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Abstract
Background: A priori analysis of the activity of drugs on the target protein by computational
approaches can be useful in narrowing down drug candidates for further experimental tests.
Currently, there are a large number of computational methods that predict the activity of drugs on
proteins. In this study, we approach the activity prediction problem as a classification problem and,
we aim to improve the classification accuracy by introducing an algorithm that combines partial
least squares regression with mixed-integer programming based hyper-boxes classification method,
where drug molecules are classified as low active or high active regarding their binding activity (IC50
values) on target proteins. We also aim to determine the most significant molecular descriptors for
the drug molecules.

Results: We first apply our approach by analyzing the activities of widely known inhibitor datasets
including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase
(DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that
our approach consistently gives better classification accuracies compared to 63 other reported
classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally
determined IC50 values with a worst case accuracy of 96%. To further test applicability of this
approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their
activities with 100% accuracy.

Conclusion: Our results indicate that this approach can be utilized to predict the inhibitory effects
of inhibitors based on their molecular descriptors. This approach will not only enhance drug
discovery process, but also save time and resources committed.

Background
At the initial stages of drug discovery and design, there are
often millions of candidate drug molecules under consid-
eration. Therefore, the early prediction of activity for drug

candidates using computational methods is very impor-
tant to save time and resources. Due to importance of
early prediction of activity of drug candidates on the target
protein, a large number of computational methods were
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developed. QSAR (Quantitative Structure-Activity Rela-
tionship) analysis is one of the most widely used methods
to relate structure to function. QSAR analysis can be
described as the quantitative effort of understanding the
correlation between the chemical structure of a molecule
and its biological and chemical activities such as biotrans-
formation ability, reaction ability, solubility or target
activity[1]. QSAR assumes that structurally similar mole-
cules should have similar activities, which draws attention
to the importance of detecting the most significant chem-
ical and structural descriptors of the drug candidates. The
drug activity behavior can be predicted using a wide range
of descriptors.

Some of the most widely used 3D QSAR methods can be
listed as follows: comparative molecular field analysis
(CoMFA), comparative molecular similarity indices anal-
ysis (CoMSIA), eigenvalue analysis (EVA). In CoMFA,
molecular descriptors are calculated and selected by calcu-
lating the electrostatic and steric potential energies
between a positively charged carbon atom located at each
vertex of a rectangular grid and a series of molecules
embedded within the grid[2]. The sensitivity to small
changes in the alignment of compounds is reduced and
hydrogen-bonding and hydrophobic fields are introduced
to in CoMSIA[3]. In these methods aligning of the struc-
tures is essential, therefore EVA was used due to the fact
that methods that are sensitive to 3D structure but do not
require superposition were introduced[4]. The generation
of descriptors in EVA is based on molecular vibrations,
where a normal mode calculation is required to simulate
the IR spectrum of a molecule [5].

In this study E-Dragon [6-8], which is a remote version of
the DRAGON descriptor calculation program, was used to
calculate the molecular descriptors for drugs. It applies the
calculation of molecular descriptors developed by Todes-
chini et. al[9] and provides more than 1,600 molecular
descriptors, which are divided into 20 blocks, including
atom types, functional group and fragment counts, topo-
logical and geometrical descriptors, autocorrelation and
information indices, 3D molecular descriptors, molecular
properties [6-8]. DRAGON incorporates two steps; the
first step eliminates low-variable descriptors, the second
step optimizes the descriptor subset using a Q2-guided
descriptor selection by means of a genetic algorithm using
several data analysis methods: Unsupervised Forward
Selection (UFS)[10], Associative Neural Network
(ASNN)[11,12], Polynomial Neural Network
(PNN)[13,14] and Partial Least Squares (PLS) [6-8].

In most studies, Partial Least Squares (PLS)[15] is used to
develop QSAR models by reducing the number of
attributes in the descriptor set to a small number of

attributes correlated with the defined property being
modeled.

