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Abstract: Alterations in the Wnt signaling pathway are associated with the advancement of cancers;
however, the exact mechanisms responsible remain largely unknown. It has recently been established
that heightened intratumoral Wnt signaling correlates with tumor immunomodulation and immune
suppression, which likely contribute to the decreased efficacy of multiple cancer therapeutics.
Here, we review available literature pertaining to connections between Wnt pathway activation in
the tumor microenvironment and local immunomodulation. We focus specifically on preclinical and
clinical data supporting the hypothesis that strategies targeting Wnt signaling could act as adjuncts
for cancer therapy, either in combination with chemotherapy or immunotherapy, in a variety of
tumor types.
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1. Introduction

The Wnt/β-catenin signaling pathway plays a vital role in many cellular functions. Alterations in
the pathway are associated with the advancement of cancers. Wnt pathway aberrations have also
been correlated with changes in the tumor microenvironment, such as immune evasion, and this
has been the topic of two recent reviews [1,2]. The exact mechanisms by which aberrant Wnt
signaling modulates anti-tumor immunity need to be further elucidated to facilitate the optimization
of cancer therapies. Here, we provide an overview of Wnt signaling pathways and general
anti-tumor immunity, then summarize recent literature illustrating how Wnt modulation of the
tumor microenvironment (TME) and immune function are being targeted in an attempt to improve
cancer treatment outcomes—including both chemotherapies and immunotherapies—for patients with
advanced disease. Although there is evidence linking Wnt signaling with metabolic changes that may
also impact anti-tumor immunity, we have not addressed this specific topic here, as these findings
were recently discussed in detail elsewhere [3,4].

2. The Wnt Pathways

Wnt pathways act as critical signal transduction cascades that modulate embryonic development,
adult homeostasis, stem cell control, and wound repair [5]. The first Wnt proteins were discovered
in 1982 [6]. There are now 19 known Wnt ligands in mammals, consisting of different glycoproteins,
approximately 350–400 amino acids in length, which are highly conserved across many species [7].
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The pathways stimulated by these ligands result in gene expression changes that affect the cell’s
cytoskeleton and proliferation, while acting as directional growth factors [8]. Due to this important
role in cellular regulation, alterations in Wnt signaling consequently may lead to many human
diseases, from congenital malformations to nervous system disorders to malignancies, making this
pathway a highly desired therapeutic target from a multitude of perspectives. A large portion of Wnt
targeted therapies in development focus on Wnt inhibition, while others are Wnt pathway enhancers.
A more thorough understanding of the downstream effects of Wnt signaling is necessary for optimal
therapeutic manipulation.

As an initial step in this signaling cascade, Wnt ligands must be processed and exported (Figure 1).
Wnt proteins are modified by an attachment of a lipid, palmitoleic acid [9]. This modification is
performed by the enzyme Porcupine (PORCN), located in the cellular endoplasmic reticulum [9].
This lipid addition is thought to assist in extracellular membrane attraction and act as a binding motif
during ligand–receptor interactions [10]. Once the lipid attachment is completed, Wnt protein is then
transported to the plasma membrane for secretion [11]. Specific mechanisms of Wnt extracellular
transportation are still being investigated, but these may involve secretory vesicle or exosomal
incorporation [12].
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Figure 1. Overview of the canonical Wnt signaling pathway illustrating therapeutic intervention
points targeted by Wnt modulators. The lower half of the figure represents a zoomed in portion
of the cell. Porcupine (PORCN) inhibitors (e.g., LGK974) block secretion of WNTs by inhibiting
their palmitoylation. AXIN1 activators (e.g., niclosamide) promote β-catenin degradation. Dickkopf
1 (DKK1) antibodies may increase Wnt/β-catenin signaling by blocking DKK1 binding to LRP5/6;
beneficial effects in cancer may be through inhibition of DKK1 binding to CKAP4 or indirect effects on
immune cells. Wnt receptor decoys (e.g., OMP54F28) prevent Wnt binding to Fzd receptors. WNT5A
mimic (Foxy-5) is a peptide that activates noncanonical Wnt signals. CBP/beta-catenin inhibitors
(e.g., PRI-724) disrupt the interaction between CREB-binding protein (CBP) and β-catenin. Created
with BioRender.com. Proteins and cell compartments are not drawn to scale.

