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Integrative multiomics-histopathology analysis for breast
cancer classification
Yasha Ektefaie 1,6, William Yuan1,6, Deborah A. Dillon2, Nancy U. Lin 3, Jeffrey A. Golden4,5, Isaac S. Kohane1 and Kun-Hsing Yu 1,2✉

Histopathologic evaluation of biopsy slides is a critical step in diagnosing and subtyping breast cancers. However, the connections
between histology and multi-omics status have never been systematically explored or interpreted. We developed weakly
supervised deep learning models over hematoxylin-and-eosin-stained slides to examine the relations between visual morphological
signal, clinical subtyping, gene expression, and mutation status in breast cancer. We first designed fully automated models for
tumor detection and pathology subtype classification, with the results validated in independent cohorts (area under the receiver
operating characteristic curve ≥ 0.950). Using only visual information, our models achieved strong predictive performance in
estrogen/progesterone/HER2 receptor status, PAM50 status, and TP53 mutation status. We demonstrated that these models
learned lymphocyte-specific morphological signals to identify estrogen receptor status. Examination of the PAM50 cohort revealed
a subset of PAM50 genes whose expression reflects cancer morphology. This work demonstrates the utility of deep learning-based
image models in both clinical and research regimes, through its ability to uncover connections between visual morphology and
genetic statuses.
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INTRODUCTION
Breast cancer is the second most prevalent cancer worldwide, with
nearly 2 million new cases each year. Histopathologic evaluation
of tissue sections, performed by pathologists, is indispensable for
the diagnosis and treatment of breast cancer. Evaluation of these
slides by human reviewers requires considerable training and
expertise, is subject to error, and is time-consuming1. Furthermore,
visual reviews are limited to known morphology patterns, which
does not fully take advantage of the actionable information
embedded within histopathologic images2,3. Here, we combine
deep learning image models from digitalized histopathology
slides with transcriptomic analyses to uncover molecular and
morphological profiles associated with hormone receptor status
and genomic subtypes of breast cancer.
The use of deep learning, a computational technique for

learning data representations, to streamline image processing has
gradually been gaining acceptance4,5. The FDA has recently
approved the first screening tool based on neural networks. This
algorithm evaluates a retinal image to assess changes of diabetic
retinopathy and has been shown to have performance compar-
able to ophthalmologists6,7. In pathology, machine learning has
successfully been deployed to differentiate malignant from
healthy lung and breast tissue1,8,9, stratify lung tumors according
to patient prognosis10,11, and detect breast cancer micrometas-
tases in lymph nodes1.
Essentially all biopsies result in the preparation of histopathol-

ogy slides to establish the nature and extent of any pathological
process. Typically, the preparation of glass slides for interpretation
by a pathologist involves tissue fixation, embedding in wax
(paraffin), ultra-thin slicing, the mounting of the tissue slices on
glass slides and subsequently staining of the tissues for analysis.
Slides are often stained with various agents to facilitate the

identification of tissue architecture along with cellular and
subcellular detail by a human reviewer. The most common
protocol, which has been in use for nearly 150 years, utilizes
hematoxylin and eosin (H&E), which bind to DNAs and proteins
respectively12. Other methods, such as immunohistochemistry,
involve the use of antibodies which bind specific antigens,
permitting identification of specific proteins and other complex
molecules13. For breast cancer, the allocation of appropriate
systemic therapy depends upon accurate and timely assessments
of hormone receptor status and HER2 status. This evaluation is
complex and not available to patients in all locations, often
resulting in inappropriate or incorrect treatments jeopardizing
health. Furthermore, emerging data suggest that PAM50 classifi-
cation status may provide further predictive value with respect to
treatment response14–16.
In this study, we employ deep learning algorithms on images

