
Heliyon 10 (2024) e33637

Available online 26 June 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

Research article 

Integrative nomogram model based on anoikis-related genes 
enhances prognostic evaluation in colorectal cancer 

Yuexiao Zhang a, Xia Xue a, Fazhan Li a, Bo Zhang a, Pengyuan Zheng a,b,*, 
Yang Mi a,b,** 

a Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth 
Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China 
b Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China   

A R T I C L E  I N F O   

Keywords: 
Anoikis 
LASSO machine learning algorithm 
Nomogram 
Clinical prediction model 
Generalizability 

A B S T R A C T   

Background: Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis 
and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and estab
lished a novel model for improving the efficiency and accuracy of the prognostic evaluation of 
CRC. 
Methods: CRC-ARGs were screened out by performing differential expression and univariate Cox 
analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the 
LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with 
the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to 
facilitate the generalization and practical application of our model. 
Results: We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. 
Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were 
independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A 
prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) 
for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/ 
anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation 
between tumor microenvironment and Risk-Score was discovered in the present work. 
Conclusion: This study reveals the potential role of anoikis in CRC and sets new insights into 
clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the 
interactive tool provides researchers with a user-friendly interface to input relevant clinical 
variables and obtain personalized risk predictions or prognostic assessments based on our 
established model.   

* Corresponding author. Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University; Marshall B. J. Medical Research 
Center of Zhengzhou University, Kangfu Street No. 3, Zhengzhou, 450052, PR China. 
** Corresponding author. Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University; Marshall B. J. Medical Research 

Center of Zhengzhou University, Kangfu Street No. 3, Zhengzhou, 450052, PR China. 
E-mail addresses: medp7123@126.com (P. Zheng), yangmi198@zzu.edu.cn (Y. Mi).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e33637 
Received 27 February 2024; Received in revised form 24 June 2024; Accepted 25 June 2024   

https://yuexiaozhang.shinyapps.io/anoikisCRC/
https://yuexiaozhang.shinyapps.io/anoikisCRC/
mailto:medp7123@126.com
mailto:yangmi198@zzu.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e33637
https://doi.org/10.1016/j.heliyon.2024.e33637
https://doi.org/10.1016/j.heliyon.2024.e33637
http://creativecommons.org/licenses/by-nc/4.0/


Heliyon 10 (2024) e33637

2

1. Introduction 

Colorectal cancer (CRC) poses a significant risk to global health with substantial morbidity and mortality [1]. The primary ther
apeutics nowadays for CRC are surgical resection, adjuvant radiotherapy, and chemotherapy [2,3]. However, the high heterogeneity 
among CRC patients, along with limitations in current prognostic assessment protocols, can result in the oversight of critical factors 
during the early stages and ultimately lead to prognostic evaluation failures [3,4]. In parallel, the selection of appropriate adjuvant 
radiotherapy and chemotherapy is challenging and brings a diverse survival prognosis [5]. Thereby, adopting an efficient and accurate 
assessment model is significant in predicting and evaluating the prognosis for CRC individuals. 

Anoikis is a programmed death of normal cells that occurs under a prolonged suspension [6]. This cellular suicide is induced by cell 
detachment from the extracellular matrix (ECM) [7], which is an adaptation strategy to maintain cellular homeostasis and prevent 
tumor metastasis [8]. Instead of anoikis, cancer cells lose their attachment to surrounding tissues and enter the circulation system 
during tumor progression [9]. Cancer cells have the ability to evade clearance by anoikis and invade other tissues, leading to the 
formation of metastases. This is achieved through the acquisition of resistance to anoikis [10]. The 14-3-3σ protein makes liver cancer 
cells acquire resistance to anoikis by activating the ERK1/2 pathway, thus promoting the metastasis of liver cancer [11]. Multiple 
anoikis-related genes (ARGs) have been found to regulate the occurrence and development of cancer. For instance, CEMIP increases 
prostate cancer invasion and metastasis by promoting anoikis resistance in prostate cancer [12]. Increased CLDN1 enhances gastric 
cancer metastasis [13]. However, the role of anoikis-related genes in CRC remains unclear. 