2.1. The Canonical Pathway

Traditionally, Wnt pathways are associated with intracellular β-catenin stabilization [13].
Cytoplasmic accumulation of β-catenin allows for its nuclear translocation, resulting in upregulation
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of Wnt-responsive genes. The signaling cascade begins when Wnt ligands bind to the transmembrane
receptor Frizzled (Fzd or Fz) and the coreceptor low-density lipoprotein receptor-related protein-5/6
(LRP5/6) [14] (Figure 1). After this interaction, the cytoplasmic tail of LRP recruits Axin. Disheveled
(Dvl), a protein that may bind to Fzd, may act as a platform for this LRP/Axin interaction [5].
Axin is a component of the β-catenin degradation complex. This complex additionally consists of
adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β).
When functioning properly, the β-catenin degradation complex phosphorylates the amino-terminal
region of β-catenin. This causes recognition of β-catenin by β-Trcp, an E3 ubiquitin ligase subunit,
resulting in the ubiquitination and proteasomal degradation of β-catenin [15,16]. Once the complex
is inactive, a stable accumulation of β-catenin occurs in the cell cytosol, culminating in β-catenin
translocation into the cell nucleus [17]. Here, β-catenin can bind to the transcription factor T
cell factor/lymphoid enhancer-binding factor (TCF/Lef1), activating the transcription of Wnt target
genes [18,19]. Axin2 is a generic Wnt transcriptional target gene that is often used as an indicator of
activation of this pathway [20].

2.2. The Noncanonical Pathways

Most studies have focused on the role of Wnt in the canonical signaling pathway; however, Wnt
can also signal through a number of noncanonical pathways. These pathways include the Wnt-JNK,
Wnt-RAP1, Wnt-Ror2, Wnt-PKA, Wnt-GSK3MT, Wnt-aPKC, Wnt-RYK, Wnt-mTOR, and Wnt/Ca2+

signaling pathways. Most of these pathways overlap to transduce calcium-dependent cell signaling [21].
It is thought that the transmembrane receptor Fz is also involved in these pathways, whereas the
coreceptor LRP5/6 is thought to function only in canonical pathway signaling. In fact, there is
in vivo evidence to suggest that LRP6 may antagonize noncanonical Wnt pathways, possibly to
eliminate competition for Wnt ligands [22]. Ror1/2 is the coreceptor often involved in noncanonical
pathways. Ligand interaction with this coreceptor causes an increase in inositol triphosphate (IP3)
and diacylglycerol (DAG). IP3 causes a release of Ca2+ from the endoplasmic reticulum, leading to
activation of protein kinase C (PKC). PKC activates nuclear factor kappa-B (NFκB) and cAMP response
element binding protein (CREB). Calcineurin (Cn) and calcium/calmodulin-dependent protein kinase
type II (CamKII) are also activated, leading to activation of the nuclear factor of activated T cells (NFAT)
and NFκB. NFκB, CREB, and NFAT translocate to the nucleus causing transcription of regulatory
genes [21]. Although these many mechanisms may not be fully understood, it is clear that Wnt
is involved in vital cellular functions, such as assisting in stabilization of proteins during mitosis,
through these alternative pathways [23].

2.3. Wnt Inhibitors

There are several protein families and genes known to antagonize or modulate Wnt signaling.
DKK1, a member of the Dickkopf (DKK) family of proteins, is thought to act as a LRP5/6 ligand
antagonist [24] (Figure 1). There are different ideas on the mechanism of this action, with supporting
evidence that DKK1 may induce LRP6 internalization and degradation or it may disrupt the
Wnt-induced Fz-LRP6 complex [25]. Interestingly, while DKK1 was thought to be tumor suppressive
in nature, it is now found to be associated with poor prognosis, supporting tumor growth and
metastasis [25]. Contrarily, tumor immune evasion by Dickkopf-related protein 2 (DKK2), with LRP5,
is thought to act independently of the Wnt/β-catenin pathway, via inhibition of STAT5 signaling [26].
Sclerostin/SOST proteins are secreted FZD-related proteins. These and Wnt Inhibitory Protein also act
as inhibitors by direct interaction with Wnt [8]. Rnf43 and Znrf3 are two Wnt target genes that act as
negative-feedback regulators, as they cause degradation of Wnt receptors [27–29]. Overall, the roles of
these inhibitors and regulators need further investigation, as their ability to modulate abnormal Wnt
may be therapeutically useful in a variety of disease settings.
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3. Wnt/β-Catenin Signaling and Immunomodulation

3.1. Stem Cells

The Wnt signaling pathway is known to be involved in regulating the self-renewal capacity
of non-malignant stem cells. For example, an association between Wnt and adult stem cells was
established with the gene disruption of mouse TCF7L2. This gene encodes for T cell factor-4 (Tcf-4),
which forms the β-catenin/Tcf-4 transcription complex. A study by Korinek et al. demonstrated that
cessation of Wnt signaling resulted in a loss of intestinal stem cells, leading to a breakdown of the
intestinal epithelium [30]. Wnt signaling has also been found to help maintain the pluripotency of
embryonic stem cells [31]. In contrast, DKK1 overexpression, which results in Wnt pathway inhibition,
has been shown to eliminate hair follicles and other skin appendages, suggesting a possible blockade
of stem cell initiation [32]. Intriguingly, many studies are now analyzing tumor stem cells as a source
of immune evasion, as they have been shown to selectively acquire expression of CD80, a surface
ligand that dampens immune recognition by binding Cytotoxic T lymphocyte Antigen-4 (CTLA-4)
present on activated T cells [33]. Overexpression of WNT5A, a common Wnt ligand, via epigenetic
activation in glioblastoma is thought to lead to stem cell differentiation and invasive growth [34].
Additionally, epithelial-to-mesenchymal transition (EMT) and metastasis are supported by WNT5A [35].
In addition, mammary tumor stem cells were found to rely on Wnt proteins as rate-limiting self-renewal
signals [36]. There is evidence to support Wnt pathway inhibition with the downregulation of PD-L1
expression, associated with a decreased stemness score signature, in triple negative breast cancer [37].
Potential relationships between cancer stem cells and CD8+ tumor infiltration, as related to tumor
PD-L1 expression and the effects on cancer progression, are also being investigated [38]. Due to these
documented effects of Wnt signaling on promoting stem cell viability and function, it is possible
that aberrant Wnt signaling pathways may promote the stem-cell-like qualities of tumor stem cells,
thereby facilitating intratumoral immune evasion.