from H&E stained breast tumors to define two important
prognostic and treatment stratifying features; ER/PR/
HER2 status and transcriptomic subtypes. We hypothesized
that these molecular features would manifest themselves in
characteristic histologic patterns on H&E stained slides, and
that they could be discerned by machine learning, without the
use of accompanying immunohistochemistry-stained slides for
ER, PR, or HER2. The ability to successfully classify patient
subtypes based on image data implies a morphological basis
for the subtype. The identification of recognizable contributing
features to an image model suggests that de novo learning of
the features was an important step in the process of learning to
classify the subtype. We examined the extracted image
features associated with the classifications, revealed differen-
tial lymphocyte infiltration among patients with different
hormone receptor statuses, and connected histopathology
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patterns with gene expression profiles. Our approaches enable
the integration of high-dimensional transcriptomics and
histopathology data and facilitate the development of quanti-
tative pathology analyses using deep neural networks.

RESULTS
Convolutional neural network (CNN)-based image classifiers
can accurately classify histological type and ER/PR/
HER2 status of breast cancer patients using only H&E slides
Convolutional neural network-based image classifiers were
trained to classify TCGA17 BRCA patients (Table 1) based on
systematically selected tiles from the corresponding gigapixel,
hematoxylin-and-eosin (H&E) stained histopathology images.
Of note, the CNN image classifiers were provided only with H&E
stained images from frozen tissue sections in TCGA; images of
ER, PR, HER2, or other immunostains were not provided. We
performed six classification tasks, including (i) tumor vs.
normal, (ii) lobular vs. ductal carcinoma histological type, (iii)
estrogen receptor (ER) status (positive or negative), (iv)
progesterone receptor (PR) status (positive or negative), (v)
HER2 receptor status (positive or negative), (vi) PAM50 four-
way status (Luminal A, Luminal B, Basal, or HER2 enriched), and
(vii) TP53 Mutation status. Consistent with other studies, we
were able to attain strong performance in cancer tissue
identification18, histological types classification, hormone
receptor status19, and PAM50 status prediction20. Our cancer
tissue identification and histological types classification results
are successfully validated in two independent cohorts with
standard formalin-fixed, paraffin-embedded (FFPE) tissue and
not frozen sections (AUC ≥ 0.95). The prediction models for
TP53 mutation status also achieved high accuracy (0.833
Patient-Level AUC, Table 2). We observed strong image
classification performance on tasks traditionally conducted by
pathologists using H&E stained slides (tumor vs normal and
histological subtype) and tasks that require additional immu-
nohistochemical stains (hormone receptor status) or genomic
profiling (PAM50 status). For example, the CNN achieved tile/
patient level validation AUCs of 0.929 and 0.982 for ER status,
0.908 and 0.983 for PR status, and 0.829 and 0.979 for
HER2 status. These results were all achieved on tissue site-
segregated validation cohorts, to simulate the application of a
pre-trained model on an external dataset. To examine the
ability of genomic and morphological features to inform strong
observed CNN performance, we investigated the prediction
performance of (i) ER and PR status and (ii) PAM50 status in
greater detail.

Immune-related gene ontology terms differ by hormone
receptor status (+/−) in breast cancer
To identify potential image-based sources of hormone receptor
status signals, gene expression profiles were examined. We do not
correlate specific RNA features to image features, but rather use
the features important for an RNA-seq based classifier to guide our
interpretation of our image-based classifier. Ridge regression
conducted over RNA-seq expression profiles of TCGA BRCA
patients achieved an AUC of 0.866 for the differentiation of ER
receptor status in the unseen test set, and an AUC of 0.827 for the
differentiation of PR receptor status using features other than the
direct gene expression of the estrogen or progesterone receptor.
For reference, a model built on ESR1 expression as a feature alone
achieved an AUC of 0.883 toward estrogen receptor status, while a
model built on PGR expression alone achieved an AUC of 0.874
toward progesterone receptor status. To identify features impor-
tant in hormone receptor classification, gene ontology analysis
was conducted on the top-ranked genes identified in the
regression. The top features for both ER and PR status differentia-
tion included many terms corresponding to the immune function,
such as innate immune response, defense response to bacteria,
and regulation of STAT protein (Supplementary Table 1, Supple-
mentary Table 2). 56% and 64% of significant gene ontology terms
were immune-related for ER and PR status, respectively. For the
purposes of differentiating receptor statuses, these results
suggested two potential hypotheses: (i) that ER and PR status
shared a common signal that was potentially driven by tumor
progression or immune infiltration or ii) that signals corresponding
to immune infiltration or lymphocyte density might be helpful in
distinguishing hormone receptor status. We examined each of
these hypotheses in turn.