Prediction models that incorporate diverse types of data and algorithms are increasingly recognized as more reliable and robust 
strategies in precision medicine [14]. These models integrate various predictors, including clinical data, pathology results, and 
sequencing data, to enhance their predictive capabilities [15,16]. By employing multiple calculating methods such as logistic 
regression, COX regression, nomograms, and machine learning, these models ensure the robustness and accuracy of the predictions 
[17]. 

Nomogram clinical prediction models have the advantage of transforming complex regression equations into visual graphics. This 
visual representation makes the results of the prediction model highly understandable and facilitates their interpretation during 
clinical evaluation [18,19], including ferroptosis-related prognostic model [20], cuproptosis-related prognostic model [21], and 
disulfidptosis-related prognostic model [22]. However, a lack of prediction models based on anoikis genes limits the explanation of 
CRC prognosis evaluation. We herein aim to develop a model for assessing CRC prognosis using ARGs. In parallel, we try to provide an 
available model into an interactive website for wide and open-assess use. 

Fig. 1. The flow chart of this study.  
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2. Methods and materials 

In this study, we investigated the role of anoikis-related key genes (AKGs) in CRC and evaluated the rational integration of CRC- 
AKGs, the Lasso machine learning algorithm, and nomogram in clinical prediction models. The primary research concepts and pro
cedures of this study were described in Fig. 1. 

2.1. Data collection 

The CRC patient data from TCGA (https://www.cancer.gov/ccg/research/genome-sequencing/tcga) and Gene Expression 
Omnibus databases(GSE39582, https://www.ncbi.nlm.nih.gov/geo/) were obtained and filtered. We obtained a total of 1010 samples, 
of which 918 had complete clinical information. The relevant clinical factors were presented in Supplementary Table S1. 

2.2. ARGs associated with prognosis in CRC screening 

RNA sequencing data from TCGA was subjected to differential gene expression analysis. ARGs were collected from the anoikis 
database (https://www.genecards.org/, https://maayanlab.cloud/Harmonizome/). The differentially expressed ARGs between tumor 
and normal cases were identified with the limma package (v3.52.4) and applied the following criteria: |logFC|>1 and p.adj <0.05. By 
integrating clinical prognostic data, CRC-ARGs were calculated using univariate Cox regression hazard analysis [23]. 

2.3. Tumor mutational burden 

We analyzed the CRC-ARGs mutations from the tumor tissues using the maftools package (v2.16.0) and visualized it by com
plexheatmap package (v2.12.1). In parallel, the genetic locus and copy number variation (CNV) of CRC-ARGs in RCircos plot was 
generated using RCircos package (v1.2.2). 

2.4. CRC clusters identification 

We employed sva package (v3.44.0) [24] to eliminate batch effects of expression profiles from TCGA and GEO. The data were 
normalized and combined for further analysis. The hierarchical clustering analysis was carried out using the package Consensu
sClusterPlus (v1.60.0) [25]. The number of clusters(K) with the lowest proportion of ambiguous clustering (PAC) score was considered 
the optimal cluster number. The Principal Component Analysis (PCA) was performed using the “prcomp” R function and plotted using 
the program ggplot2 (v3.4.4). By integrating clinical data and prognosis, the prognostic significance of two clusters was investigated 
using Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis [26]. 

2.5. Evaluation of LASSO Risk-Score and its prognostic significance 

We randomly divided the combined dataset into training (70 %) and validation (30 %) sets [27]. The LASSO was performed on 
training set using 10-fold cross validation and identified the variables with a non-zero β-coefficient [28,29]. The CRC-AKGs were 
identified for the construction and calculation of the Risk-Score. The calculation method and formula for the Risk-Score, denoted as 
Risk-Score = coefficientα*geneA + coefficientβ*geneB + coefficientγ*geneC, were recorded and demonstrated [28]. The median 
LASSO Risk-Score was set as the cut-off value [30], patients were classified into “High risk group” and “Low risk group”. In addition, 
Kaplan-Meier survival analysis and ROC curve [26] between the two groups were performed. We used the Student’s t-test/Krus
kal-Wallis test to evaluate LASSO Risk-Score and clinical factors. All differences were considered significant as p < 0.05. 