With its role in cellular regulation, there is ample evidence that Wnt signaling affects hematopoietic
stem cells. Wnt stimulation of hematopoietic stem cells may increase their self-renewal capacity [39].
For example, limiting β-catenin activation via noncanonical Wnt signaling stimulation was shown to
inhibit the differentiation of hematopoietic stem cells [40,41]. However, other animal studies where
β-catenin was mutated did not show a significant change in hematopoiesis [42,43]. Induction of
the Wnt/β-catenin pathway through inhibition of GSK3β or the use of WNT3A, a stimulating Wnt
ligand, was found to arrest CD8+ T cell differentiation into effector cells, promoting self-renewing
multipotent CD8+ memory stem cells and maintaining the “stemness” of mature memory CD8+ T
cells [44]. This correlation at the cellular developmental level may provide one of the key links between
Wnt signaling and alterations in immune functionality in the tumor.

3.2. Wnt Signaling and Cancer

The associations between Wnt signaling and cancer progression are the topic of intense
investigation. This correlation was first established when a WNT factor gene was identified as
an oncogene in the mouse mammary cell line RAC311c [45]. Our understanding of these associations
has now progressed to include the well-established relationship between APC gene mutations and
colorectal cancers. APC gene mutations can be found in most sporadic colorectal cancers, and familial
adenomatous polyposis, or the hereditary colon cancer syndrome [46,47]. Alterations in core Wnt
regulators were found in a sequencing project of 1134 colorectal cancer samples, noting the incidence
of oncogenic Wnt activation in 96% of human colorectal cancers [48]. Axin2 gene mutations have
been found in colorectal cancers as well [49]. Hepatocellular carcinomas were found to have Axin1
mutations [50]. Deletions of GSK3B may lead hematopoietic stem cells to progress to acute myeloid
leukemia [51]. Mutations in these proteins cause a stabilization of cytoplasmic β-catenin due to an
inappropriately functioning degradation complex, thus mimicking an upregulation of Wnt signaling.
Furthermore, direct mutations in β-catenin have been found in colon cancer and melanoma [52,53].
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It is known that β-catenin is also used in cellular adhesion junctions. Through immunohistochemistry
evaluation of epithelial ovarian cancer samples, a build-up of β-catenin in the cellular membrane
was associated with a decrease in progression-free survival, and resistance to platinum-based
chemotherapy [54]. Inactivating gene mutations in the pathway, such as Rnf43 in pancreatic cancer
and Znrf3 in adrenocortical cancer or additional cancers, have implicated new links between Wnt
signaling and cancer transformation [55,56]. While these direct changes of the Wnt pathway have
been established in cancer progression, evolving investigations suggest more depth to Wnt’s role,
specifically in regulating anti-tumor immunity.

3.3. Immunity in Cancer

Despite tremendous advancements in traditional chemotherapies, many oncology patients
continue to experience rapid progression of disease characterized by chemotherapy resistance,
which limits therapeutic options. This has led to the pressing need to investigate alternative methods
of treatment, such as immune-directed therapies. Many key aspects of the relationship between the
immune system and solid tumors have been elucidated over the last 20 years. There is an appreciable
complexity of this system that results in either tumor suppression or tumor progression. It is now
established that in order for immune cells to recognize cancer cells and control cancer progression and
metastasis, they must first infiltrate the tumor, then remain activated in the TME [57]. The presence
and activation of these tumor infiltrating lymphocytes (TILs) typically correlates with tumors that are
more sensitive to chemotherapeutic treatment [58,59]. However, if the tumor has been invaded by
tumor-promoting T cells, such as Tregs, there may be decreased treatment sensitivity [60]. In particular,
higher frequencies of CD8+ T cells, and high CD8+/CD4+ ratios have been correlated with improved
overall survival in ovarian cancer [61]. The main goal of immunotherapy is to convert the tumor milieu
from an immunologically suppressed state to an inflamed state, for tumor recognition, cell destruction,
and improved treatment sensitivity.