CNN image classifiers can distinguish ER (+/−) and PR (+/−)
status both independently and jointly
ER and PR status (Table 1) were not distributed independently
among the TCGA patients, which is consistent with findings from
other cohorts21,22. 86.8% of patients had concordant ER/PR status
(either both positive or both negative). This finding, combined
with the shared immune signal between the ER and PR gene-
expression-based classifiers, raised the possibility that the
morphological signal utilized by the classifiers was derived from
a common source, and that the classifiers had detected this
common signal rather than learning ER or PR-specific knowledge.
However, this does not appear to be the case. When patients with
discordant ER/PR status are examined in isolation, the image
classifiers correctly classified these individuals 96.7% of the time.
Furthermore, model confidence between concordant and dis-
cordant patients of the same label was not found to be
significantly different (Table 3). Although the incidence of ER
−/PR+ patients was low, the classifiers still achieved high
validation set tile-level accuracies. These findings suggest that
the original ER/PR classifiers had learned morphological features in
the image associated specifically with each receptor status. To
further test the performance of the PR classifier, we performed a
sensitivity analysis restricted to the ER+/HER2− subcohort. The
classifier was able to distinguish between ER+/PR+/HER2-
negative versus ER+/PR-/HER2-negative subtypes with tile/patient
level validation AUCs of 0.892 and 0.977.

Lymphocyte morphology have utility in the differentiation of
hormone receptor status (+/−)
To examine the hypothesis that visual lymphocyte morphology
had utility in hormone receptor status determination, we
examined the convolutional activations of layer units in the ER
classifier against tiles that had been automatically labeled with a
lymphocyte detector (details described in the “lymphocyte

Table 1. Demographics summary of TCGA, Sunnybrook, University of
Pennsylvania and the Cancer Institute of New Jersey (UPenn and CINJ)
cohorts.

TCGA Sunnybrook UPenn and CINJ

Total number of patients 1099 54 162

Total number of slides 1983 96 279

Total number of image tiles 395116 19200 277524

Average age at diagnosis 59.49 51.23

Stdev age at diagnosis 13.22 12.33

% Post menopause 76.05 37.50

% ER+ 77.79 64.29

% PR+ 74.52 53.57

% HER2+ 22.89 24.44

% Lobular (vs Ductal) 21.58 8.93 0
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detection” section in Supplementary Methods)23. The convolu-
tional layer unit activations correspond to the tile regions that the
network learned were helpful in making the final determination
between receptor status positive and negative. Because units in
later network layers are lower resolution due to convolution and
pooling steps and are often the result of significant non-linear
relationships, we focused our analysis on the first convolutional
layer. Layer unit activations were colocalized with lymphocyte-
only masks and non-specific nuclei masks to evaluate whether any
showed preferential colocalization with lymphocytes over nuclei
(Fig. 2A–C). This was found to be the case for one identified filter,
where 98% of masks preferentially colocalized with lymphocytes
compared to non-specific nuclei (Pearson R vs lymphocyte=
−0.553 (p < 0.01), Pearson R vs nuclei: −0.354 (p < 0.01)) (Fig. 1D).
When we removed this filter ER prediction accuracy decreased to
61%. These results suggest that the ER classifier learned
morphology resembling lymphocytes as a part of its attempt to
distinguish ER+ from ER− receptor status.
To evaluate whether lymphocyte infiltration alone was