2.6. CRC-AKGs expression and prognostic significance in CRC 

We investigated the DNA and protein expression levels of these CRC-AKGs using the HPA database (https://www.proteinatlas.org/ 
). Moreover, we conducted survival analysis and ROC curve to evaluate their prognostic significance in CRC [26]. 

2.7. Predictive nomogram construction, utility verification and promotion 

To screen out appropriate predictors, the LASSO Risk-Score and clinical factors were subjected to univariate and multivariate COX 
analysis. The threshold for statistical significance was set as p < 0.05. We calculated the area under the ROC curve (AUC) to quantify 
the predictive value [31]. The diagnostic power of the test was found to be good, moderate, and poor when the area under the curve 
(AUC) was greater than 0.8, between 0.7 and 0.8, and less than 0.7, respectively [31,32]. Calibration curves was used to evaluate the 
calibration of the model [33]. The closer the prediction line is to the reference line (diagonal), the better the model is fitted [34]. 
Decision curves analysis (DCA) and area of decision curves (AUDC) were used to test clinical utility of the model [35]. In DCA, the 
ordinate axis is the net benefit. Thus, “Nomogram” line in the DCA plot was above the “None” and “All” lines, indicating that the 
predictive model had strong clinical utility [36]. If the AUDC of the nomogram line is significantly higher than the AUDC of all lines, it 
means that the higher the overall position of the nomogram line in the axes, the greater its clinical utility [37]. 

Model validation was performed on the validation dataset. The R packages were dependent on the following support package: 
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glmnet v4.1, rms v6.7-1, dcurves v0.4.0, and timeROC v0.4.0. In the shinyapp platform (https://www.shinyapps.io/), a dynamic 
nomogram has been developed and is now available online (https://yuexiaozhang.shinyapps.io/anoikisCRC/). Dynamic nomogram 
can be accessed and used totally freely through network devices, which greatly promotes the generalizability and utility of our model. 

2.8. Evaluation of immune environment 

To estimate the relative abundance of immune cells within the tumor microenvironment (TME), we used the CIBERSORT algorithm 
[38]. The differential analysis between “High risk group” and the “Low risk group” was carried out using the limma package (v3.52.4). 
A non-parametric Spearman’s rank correlation was used to find out the association between CRC-AKGs and immune cells. The ES
TIMATE algorithm was used to evaluate the relationship between Risk-Score and ImmuneScore, StromalScore, and ESTIMATEScore. 

Fig. 2. Screening the CRC-ARGs in CRC. (A). Volcano plot of DEGs in CRC. (B). Univariate Cox risk regression analysis: forest plot of the association 
between CRC-ARGs and CRC survival. (C). Somatic mutation status of CRC-ARGs in CRC visualized via waterfall plot. (D). The localization of the 
CRC-ARGs on TCGA-GBM 23 chromosomes. Red represents high levels of CNV, and blue represents low levels of CNV. 
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2.9. Single cell sequencing analysis 

Based on our prior study, this work investigated the distribution of various immune cells in CRC by using public data (GSE108989) 
from the Tumor Immunity Single Cell Hub (TISCH, http://tisch.comp-genomics.org/). We investigated the expression and distribution 
of CRC-AKGs in CRC cells and various immune cells as well. 

2.10. Statistical analysis 

The statistics in this study were conducted using R software (v4.0.1), with the corresponding algorithms and codes documented in 
Supplementary File 1. The primary data were expressed as mean ± standard deviation. Statistical comparisons between two subgroups 
were conducted by using Student’s t-test, while multiple comparisons were conducted by using Kruskal-Wallis test. The signifcant 
differences were considered as p < 0.05. 