The Cancer Genome Atlas (TCGA) has provided much insight into the role of the immune system
in various types of cancers through combined analysis of genomic and patient outcome data. With this
resource, TME may be examined from a transcriptional viewpoint, permitting more nuanced cancer
categorizations to be made. For example, Thorsson et al. recently performed an immunogenomic
analysis of 10,000 tumors from 33 cancer types to identify underlying immune subtypes that are
common to all cancers examined [62]. The six subtypes, namely wound healing, interferon-γ dominant,
inflammatory, lymphocyte depleted, immunologically quiet and transforming growth factor beta
(TGF-β) dominant, help identify the immunological differences present in TME signatures. From this
and similar studies, future therapies may be more directed toward the appropriate targets.

3.4. Wnt Signaling and Leukocyte Differentiation

The differentiation of multiple leukocyte populations is regulated by Wnt signaling pathways.
Alterations in canonical Wnt signaling may have a genomic influence on T cell development. TCF1 and
LEF1 genes have been linked to epigenetic changes that may promote CD8+ T cell differentiation by
repressing CD4 genetic networks [63,64]. Furthermore, deletions of Ctnnb1, the gene encoding
for β-catenin, or deletions in Tcf7, the gene encoding TCF1, were shown to block thymocyte
development [65,66]. When Tcf7 is deleted in CD8+ T cells, functional T cell memory is impaired [67].
However, when p45, a TCF1 variant, is combined with stabilized β-catenin, there is an enhancement of
central memory T cell production [68]. Thus, there is support that genomic Wnt pathway alterations
correlate with changes in T cell development and differentiation.

Other immune cell lineages are also influenced by canonical Wnt signaling. Innate lymphoid
cells, including natural killer (NK) cells, require TCF1 for development, as shown by the earliest
linage-specific precursor expressing high levels of TCF1, and defective NK cell survival in Tcf7-/-

mice [69,70]. In Lef1-/- and Fzd9-/- mice, B cell precursors were diminished in the bone marrow [71].
However, B cell development was not impaired despite a Ctnnb1 deletion in B cell precursors [72].
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Furthermore, dendritic cell (DC) differentiation is promoted when there is an upregulation of Fz
receptors in DC precursors [73]. The observed results of Wnt signaling alterations throughout multiple
cell types remains vast, reflecting the importance of this pathway in immune cellular regulation.

3.5. Wnt Signaling and Immunomodulation

Multiple leukocyte populations within the TME are influenced by both Wnt stimulators and
inhibitors. Key Wnt-related immunological alterations are illustrated in Figure 2. For example,
the Wnt/β-catenin inhibitor DKK1 has been found to be overexpressed in several different TMEs.
High levels of DKK1 were found in serum samples of patients with pancreas, stomach, liver, bile duct,
breast, and cervical carcinoma [74]. One might speculate that this could be a negative feedback result
of deregulated Wnt signaling from the tumor. However, DKK1 binding to its receptor cytoskeleton
associated protein 4 (CKAP4) promoted tumor progression [75]. Additional studies have shown
tumor stroma-derived DKK1 targeted β-catenin downregulation in myeloid-derived suppressor
cells (MDSCs), leading to an accumulation of these cells, a suppressed T cell response, and tumor
proliferation [76]. When a DKK1 vaccination was given in a murine model of myeloma, it was shown
to elicit CD4+ and CD8+ T cell protective immunity [77]. This insinuates a potential for a DKK1
vaccination as an immunotherapeutic adjunct. While the relationship between malignancy and DKK1
remains unclear, there appears to be a strong immunologic influence.
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Figure 2. Wnt/β-catenin signaling and tumor immunomodulation. A magnified tumor cell (top left),
illustrates Wnt signaling leading to elevated cytosolic and nuclear β-catenin. Increased Wnt signaling is
associated with heightened survival of Tregs, skewed differentiation of CD4+ T cells to a pro-tumorigenic
Th17 subtype, conversion of dendritic cells to a regulatory state with enhanced IL-10 and IL-12 secretion,
and decreased effector differentiation and function in CD8+ T cells. DKK1 inhibits Wnt ligand/receptor
interactions. Elevated DKK1 leads to an accumulation of MDSC in the TME and subsequent inhibition
of effector CD8+ T cell function. Created with BioRender.com. Not drawn to scale.

Noncanonical pathway stimulation may support a tumor proliferative environment. WNT5A
stimulation has been shown to increase IL-12 production from DCs, causing an increase in TH1
responses [78]. Alternatively, a deficiency of WNT5A in another model showed low levels of interferon
gamma producing TH1 cells [79]. These Wnt effects on peripheral T cells may alter their functions
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in tumor recognition. For example, RAR-related orphan receptor C (RARC) was upregulated when
CD4+ T cells had sustained β-catenin activation, resulting in TH17 polarization and production of
proinflammatory cytokines that favor tumorigenesis [80]. It has also been shown that Treg survival is
increased with increased β-catenin expression [81]. These recognized changes in tumor-infiltrating
leukocytes provide insight into the influence of Wnt pathways on tumor immunity and provide a
platform for new intervention concepts.