sufficient to distinguish hormone receptor status, a random-
forest-based tile-level lymphocyte detector was trained using
CellProfiler24 modules and achieved an 85% true positive/true
negative accuracy over the pathologist-labeled tileset23. This
lymphocyte detector was deployed over the TCGA tilesets, and
a patient-level lymphocyte-infiltration score was computed,
reflecting the average lymphocyte/cell fraction over all tiles
associated with the patient. The distribution of these scores
between receptor-positive and negative patients was evalu-
ated, along with the distributions of scores for two separate
gene-expression-based immune infiltration scores25,26. To
contextualize the magnitude of any observed effect, and

account for the possibility that receptor status and immune
infiltration had a common cause of tumor aggressiveness, we
evaluated the pathological stage as well (Fig. 2, Table 4). The
histopathology-based lymphocyte infiltration score produced
more extreme differences between receptor-positive and
negative statuses and achieved correspondingly lower p-
values. In contrast, the pathological stage failed to separate
receptor status for either ER or PR. Another predictor of
survival, the PAM50 minimal gene set, was also tested for
accuracy. The 4-class PAM50 classifier achieved top-1 patient-
level validation accuracy of 65.4% and top-2 patient-level
validation accuracy of 79.0%, where top-k indicates a correct
classification if the true label is in the top-k predictions. Our
performance is substantially higher than that of a baseline
classifier (25% in a four-class classifier for PAM50 prediction).
Further details are provided in Supplementary Results.

Table 2. Validation ROC-AUC (binary tasks)/accuracy (non-binary tasks) values for all image-based classifiers.

Image classifier validation set results

Patient-level ROC-AUC/accuracy (95% CI) Tile-level ROC-AUC/accuracy (95% CI)

Tumor vs. normal
held-out test set

0.985 (0.968–0.995) 0.921 (0.919–0.924)

Independent validation set 0.950 (0.935–0.964) 0.859 (0.857–0.860)

Histological subtype
held-out test set

0.920 (0.845–0.993) 0.800 (0.790–0.803)

Independent validation set 0.996 (0.984–1.0) 0.843 (0.836–0.852)

Estrogen receptor (ER) status +/− 0.982 (0.97–0.994) 0.929 (0.912–0.946)

Progesterone receptor (PR) status +/− 0.983 (0.977–0.989) 0.908 (0.90–0.916)

HER2 Receptor status +/− 0.979 (0.971–0.981) 0.829 (0.80–0.858)

PAM50 Status (4 Class, Top-1) 0.654 (0.636–0.672) 0.406 (0.361–0.451)

PAM50 Status (4 Class, Top-2) 0.790 (0.763–0.817) 0.609 (0.596–0.622)

TP53 Mutation status 0.833 (0.829–0.837) 0.658 (0.634–0.682)

Table 3. Comparison of average image-classifier confidence for ER/PR
status tasks given concordant (ER+/PR+ or ER−/PR−) or discordant
(ER+/PR− or ER−/PR+) patients.

ER+ (Patient count) ER− (Patient count)

Concordant 0.775 (118) 0.250 (54)

Discordant 0.784 (14) 0.101 (1)

KS test P-val 0.758 0.255

PR+ (Patient count) PR− (Patient count)

Concordant 0.728 (118) 0.255 (54)

Discordant 0.803 (1) 0.254 (14)

KS test P-val 0.706 0.784

Fig. 1 Associations between lymphocytes and convolutional
image filters. A H&E stained image with annotated lymphocytes,
B lymphocyte mask, C thresholded convolutional activations to 2A,
D comparison of filter colocalization with lymphocyte and nuclei
masks, the line represents equality.
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DISCUSSION
In this work, we have demonstrated the utility of image
classification tasks that pathologists currently cannot easily
perform. Furthermore, we identified a set of clinical and genomic
features whose impact on morphology significantly enhanced the
extracted information from H&E stained slides alone. Our study
provides new insight into the information content present in
biopsy slides and the association between pathology and
genomic information. Finally, we demonstrate that deep convolu-
tional neural networks are able to learn in a manner that can be
human interpretable. While past work19,20 has examined the
ability of deep learning models to achieve high accuracy over
various breast cancer subtypes, our work attempts to identify
which histological or genetic features are utilized by the models.
Opening the black box of deep learning models through
interpretability is a critical prerequisite to further scientific or
clinical integration. We further validated our models on indepen-
dent external datasets obtained from different sample preparation
procedures (frozen tissue vs FFPE section) for two important
imaging tasks: cancer detection and subtype identification. Our
model’s strong performance in the external datasets after our fine-
tuning approach supports the generalizability of these models
across different sample preparation protocols.
These results highlight the fact that biopsy slide images are highly