3. Results 

3.1. Screening and clustering of CRC-ARGs 

From the TCGA-CRC dataset, we extracted 168 differentially expressed ARGs (adjusted p < 0.05), with 120 upregulated and 48 
downregulated genes (Fig. 2A). Univariable Cox regression analysis showed 47 genes associated with the CRC prognosis, which were 
referred to be CRC-ARGs. The 30 genes were correlated with poor clinical prognosis (Fig. 2B). The waterfall chart showed the mutation 
of CRC-ARGs in the CRC (Fig. 2C). We found a total of 45 CRC-ARGs were mutated in CRC, with FASH and NOTCH3 showed above 20 
% mutation rates. In addition, the CNV of CRC-ARGs in CRC showed common, and their location on the chromosome was shown in 
Fig. 2D. 

After screening CRC-ARGs, we performed a hierarchical clustering analysis on the combined dataset. According to the PAC score, 
we determined that the optimal number of clusters was 2. We classified the CRC patients into cluster A and B based on CRC-ARGs 
expression (Fig. 3A and B). Kaplan-Meier survival analysis indicated that the differences in survival between the clusters were sig
nificant (p < 0.001, Fig. 3C). ROC analysis showed poor predictive performance for 1,3,5-year survival with AUC values of 0.561, 
0.566, 0.562, respectively (Fig. 3D). 

Fig. 3. Identification of intrinsic clusters of CRC by CRC-ARGs. (A). The patients with CRC were divided into two distinct gene clusters. (B). PCA for 
different clusters. (C). Kaplan-Meier survival curve analysis for the association of the different clusters and overall survival times. (D). Time- 
dependent ROC curve analysis at 1,3 and 5 years showing the AUC for overall survival. 
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3.2. Construction and validation of a prognostic signature related to anoikis 

Due to the large number of genes in CRC-ARGs (over 40), their generalised application was challenging. The prediction accuracy of 
CRC prognosis based on clusters calculated by the expression of CRC-ARG showed poor (all AUCs were less than 0.6, as shown in 
Fig. 3D). Therefore, we constructed a more accurate prediction model to identify CRC-AKGs from CRC-ARGs. 

Based on LASSO regression analysis, we selected NAT1, MYC, MMP3, GZMB, INHBB, EPHA2, FGF2, CD36, HOTAIR, and OGT as 
CRC-AKGs for prognostic model construction (Fig. 4A and B). We used model coefficients obtained from LASSO regression analysis to 
calculate individual risk scores for each CRC sample, and the formula for the Risk-Score was: 

Risk-Score = GZMB*(− 0.1117) + MMP3*(− 0.0568) + OGT*0.3527 + HOTAIR*0.144 + CD36*0.2149 + FGF2*0.1994 +
EPHA2*0.2783 + INHBB*0.1805 + MYC*(− 0.2384) + NAT1*(− 0.1975). 

Based on Risk-Scores, we classified CRC samples into high-risk and low-risk groups. We found that the survival time of the patients 
was shorter as the scores increased and the levels of various CRC-AKGs differed among groups at high and low risk (Fig. 4C). Genes 
NAT1, MYC, and MMP3 showed higher expression in the high-risk group than it in the low-risk group, while INHBB, EPHA2, FGF2, 
CD36, HOTAIR, and OGT showed the opposite trend. Furthermore, we employed Kaplan-Meier survival and ROC analysis to evaluate 
the prognostic values of Risk-Score. The results showed that patients classified as low risk performed significantly higher overall 
survival rates in CRC compared with it from the high-risk group (p < 0.001, Fig. 4E). The AUCs of 1-, 3-, and 5-year were 0.681, 0.709, 
0.678, respectively (Fig. 4D). 

We explored the correlation between the Risk-Score and various clinical factors (Fig. 5A). The distribution of CRC-AKGs, high-risk 
group, low-risk group, and TNM staging was investigated. The heat map showed that the high-risk group had more patients with high 
TNM stage compared with the low-risk group. Fig. 5B–D indicated a significant difference in Risk-Score across T, N, and M stage (p <
0.001). However, no significant statistical difference was found between age and gender strata (p > 0.05, Fig. S1). We also validated 
CRC-AKGs with public databases and conducted a survival analysis of single gene, revealing differential expression of OGT proteins in 
tumor and normal tissues (Fig. S2). 

