% of the time
required for manual analysis without any fatigue; that is, ~16
times faster than SPARTAN.

In summary, we have demonstrated that deep learning
algorithms can be robustly adapted to the analysis of new SMFM
data with TL. We trained the LSTM networks of AutoSiM on
training data equivalent to those from only one raw movie from
one experimental buffer condition from a new biomolecular
system with diverse molecular trace behaviors, and applied the
trained network to test data comprising 15 experimental movies
from the same system under 5 experimental buffer conditions.
High concordance (91%) with manual selection was achieved and
the same overall experimental conclusions could be drawn as
from previous manual analysis42. AutoSiM not only greatly
accelerates smFRET data analysis and provides higher con-
cordance with manual analysis than current state-of-the-art
software, but is also expected to provide more consistent output
than manual analysis.

Discussion
We here have developed two applications of deep learning to the
processing of SMFM time traces. We show that our software
AutoSiM can (1) reduce the time required for analysis; (2)
improve analytical performance in the case of SiMREPS data; and
(3) achieve high concordance with human selection in the case of
smFRET. Our results demonstrate the generalizability and
transferability of trained deep learning networks to new data
through (1) the application of a single-channel LSTM classifier to
a SiMREPS dataset collected in the presence of varying ratios of
T790M mutant-to-wild-type DNA sequence, as well as a T790M
standard curve; and (2) the application of two-channel LSTM
classification and segmentation networks to an smFRET dataset
from a Mn2+-sensing riboswitch42 through TL using a minimal
representative dataset. Depending on the availability of training
data, users can therefore choose to analyze a new biomolecular
system by training a fully initialized network, or by adapting our
pre-trained AutoSiM by Transfer Learning.

A potential future direction is to apply explainable deep
learning algorithms such as decision tree algorithms43 to SMFM
time traces to better understand the basis of decisions made by
the networks. Along these lines, one could characterize the basis
of algorithm decisions using simulated data to represent a broad
range of time trace dynamics, similar to the approach we used to
evaluate the LSTM classifier for SiMREPS data (Supplementary
Fig. 3). Another future direction is to apply end-to-end deep
learning algorithms for raw SMFM movie analysis by combining
convolutional layers for image recognition with recurrent layers
for time series classification in a deep learning network44. Last,
but not least, unsupervised learning algorithms such as auto-
encoder networks45 may be possible to use in SMFM to further
reduce the bias and variance of manual trace sorting.

We anticipate that the examples presented in this work will
catalyze widespread improvements in the speed, accuracy, and
convenience of single-molecule data analysis based on deep
learning approaches.

Methods
Source data. For single-channel data classification and validation, we used SiM-
REPS measurements from the detection of the EGFR T790M DNA sequence as
described previously7, and the HMM analysis and kinetic filtering were performed
as described in the original paper. The training set comprises 706 and 1478 traces
from mutant-only and wild-type only experiments, respectively, and the inde-
pendent test set comprises 5457 traces from experiments collected at a constant
concentration of mutant DNA in a varying excess of wild-type sequence as
described previously7. For two-channel data from smFRET measurements, we used
a dataset consisting of over 29,395 FRET traces that were manually analyzed and
segmented by four different users studying different systems: a DNA swinging
arm36; a toehold-exchange-based DNA walker37; a preQ1 riboswitch39; and a
paused transcriptional elongation complex containing a preQ1 riboswitch38.
Notably, these four users employed slightly different selection criteria such as
minimum trace duration, minimum signal intensity or signal-to-noise ratio, and
tolerance for non-correlated changes in donor or acceptor fluorescence intensity.
To generate more variety in the input dataset, we include an additional set of
5,000 simulated traces generated in MATLAB with the assumption of first-order
transition kinetics between two states with FRET efficiencies randomly chosen
from a uniform distribution on the interval [0, 1], as well as first-order photo-
bleaching kinetics.

Recursive neural network analysis. The RNN (LSTM) takes raw SMFM intensity
versus time traces as input and produces either trace classifications (Accept or
Reject) or segmentation labels (frame-by-frame Accept or Reject labels) as output.
The structures of the networks for trace classification and segmentation are shown
in Fig. 2b.