Immune tolerance is also impacted by Wnt signaling. Irregularities in antitumor cytotoxic T
lymphocyte (CTL) priming are associated with Wnt signaling in DCs. The high levels of Wnt ligands
found in the TME condition DCs to a regulatory state [82] (Figure 2). This suppressed antitumor immunity
was explored via DC-specific LRP5/6 deletions in a murine tumor model. Results showed delayed
tumor growth with enhanced effector T cell differentiation, and decreased Treg differentiation [83].
This idea was mimicked pharmacologically via use of the PORCN inhibitor IWP-L6 [83]. In one
study, denilukin diftitox (ONTAK; a diphtheria toxin fragment/ IL-2 fusion protein) was given prior
to DC vaccinations in patients with melanoma. This resulted in increased β-catenin in the skin and
immune tolerance with an increased survival of resting Tregs [84]. In another study, forced expression of
non-degradable β-catenin in melanoma cells or DCs led to secretion of the anti-inflammatory cytokine
IL-10, which impaired the ability of DCs to cross-prime CD8+ CTLs for tumor recognition [85,86].
Through these influences on DCs, related to tumor-induced increases in β-catenin signaling, tumors
may acquire tolerogenic characteristics, allowing immune evasion. However, in DC-β-catenin-/- mice,
with a CD11c-specific deletion of β-catenin, vaccination with tumor antigen failed to provide tumor
protection. Interestingly, these mice were found to be deficient in CD8+ T cell immunity [86]. In a mouse
model of human melanoma, the β-catenin-dependent transcription blocker, PKF115-584, stimulates
DCs to cross-prime tumor-specific CTLs, altering Wnt-induced immunosuppression and improving
therapeutic response [85]. These findings suggest complex roles for β-catenin in DCs, where an aberrant
amount, through either depletion or overabundance, may lead to immune tolerance.

Evidence suggests a strong correlation between Wnt pathway changes and immune exclusion.
This was recently evaluated with TCGA data. Multiple cancers were analyzed for gene expression
of TILs and categorized into a high, intermediate, or low T cell-inflamed tumor environment,
based on their expression for genes associated with T cell infiltration. These tumors were then
profiled for Wnt/β-catenin-related gene expression profiles. Up to 90% of tumor types showed an
inverse correlation between Wnt/β-catenin pathway activation and a T cell-inflamed gene expression
signature [87], suggesting that Wnt signaling in the TME suppresses T cell infiltration and/or function.
Additional support of immune exclusion was found through a mouse melanoma model that was
engineered to express β-catenin. These cells were unable to express C-C motif chemokine ligand 4
(CCL4), leading to decreased CTL infiltration into the TME due to defective recruitment of DCs [88].
Furthermore, in patients with primary and metastatic melanomas treated with BRAF inhibitors,
tumor immune infiltration and survival were inversely correlated with β-catenin signaling [89,90].
Collectively, these findings imply a role for altered β-catenin levels in the exclusion of TILs in the TME.

Immunoevasion mechanisms may also be represented through alterations in immune checkpoint
molecules due to Wnt signaling component changes. GSK3 inactivation in mouse melanoma resulted
in a repression of the PD-1 gene, allowing an improved CD8+ response [91]. However, in mouse
mammary carcinoma, GSK3β was shown to interact with PD-L1, inducing its degradation, which led
to increased CTL infiltration [92]. As immune therapies become increasingly important in cancer
therapeutic options, these interactions need to be further investigated.

3.6. Immunotherapy

Some immunotherapies are directed at the proteins that regulate T cell function and cytolytic
activity. In particular, immune checkpoint inhibitors (ICIs) are monoclonal antibodies against receptors
such as CLTA-4 and Programmed Death-1 (PD-1) that act to down-modulate T cell effector function.
ICI are now approved for the treatment of malignant melanoma, non-small-cell lung cancer, classical
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Hodgkin lymphoma, head and neck squamous cell carcinoma, urothelial carcinoma, and renal cell
carcinoma [93]. In addition, anti-programmed death-1 ligand (PD-L1) has also shown many promising
clinical results [94]. Atezolizumab is an FDA-approved PD-L1 inhibitor that has shown improved
progression-free survival and overall survival when used in combination with nabpaclitaxel for
metastatic triple negative breast cancer [95]. These results were in patients with known positive PD-L1
tumors. Other anti-PD-L1 therapies include durvalumab and avelumab. Additionally, the monoclonal
antibody pembrolizumab (anti-PD-1) was combined with platinum-based chemotherapy in metastatic
non-small-cell lung cancer treatment in those who lacked targetable gene mutations. The combination
of therapies increased progression-free and overall survival [96].

In a similar fashion, ipilimumab and tremelimumab are monoclonal antibodies to CTLA4,
which normally functions to restrain effector T cell activation. Ipilimumab is known for its significant
progression-free and overall survival advancement in melanoma [97]. Further improvements in
metastatic melanoma were seen following a combination of ipilimumab and anti-PD-L1 therapy [98].