3.3. Construction and validation of predictive nomogram 

We identified age, T, N, M, and Risk-Score as independent risk factors affecting the prognosis of CRC patients using univariate and 
multivariate cox regression analyses in the training set (p < 0.001, Fig. 6A and B). We then constructed a nomogram model to predict 
the 1, 3, 5-year time survival rate of CRC patients with age, T, N, M, and Risk-Score as predictors (Fig. 6C). The nomogram included the 
calculation of the composite score of these 5 variables, enabling the estimation of survival rate at 1, 3, 5-year time from CRC patients. 

We evaluated the prediction accuracy using ROC. The results showed that the 1-, 3-, and 5-year AUCs for nomogram (0.804, 0.815, 

Fig. 4. CRC-AKGs were selected by the LASSO logistic regression model. (A and B). The LASSO method of CRC-ARGs with CRC prognosis. (C). The 
distribution of risk score, survival status, and expression levels of the 10 CRC-AKGs among CRC patients. (D). Time-dependent ROC curve analysis 
between low and high group at 1,3 and 5 years showing the AUC for overall survival. (E). Kaplan-Meier survival curve analysis for the association of 
the different risk groups and overall survival times. 
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and 0.779, Fig. 6D) were significantly (p < 0.01) higher than the 1-, 3-, and 5-year AUCs for Risk-Score (0.681, 0.709, 0.678, Fig. 4D). 
The calibration curves showed a strong concurrence between the estimations conducted using the nomogram and the actual obser
vations (Fig. 6E). The DCA demonstrated that the AUDC for the model was much higher than "ALL", which indicated that the 
nomogram was feasible for making valuable and informed judgements of the prognosis (Fig. 6F). Furthermore, we performed the 
evaluations in the validation set, and the results were consistent with the training set (Fig. 6G–I). 

3.4. Human-computer interaction nomogram construction and promotion 

Since the predictive model visualized in Fig. 6C is not user-friendly, we constructed a dynamic column line diagram (Fig. 7). This 
diagram is accessible through the Open Platform (https://www.shinyapps.io/) and provides a more convenient use. By inputting the 
patient’s age, Risk-Score, T, N, and M in required fields and selecting the desired OS for prediction, the patient’s customized survival 
curve can be displayed (Fig. 7B). The probability of a patient in Fig. 7A predicting 1, 3, 5-year time of OS by the model was shown in 
Fig. 7C. 

3.5. Comprehensive analysis of the immune microenvironment of LASSO Risk-Score and CRC-AKGs 

To identify differences in immune cell infiltration between high-risk and low-risk groups based on Risk-score, we quantified the 
level of immune cell infiltration in CRC patients. We found elevated levels of immune cells such as plasma cells, CD8+ T cells and 
activated CD4+ memory T cells in the low-risk group, while higher levels of neutrophils, macrophages M0 and macrophages M2 were 
found in the high-risk group (Fig. 8A). We investigated the correlation between CRC-AKGs and Risk-Score and the level of immune cell 
infiltration (Fig. 8B), it showed that Risk-Score was positively correlated with M2 macrophages and neutrophils (p < 0.001, r = 0.13; p 
< 0.001, r = 0.12, Fig. 8C), while the Risk-score was negatively correlated with activated CD4+ T cells and resting NK cells (p < 0.001, 
r = 0.25; p < 0.001, r = 0.13, Fig. 8C). 

Fig. 5. Relationship between clinical factors and Risk-Score based on CRC-AKGs. (A). Heatmap of TNM stage, expression of CRC-AKGs and Risk- 
Score, showing their distribution and differences across groups (high-risk group and low-risk group). (B–D). Risk score differences among subgroups 
for TNM stage. 
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The data set from TISCH showed significant differences in the number of different cells among immune cells at CRC sites, with 
CD4+ T cells and plasma cells showed the highest numbers (Figs. S3A and B). In addition, the expression of CRC-AKGs varied in 
different immune cells, which the gene GZMB showed a higher expression in CD8+ T cells, DC, T prolif cells; the expression of CD36 
was higher in DC, macro cells (Fig. S3). 