To increase the network’s ability to recognize local patterns in the input
sequence data, we designed the sequence input layer to convert each raw trace with
T intensity-versus-time datapoints of dimension ½1;T� into a two-dimensional
array of dimension ½nbin;T=nbin�, with each group of nbin consecutive data points
binned together. We found nbin ¼ 10 to produce the best training results. If nbin is
too small, the information within each bin is insufficient for feature detection in the
presence of noise. If nbin is too large, it yields a high-dimensional feature space that
hinders training.

The LSTM layer is composed of 100 Bidirectional LSTM hidden cells because
they enable later frames to influence classification of earlier frames, which is a
useful ability for the model. For instance, to determine the position of the first
photobleaching event for segmentation purposes, it is helpful to know whether the
signal reappears later in the trace.

In the classification layer, each label of the input data is given a predefined
weight wi , where i represents the label. We define a weighted cross entropy loss
function

L ¼ �
X

i

X

j

wiYij log Pij; ð1Þ

where Pij is the predicted probability that trace j has label i, Yij ¼ 1 if trace j has
label i, and Yij ¼ 0 otherwise. In SiMREPS, we set wMUT ¼ 1 and wWT ¼ 106 in
order to strongly penalize any false positive detection of the MUT sequence in the
presence of only WT molecules. In smFRET trace classification, we set waccepted ¼ 1
and wrejected ¼ 1 in order to optimize the concordance between the network
prediction and the human selection. In smFRET trace segmentation, we set
waccepted ¼ 10 and wrejected ¼ 1 in order to increase the weight of manually selected
segments in training, as these segments only represent a small fraction of the entire
dataset (which contains many data frames after photobleaching of one or both
fluorophores, and is therefore excluded by the user).
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Simulation of accepted traces. Acceptable (high-quality) smFRET traces were
simulated in MATLAB using a Monte Carlo approach that assumes (1) two
FRET states with energy transfer efficiencies randomly chosen from a uniform
distribution between the limits of 0 and 1, and (2) single-exponential kinetics of
transition between these states as well as single-exponential photobleaching
kinetics. The rate constant of photobleaching for each fluorophore was assumed
to be 0.0025 per frame (0.025 s−1), while the rate constants for transitions
between FRET states were randomly chosen from an exponential distribution
with average value 0.05 per frame (0.5 s−1). The mean total fluorescence
intensity of a single donor or acceptor fluorophore (at FRET efficiency of 0 or 1,
respectively) was assumed to be 1000 AU, and Gaussian noise with a standard
deviation corresponding to varying fractions of the total signal was added to
each simulated trace.

Convolutional neural network analysis. In addition to the RNN, we deployed a
CNN as an independent approach to smFRET trace classification. The structure of
the network is shown in Fig. 2b. In this pipeline, raw traces are first converted into
two-dimensional images by plotting the framewise donor and acceptor intensity
values along the x- and y-axes of a scatter plot, respectively. The images thus show
any positive or negative correlation between donor and acceptor intensities
throughout the trace while not explicitly considering temporal dynamics. We used
binning to down-sample the scatter plots to 32 ´ 32 pixels in order to reduce
feature space and computational cost. Each image is associated with a label of either
Accepted or Rejected by the human user. For our dataset, we found that training
the network for ~5–10 h on a modern CPU is sufficient. On a GPU, we are able to
achieve convergence within 1 h using NVIDIA’s TESLA V100. The trained network
classifies SMFM traces at a rate of ~8000 min−1 using the CPU on a personal
desktop with 3.4 GHz quad-core Intel Core i5 processor and 24 GB memory. A TL
module is implemented to permit users to supplement the training set with their
own data without completely retraining the network.

Code implementation. The results presented in this paper are implemented using
MATLAB 2018 with its Neural Network package. The networks are trained using
the ADAM optimization method with an initial learning rate of 10−4. The para-
meters in the networks are initialized using the GLOROT random initializer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at https://doi.org/10.7302/
ck2m-qf69.

Code availability
The source code of AutoSiM and the custom MATLAB scripts for the study in this paper
is available at https://doi.org/10.7302/ck2m-qf69.
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