With the rising use of mono- and combinatorial immunotherapy in the clinical setting, there is a
need to further understand the TME in patients who do not respond. It has been reported that decreased
TILs result in resistance to ICIs [99]. Wnt pathway regulation may play a role in this lack of response,
as tumor-intrinsic, active β-catenin signaling in human melanoma has been associated with resistance
to anti-CTLA4 and anti-PD-L1 antibodies due to T cell exclusion [88]. It has also been speculated that
tumor cells may lack the antigens needed for recognition by TILs, perhaps leading to immunotherapy
resistance in these cancers. This was investigated with an analysis of 266 melanoma tumor samples
from TCGA. Tissues were divided into categories based on a high or low expression of genes that were
associated with T cell infiltration. This was correlated with nonsynonymous somatic mutations as
a representative of mutational neoantigens that the tumor may possess. It was concluded that the
change in tumor gene expression of infiltrating T cells did not correlate with increased mutational
neoantigens [100]. However, gene signatures of these melanoma tissues did support prior evidence of
a correlation between Wnt/β-catenin pathway activation and a reduction in T cell infiltration in the
tumor [100]. This evidence, in addition to prior stated support, shows a strong correlation between
increased Wnt signaling and decreased T cell infiltration in tumors.

4. Targeting Wnt Signaling as a Novel Therapeutic Option

There are numerous relationships between Wnt signaling, immune function, and cancer
progression; most notable is that of increased Wnt signaling correlating with decreased tumor T
cell infiltration, as discussed above. Wnt pathways have a vast number of roles that offer multiple
options for pathway modulation in the malignant setting. The United States Patent and Trade
Office Patent and Patent Application databases report 103 unique Wnt signaling modulators being
investigated, with 34 in clinic trials [101]. Actions of these therapies range from the signal pathway
component targeting activators to Wnt inhibitors. Many intriguing investigations are evaluating tumor
immunity with drug intervention. Understanding the immunomodulation of these therapies will be
essential during attempts to transition the TME to a less resistant milieu.

Numerous studies are currently combining Wnt therapies with ICIs, additional Wnt inhibitors,
or chemotherapies in an attempt to achieve optimal effects on tumor control. However, it is
currently unknown how the combination of therapies will affect tumor progression. In colon cancer,
changes in Wnt signaling pathways have shown counter-intuitive results in some studies, such as
WNT-TCF blockade actually boosting metastasis [102]. In contrast, other results have suggested
a synergy between Wnt pathway inhibition and ICIs, for example when used as a combinatorial
therapy in a mouse melanoma model [103]. Additional combination treatments with multiple Wnt
inhibitors have been found to revert resistance and repress tumor growth in colorectal cancer [104].
Furthermore, the combination of Wnt antagonists with taxane therapies elicited a synergistic effect
by sensitizing cancer stem cells to taxane-induced death [105]. Table 1 identifies clinical trials of Wnt
modulators, with the listed agent, mechanism of action, intervention strategy, and targeted disease.
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Table 1. Cancer Clinical Trials of Wnt Modulators. Agents used are listed with the mechanism of action, the corresponding investigated disease, the phase of the trial,
the investigational intervention, and the clinical trial identifier [106].

Agent Mechanism of Action Disease Phase Therapy Identifier

DKN-01 DKK1 antibody

Esophageal Neoplasms

1
Dose escalation in combination

with paclitaxel or pembrolizumab NCT02013154
Adenocarcinoma of the Gastroesophageal Junction

Gastroesophageal Cancer
Squamous Cell Carcinoma
Gastric Adenocarcinoma

DKN-01 DKK1 antibody
Endometrial Cancer

2
Monotherapy or in combination

with paclitaxel NCT03395080Uterine Cancer
Ovarian Cancer

DKN-01 DKK1 antibody Hepatocellular Carcinoma 1, 2 Phase 1/2 as a monotherapy or
combination with sorafenib NCT03645980

DKN-01 DKK1 antibody Multiple Myeloma 1 Pilot study of combination with
lenalidomide/dexamethasone NCT01711671

DKN-01 DKK1 antibody
Multiple Myeloma

1 Dose escalation NCT01457417Solid Tumors
Non-Small Cell Lung Cancer

DKN-01 DKK1 antibody

Carcinoma of Intrahepatic and Extra-hepatic Biliary
System

1
Dose escalation combined with

gemcitabine and cisplatin NCT02375880Carcinoma of Gallbladder
Bile Duct Cancer

Cholangiocarcinoma

CGX 1321 PORCN inhibitor

Colorectal Adenocarcinoma

1 Single agent dose escalation NCT03507998

Gastric Adenocarcinoma
Pancreatic Adenocarcinoma

Bile Duct Carcinoma
Hepatocellular Carcinoma

Esophageal Carcinoma
Gastrointestinal Cancer

CGX 1321 PORCN inhibitor
Solid Tumors

1
Single agent dose escalation with

or without pembrolizumab NCT02675946GI Cancer

ETC1922159 PORCN inhibitor Solid Tumors 1 Single agent dose escalation NCT02521844
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Table 1. Cont.