To explore the potential impact of the Risk-Score in the complex TME, we investigated the correlation between risk score and TME 
indices. The results revealed that stromalscore and estimatescore were significantly elevated in high-risk group compared with it in the 

Fig. 6. Construction and validation of the prognostic prediction model. (A and B). Univariate and multivariate analyses based on Cox revealed the 
association between each predictor with OS. (C). Nomogram integrated the age, T stage, N stage, M stage and Risk-Score. (D and G). Time- 
dependent ROC of the training set and the validation set. (E and H) Calibration curves for the nomogram model in the training set and the vali
dation set. (F and I). DCA curves of the training set and the validation set. 
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low-risk group (p < 0.001, Fig. 8D), indicating the presence of an augmented immune response in the high-risk group. 

4. Discussion 

CRC is a globally prevalent malignancy associated with high mortality rates, particularly in advanced stages [39]. After analyzing 
the RNAseq data from TCGA-CRC, we identified 10 genes as CRC-AKGs and calculated their weights and Risk-Score. Furthermore, our 
models are now available online and open-assessed, thus ensuring user-friendly interactions. This approach proves more convenient 
for medical workers and patients, in addition, effectively enhances the assessment of CRC prognosis in the real world. 

We identified 47 genes that are linked to the prognosis of CRC (Figs. 2), 45 of them shown mutations in colon cancer, indicating the 
potential use of CRC-ARGs as identifying markers for CRC. Despite the observed gene expression differences in the gene cluster (Fig. 3 
A and B), further enhancement is required in its prognostic evaluation value (Fig. 3C and D). To focus on more CRC-related genes, we 
identified 10 CRC-AKGs by LASSO. Notably, the prognostic evaluation value of the LASSO Risk-Score still requires further enhance
ment, as the AUC value was only approximately 0.7. The omission of key clinical factors may contribute to the lack of prognostic value 
of the LASSO Risk-Score. Both calibration and decision curves indicated that the model performed a good prediction effect. However, 
the apparent performance of a model, as indicated by its estimated performance using the data utilized for model development, often 
results in an overly optimistic estimate due to overfitting of the model to that specific dataset [40]. We thus performed the validation 
set to further evaluate the model. The AUC, calibration curves and DCA of validation set were similar to those of the training set, which 
support the robustness of our mode for clinical application. 

Although there has been extensive research on predictive modelling, they are generally static and not user-friendly in clinical 
settings [41,42]. Nomograms make complex regression equations easier to read [43]. In the clinical work, by substituting the patient’s 

Fig. 7. An interactive nomogram clinical prediction model for predicting the prognosis of CRC patients. Interactive nomogram could be applied on 
networked devices. The corresponding URL was: https://yuexiaozhang.shinyapps.io/anoikisCRC/. Here, the slider on the left allows you to enter 5 
specific characteristics. Enter the OS you wish to predict and click the "Predict" button. Here, this figure showed an example of CRC patients. 
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age, TNM classification and risk score into the present model, we provide an accurate digital survival or risk probability for each CRC 
patient, which can assist the clinician in decision-making, reflecting the idea of individualized medicine. A prognostic prediction 
model for lung adenocarcinoma and a prognostic prediction model for low-grade endometrial stromal sarcoma both implemented 
through nomogram models [44,45]. To increase the interactivity of our models, we developed an innovative open platform online. 
This enables users from around the globe to conveniently access our model and obtain the 1, 3, and 5-year time survival rate along with 
the corresponding confidence level through a few straightforward selections and inputs. The interactive nature of our models enhances 
the user experience, thereby significantly enhancing the clinical utility of the model. 