information-dense media and that signals present in the image may
only be revealed by machine learning analyses. That is, hormone
receptor and HER2 expression result in specific morphological
features not readily apparent to even a trained pathologist.
Furthermore, deconvolution of the convolutional layer filters has the
potential to reveal insights regarding gene function.
In contrast, the less optimal performance of image classifiers for

genomic features such as PAM50 status or TP53 mutation status
emphasizes that the accuracy of such models is highly dependent
on the strength of the morphological signals relative to a
particular goal. It is impossible for a model based on optical
microscopic images to directly observe an indel or frameshift
mutation in a particular gene, but it is possible to observe
morphological impacts resulting from or related to a given
mutation11,27. Hence, these models are more likely to find utility in
translational systems where the ultimate goal is improving patient
diagnosis, prognosis, and treatment stratification, exemplified in
this case, by TP53 mutation status, as assessed by an image model,
and representing a proxy for the mutation and its causes and
consequences, rather than the mutation alone.
Our study contains several limitations. It is difficult to eliminate all

of the shared signals between the various classifier tasks due to small
sample sizes and the inherent interrelatedness of the phenotypes in
question. While we may interpret a particular classifier as differentiat-
ing between patients with and without a mutation in a particular
gene, it is possible that a proxy feature up- or downstream is
responsible for the signals identified by the classifier. This relates to

one general weakness of deep learning models: lack of interpret-
ability. Due to the large number of intermediate features in a model
and the heavily non-linear relationships between them, the
performance of a model can only be understood through examining
relationships with known metrics or features. Outside of artificially
constructed datasets such as TCGA, the construction of centralized
classification models that utilize information from many sites and
patients is also difficult due to data privacy and availability issues.
Furthermore, it is unclear how generalizable these results would be
among populations of different genetic backgrounds. These limita-
tions emphasize the need for the collection of large and diverse
datasets to verify the robustness of machine learning models for
pathology diagnoses. Although we have successfully validated our
models for cancer detection and subtype classification using external
cohorts, additional datasets with detailed molecular information are
needed to demonstrate the prediction performance of tasks less
traditionally associated with morphological signals.
It is important to note that an image-based classifier for an

arbitrary feature will not necessarily be successful. The following
criteria are all necessary: (i) the presence of sufficient signal in the
image relating to the task at hand (e.g., predicting patient ID from
the image may not be successful), (ii) presence of sufficient
examples of both classes (e.g., alteration of BRCA1 was only
present in 4% of our cohort, and survival models in this cohort are
impractical due to high rates of early censoring) and (iii) the
identified signals from the limited number of training cases are
generalizable to the different cohorts. We envision these models
used either as hypothesis-generation tools through phenotype
screens of centralized datasets, or a tool in a pathologist’s
workflow for identifying which patients warrant further examina-
tion or testing.
Our work harnesses the recent advancements in CNNs and the

availability of clinical, transcriptomic, and histology data to
provide a quantitative approach for combining -omics and
histopathology analyses. We have shown the ability of image
analysis techniques to classify histopathological slides and link the
classification to a human interpretable biological motif. This
pipeline can be immediately applied to examine the underlying
biology of other breast cancer markers. Since the study was
conducted retrospectively on a study cohort, further validation of
the clinical utility of our models is needed. Our methods are
extensible to other cancers, potentially influencing diagnostics
and the study of microscopic morphological aberrations in human
cancer.