Agent Mechanism of Action Disease Phase Therapy Identifier

LGK974 PORCN inhibitor

Pancreatic Cancer

1 Single agent and in combination
with PDR001

NCT01351103

BRAF Mutant Colorectal Cancer
Melanoma

Triple Negative Breast Cancer
Head and Neck Squamous Cell Cancer

Cervical Squamous Cell Cancer
Esophageal Squamous Cell Cancer

Lung Squamous Cell Cancer

RXC004 PORCN inhibitor
Cancer

1 Dose tolerability NCT03447470Solid Tumor

Artesunate Unknown Hepatocellular Carcinoma 1 Single agent dose escalation NCT02304289

Artesunate Unknown Colorectal Cancer 2 Neoadjuvant single agent NCT03093129

Artesunate Unknown Solid Tumors 1 Single agent dose escalation NCT02353026

Artesunate Unknown
Colorectal Cancer

2 Neoadjuvant single agent NCT02633098Bowel Cancer

Artesunate Unknown
Metastatic Breast Cancer

1 Add-on therapy NCT00764036Locally Advanced Breast Cancer

Niclosamide AXIN1 activator Colon Cancer 1 Dose escalation NCT02687009

Niclosamide AXIN1 activator
Metastatic Prostate Carcinoma

1 Dose escalation with
enzalutamide

NCT03123978Recurrent Prostate Carcinoma
Stage IV Prostate Cancer

Niclosamide AXIN1 activator

Castration-Resistant Prostate Carcinoma

1 Dose escalation with
enzalutamide

NCT02532114
Metastatic Prostate Carcinoma
Recurrent Prostate Carcinoma

Stage IV Prostate Adenocarcinoma

Niclosamide AXIN1 activator Colorectal Cancer 2 Single agent NCT02519582

Niclosamide AXIN1 activator
Metastatic Prostate Cancer

2
Combination with abirateronae

acetate and prednisone NCT02807805Recurrent Prostate Cancer
Stage IV Prostate Cancer

OMP54F28 Wnt receptor decoy Hepatocellular Cancer
1 Dose escalation with sorafenib NCT02069145Liver Cancer

OMP54F28 Wnt receptor decoy Ovarian Cancer 1 Combined with paclitaxel and
carboplatin NCT02092363
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Table 1. Cont.

Agent Mechanism of Action Disease Phase Therapy Identifier

OMP54F28 Wnt receptor decoy Pancreatic Cancer
1

Combined with Nab-paclitaxel
and gemcitabine NCT02050178Stage IV Pancreatic Cancer

OMP54F28 Wnt receptor decoy Solid Tumors 1 Dose escalation NCT01608867

Foxy-5 WNT5A mimic
Metastatic Breast Cancer

1 Dose escalation NCT02020291Colorectal Cancer
Prostate Cancer

Foxy-5 WNT5A mimic
Metastatic Breast Cancer

1 Dose escalation NCT02655952Metastatic Colon Cancer
Metastatic Prostate Cancer

PRI724 CBP/catenin inhibitor
Advanced Pancreatic Cancer

1 Dose escalation with gemcitabine NCT01764477Metastatic Pancreatic Cancer
Pancreatic Adenocarcinoma

PRI724 CBP/catenin inhibitor Acute Myeloid Leukemia 1, 2
Dose escalation, combined with
dasatinib for CML or cytarabine

for AML

NCT01606579
Chronic Myeloid Leukemia

SM08502 Unknown Solid Tumors, Adult 1 Single agent dose escalation NCT03355066
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Therapeutic modulation of Wnt signaling is being investigated through many avenues, several of
which are depicted in Figure 1. One agent under investigation is DKN-01. This is a monoclonal antibody
to DKK1, the Wnt/β-catenin inhibitor. DKN-01 is being used in several clinical trials for investigation
of safety and efficacy in patients with multiple primary tumor types. There have been two completed
clinical trials with this drug in multiple myeloma (NCT01711671, NCT01457417). Results are available
from one of these studies, but published conclusions are pending [106]. High serum levels of DKK1 were
found in patients with pancreas, stomach, liver, bile duct, breast, and cervical cancers [74]. Prior studies
have also shown that increased DKK1 stabilized MDSC populations, leading to suppression of the T cell
intratumoral response [76]. The direct influence on Wnt signaling from these agents is convoluted given
it is a result of inhibition of a Wnt inhibitor. If this inhibitor is blocking canonical Wnt signaling, it may
lead to an upregulation of noncanonical signaling. Perhaps with inhibition of DKK1, the alternative
pathway will be normalized. There may also be a decrease in intratumoral suppressive MDSCs,
resulting in increased tumor cell recognition and clearance by CD8+ T cells. It will be interesting to
view future clinical trial results related to effects on the TME that occur following targeted inhibition of
a Wnt inhibitor, with and without combination therapy.