We found the screened CRC-AKGs show good predictive power. Understanding these gene interactions is vital for the development 
of diagnostic tools and targeted therapies in CRC research. Studies on genes such as GZMB, MMP3, OGT, HOTAIR, CD36, FGF2, EPHA2, 
INHBB, MYC, and NAT1 in the context of colon cancer has provided valuable insights into the molecular mechanisms underlying the 
disease. For instance, GZMB was found in natural killer cells (NK cells) and cytotoxic T lymphocytes (CTLs) [46]. It cleaves and ac
tivates various apoptosis-associated proteins [47]. A study has shown that infiltration of GZMB+cells can enhance the antitumor effects 
of TME [48]. GZMB was also identified as a protective factor in a model predicting immunotherapy response in gastric cancer [49]. 
Genes MMP3, OGT, HOTAIR, CD36, FGF2, EPHA2, INHBB, MYC, and NAT1 contribute to various facets of colon cancer development 
and progression, such as signaling pathways, metastasis, and cell growth regulation. MMP3 is associated with immune function and 
can be used as a therapeutic target for the treatment of UC (ulcerative colitis) patients, as well as a biomarker of immune cell infil
tration in CRC [50]. FGF2 is associated with cell proliferation and angiogenesis [51]. It shows upregulated in various human cancers 
and are correlated with poor prognosis [52]. Besides, OGT, CD36, EPHA2, and INHBB have strong associations with CRC prognosis. 
OGT is a potential tumor marker [53], while EPHA2 is associated with the invasion, migration, and metastasis of cancer cells, making it 
a marker of poor prognosis in CRC [54]. In a study on CRC, INHBB was identified as a key gene for predicting the efficacy of 

Fig. 8. Relationship between CRC-AKGs and CRC Tumor Microenvironment. (A). Violin plot of differences in immune cell infiltration in high-risk 
and low-risk group. (B). Heatmap visualizes the correlation of each CRC-AKG and Risk-Score with immune cell. (C). Scatterplots showing the 
correlation between Risk-Score and immune cell. (D). Violin plot of differences in immune-related indicators in samples from high-risk and low- 
risk groups. 
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radiotherapy [55]. 
After calculating the median risk score, we divided the patients into high- and low-risk groups. We observed distinct patterns of 

immune cell infiltration between the two groups. In the low-risk group, we found elevated levels of Macrophages M2, T cells CD4+ and 
CD8+, plasma cells, and NK cells resting. In contrast, the high-risk group exhibited elevated levels of Macrophages M2 and M0, B cell 
memory, Neutrophils, Eosinophils, and NK cells activated. Macrophages M2 cells inhibit T cells and NK cells activity, suppressing 
immune function and promoting immune evasion and tumor progression, which fits with data from other studies [56]. In the low-risk 
group, CD4+ and CD8+ T cells were found to be elevated. CD4+ T cells could activate CD8+ T cells, which encourage them to proliferate 
and differentiate into effector T cells, and CD8+ T cells can directly kill tumor cells [57,58]. Synergism between CD4+ and CD8+ T cells 
is essential for immune function and tumor resistance. Furthermore, our analysis indicated that stromal cells were significantly more 
abundant in the high-risk group compared with the low-risk group. Tumor stromal cells have been widely recognized for their sig
nificant role in tumor growth, metastasis, progression, and treatment. These cells contribute to tumor development and spread by 
promoting tumor growth and enhancing metastatic potential. Additionally, they suppress immune function through various mecha
nisms, thereby creating an immunosuppressive microenvironment that aids in tumor evasion from the immune system [59,60]. The 
observed difference between the high- and low-risk groups suggests that reduced infiltration of tumor-killing cells, coupled with a 
surge of immune cells promoting immune evasion and an increase in tumor stromal cells, can potentially contribute to the relatively 
lower survival rates in the high-risk group. These findings provide compelling evidence for the strong predictive power of our model. 
However, it is important to note that further experimental validation is necessary to elucidate the precise mechanisms underlying these 
observations. Such validation will not only enhance our understanding of the underlying processes but also pave the way for potential 
clinical translation of our model. 

5. Conclusion 

The present study constructed a robust prognosis prediction model in CRC based on CRC-AKGs, which also combined with clinical 
data to perform better in precision medicine. However, our study does have limitations. Validation with clinical samples and 
experimental data is necessary, and further exploration would be valuable for deciphering the mechanisms of the gene signature in 
CRC progression. 
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