METHODS
Study cohorts
The objective of this study is to identify the utility of image-based deep
learning models toward the differentiation of various clinical and genomic
variables in breast cancer. Patient data from BRCA patients was obtained

Fig. 2 Lymphocyte infiltration patterns distinguished progesterone receptor and estrogen receptor statuses. The distributions of visible
lymphocytes for progesterone receptor (left) status+ /− and estrogen receptor (right) status+/− are shown.
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from the TCGA Genomic Data Commons (n= 1099), the Hospital of the
University of Pennsylvania and the Cancer Institute of New Jersey (HUP-
CINJ; n= 162)28, and Sunnybrook Health Sciences Centre, Toronto, Canada
(n= 54)29. Patients from the TCGA cohort were only included in this study
if they possessed a complete set of RNA-seq expression data, image slides,
and annotation of the clinical/genomic phenotype of interest. We used
frozen section tissue slides from TCGA and verified any selected tiles from
the tissue slides contained cancer cells. Phenotypes were treated as
annotated, with no imputation or additional interpretation. Image models
were initialized from ImageNet weights and stochastically trained three
times for each patient-level classification task. ROC-AUC scores of the
trained models were first computed in a held-out test partition of the TCGA
dataset that did not participate in the training process to assess the
internal validity of the models. Two independent cohorts from HUP-CINJ
and Sunnybrook were employed to further evaluate the generalizability of
our approaches. This study is approved by the Harvard Medical School
Institutional Review Board (IRB number: IRB20-0957) and complies with all
relevant ethical regulations.

Model development and training
RNA-seq data, hematoxylin-and-eosin stained tumor tissue slides, and
clinical profiles from 1099 breast cancer patients (BRCA) were obtained
from the TCGA data portal. Hematoxylin-and-eosin stained histopathology
slides and clinical profiles of patients from the independent validation
cohorts were also obtained from archived datasets. High-resolution (×20 or
×40) whole-slide images from each TCGA BRCA patient were identified and
annotated with the classification task of interest (tumor/normal, histolo-
gical subtype, ER status, PR status, HER2 status, TP53 mutation status,
PAM50 status). The top 200 224 × 224 tiles from each slide were extracted
based on RGB pixel density, to account for uneven distributions of tissue
across the sliding window30. Density was defined as the percentage of
non-white pixels (RGB values all less than 200) within the tile window. Tiles
were then distributed between train, test, and validation cohorts based on
their tissue source site (described below). Cohorts were constructed such
that tiles from the same TCGA tissue site did not appear in more than one
of the test, training, and validation cohorts. Keras was used to train
Inceptionv3 CNN models for each classification task using the created
cohorts. Inception v3 was chosen due to its established performance in
medical image classification tasks and transfer learning31,32. Aggressive
regularization, dropout, and image augmentation were utilized during
training: images were rotated, shifted, zoomed, and reflected randomly
and with random magnitude during training. Model parameters, including
learning rate and batch size, were initialized based on lung cancer models
were validated on unseen patients. The tile-level classification was re-
aggregated to the patient level by averaging over all tiles attributable to a
given individual patient (range voting). First-past-the-post voting was
evaluated as well and did not have a significant effect on reported
accuracy. The area under the receiver operating characteristic curve (AUC)
scores were calculated over the patient level for all tasks. To account for
the different imaging platforms used in the independent validation sets,
fine-tuning on the external datasets was performed by training on a
combination of TCGA training data and 10% of data from the new cohorts.
The fine-tuned models were tested on patients not included in the training
and fine-tuning process in both TCGA and external dataset test sets (Tables
1 and 2). We only perform this fine-tuning and external dataset evaluation
for the Tumor vs. Normal and Subtype models. The rest of the models were
trained and tested on TCGA data. Further details are provided in
Supplementary Materials.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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ESTIMATE Immune infiltration (Yoshihara, et al.) 5.36E−08 2.14E−03 <1E−05 3.40E−03

TIMER Immune infiltration (Li, et al.) 3.75E−07 1.40E−02 <1E−05 1.43E−02

Pathologic stage (discontinuous distribution) n/a n/a 0.2509 0.981
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