Alternative therapeutic agents act directly on Wnt ligand secretion. PORCN inhibitors are known
to block the extracellular excretion of Wnt by blocking the enzyme responsible for palmitoylation
of Wnt ligands (Figure 1). This family of inhibitors includes C59, CGX 1321, ETC1922159, LGK974,
IWP-L6, and RXC004. With this overall extracellular decrease in Wnt ligands, the TME may have the
ability to convert to a T cell-inflamed environment, based on evidence of increased Wnt signaling
correlated with T cell-noninflamed tumors [87]. Many of these molecules remain under investigation
in the preclinical setting; however, some studies have advanced to clinical trials. Pending results will
provide insight into treatment efficacy for multiple malignancies.

Some Wnt altering agents have been previously approved in nonmalignant diseases. Artesunate
is a compound extracted from the herb Artemisia annua, used as an FDA-approved antimalarial drug.
Treatment of colorectal tumor xenografts with this agent correlated with decreased growth of tumors
with inhibition of a hyperactive Wnt/β-catenin pathway [107]. The exact mechanism of the agent
remains unknown. However, two phase 1 trials are now completed using this agent in subjects with
hepatocellular carcinoma or solid tumors. Results are pending from these dose-escalation studies
(NCT02304289, NCT02353026). An additional completed phase 1 study evaluated artesunate as an
add-on therapy in subjects with metastatic or locally advanced breast cancer, with unreleased results
(NCT00764036). Additionally, niclosamide is an anti-helminthic agent that has been identified to
have many molecular targets, including inhibition of the Wnt pathway. Specifically, the Axin-GSK3β
interaction is targeted in this pathway, resulting in a suppression of Wnt/Snail [108]. There are several
phase 1 trials involving this therapeutic agent in various cancers. One trial involving several types of
prostate cancer has been completed, with pending results (NCT02532114). One note of caution is that
with so many known targets, it may be hard to determine if the effects of these therapies are directly
related to Wnt changes in the tumor, as opposed to additional mechanistic alterations.

Additional Wnt-inhibiting agents are being tested in clinical trials. Ipafricept, also known as
OMP54F28, is a recombinant fusion protein with an extracellular Fzd 8 receptor portion attached
to an IgG1 Fc fragment, which acts as a decoy receptor for Wnt ligands [109]. Four phase 1 trials
have been completed with this therapy (NCT02069145, NCT02092363, NCT02050178, NCT01608867).
Study conclusions have not been released. WNT5A is a Wnt ligand mimicked by Foxy-5, a formylated 6
amino acid peptide fragment. The agent is thought to impair migration of epithelial cancer cells, giving it
anti-metastatic potential [110]. Two clinical trials have been completed to determine appropriate doses
for phase 2 trials (NCT02020291, NCT02655952). Due to increased β-catenin levels found in many
colon cancers, a CREB-binding protein (CBP)/catenin inhibitor, PRI724, is being investigated [111].
Two phase 1 clinical trials have been completed with the use of this inhibitor in pancreatic cancers and
acute and chronic myeloid leukemias (NCT01764477, NCT01606579). Results from these clinical trials
are currently unavailable. SM08502 is an orally bioavailable small molecule inhibitor that is thought to
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inhibit the expression of Wnt signaling pathway genes, but further investigation is being elucidated on
the exact mechanisms of action and its relation to Wnt. One phase 1 clinical trial is using this agent in
solid tumors (NCT03355066). Completion of these studies, and future studies, may provide insight
into the optimal dose and timing for administration of Wnt-based therapeutics and malignancies that
are most sensitive to these agents.

5. Conclusions

Here, we have reviewed preclinical and clinical data that support the continued investigation of
combining Wnt signaling modulators with cancer chemotherapies or immunotherapies, in order to
achieve better tumor control in a greater percentage of patients. As discussed, Wnt signaling is involved
in regulating a wide variety of complex cellular functions, in both malignant cells and leukocytes.
Furthermore, aberrations in Wnt signaling are now well-established in a multitude of malignancies
and elevated Wnt signaling shows a strong correlation with overall immune suppression. There is
also evidence to suggest that tumor stem cell promotion, via enhanced Wnt signaling, may contribute
to immune evasion. Thus, finding ways to alter Wnt signaling specifically in tumor cells and/or
tumor stem cells could provide a platform for inducing beneficial changes in the immune-related
TME, leading to improved cancer treatment efficacy. Wnt-modulating agents on clinical trial include
DKK1 antibodies, PORCN inhibitors, AXIN1 activators, Wnt decoys, WNT5A mimics, β-catenin
inhibitors, among others with less clearly-defined modes of action. At this time, additional studies are
needed to more fully understand how Wnt-modulating agents are altering the intratumoral immune
response and broader TME. However, the synergistic effects seen to date with ICIs or chemotherapies
used in combination with Wnt inhibitors lends validity to the idea that targeting the Wnt pathway
is a promising therapeutic approach for many tumor types, as doing so may promote protective
anti-tumor immunity and convert the tumor milieu to one more susceptible to traditional therapies.
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