In our approach, to classify activities of drug compounds,
we used the mixed-integer programming (MILP) based
hyper-boxes method that takes the molecular descriptors
as attributes of the model. The problem of QSAR analysis
and the classification of drug candidates are addressed
based on their published IC50 values by introducing an
algorithm that combines PLS regression with mixed-inte-
ger linear programming based hyper-boxes classification
method. The strength of the algorithm not only comes
from combining regression with classification but also the
ability to improve the classification accuracies by its itera-
tive approach. The algorithm that links QSAR descriptor
model generation with inhibitory activity classification
was applied to inhibitors of Acetylcholinesterase (ACHE),
Benzodiazepine Receptor (BZR), Dihydrofolate Reductase
(DHFR) and Cyclooxygenase-2 (COX-2) and finally for
Cytochrome P450 C17 (CYP17).

The comparison of our classification accuracies with the
accuracies of the classification methods available in the
WEKA data mining package [16] is also made. WEKA con-
tains 63 different classification methods, but here only 16
of those, which had the best classification accuracies for
the data sets considered in this paper are discussed. Brief
overview of these classifiers is further presented in the
Methods section. Our approach outperformed all of the
classifiers available in WEKA for each model of the all of
the 7 data sets, even reaching 100% accuracy in predicting
the activity classification of the inhibitor sets, Ache inhib-
itors and Cytochrome P450 C17. A total number of 21
QSAR models were built in this study for 7 inhibitor sets,
and in 18 of them the accuracy of our methodology
exceeded the accuracy of the second best classifier with
more than 10%. Through all of the 21 models, the small-
est difference in the accuracies is 6.31% and the largest dif-
ference is 27.47%.

Results
To determine the threshold values, which divide the low
and high classes, for all datasets the IC50 values were sta-
tistically analyzed. In this study, we consider 6 datasets, of
which IC50 values and structures were reported [16-26]. In
addition to these datasets we introduced a new dataset for
Cytochrome P450 C17 inhibitors that we collected from
the literature. Cytochrome P450 C17 is a well-recognized
target for prostate cancer treatment, since selective inhibi-
tion of the enzyme exerts control over androgen synthesis
[27].

After building the descriptor models by e-Dragon [8],
three models were constructed during the PLS analysis as:
7, 10 and 15 descriptor models. The reason that we build
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3 models with different number of variables is due to the
fact that we might come up with insignificant descriptors
within one of these models, so that we can replace them
by a more significant one from the other models.

The QSAR models with the most significant descriptors, as
they were concluded as a result of the initial PLS study for
the 7, 10 and 15 attribute models are listed in Table 1 with
their R2 values. Table 1 shows the optimal R2 values of our
PLS models given by Minitab[28] with predefined
number of descriptors from the descriptors calculated by
e-Dragon software, and the R2 values of the PLS models
calculated by Sutherland et al[26] with the same data sets
but different methods and models.

The R2 values shows that, the models we developed with
10 and15 descriptors for Ache BZR and COX-2 are
stronger than or at least as strong as the other models
reported by Sutherland et al[26] in representing the IC50
values in terms of selected descriptors, but our model for
DHFR_RL is not as good as the other reported models.
High R2 values of Cytochrome P450 C17 models also sug-
gest good prediction of the IC50 values and a promising
initial model for classification.

It is worth noting that, our study is not simply a regression
study, but we develop these regression models in order to
use the selected descriptors from this step as attributes for
accurate classification.

Iterations
At the end of the initial runs of the hyper-boxes classifica-
tion method, classification results are obtained. The next
step is the significance analysis and the improvement of
the classification accuracies by iterations. The weakest and
the strongest descriptors were calculated by significance
analysis and, the weakest descriptor in the current model
was replaced by the most significant one from other mod-
els at each iteration. The classification runs are repeated
after each replacement, by MILP based hyper-boxes

method. When the classification accuracy is not improved
at the end of iteration, the algorithm stops and final
results are reported (Table 2).

While choosing the weakest descriptor to leave the model,
the descriptor with the maximum p-value (failed to reject
H0 with the greatest error, see methods section for our
hypothesis) for one of the high or low classes was selected.
The weakest descriptor was replaced by the strongest one.
The strongest descriptor defined as the attribute whose
maximum p-value for high and low classes is the mini-
mum among the other descriptors.

Final Classification
As shown in Table 3, we compared the classification accu-
racies of our model with the results that calculated using
all of the classification methods in WEKA. We report only
the results of the16 best performing WEKA classifiers. Our
method performed better than all of the other classifiers
for every model of each dataset. Our integrated approach
of regression and classification for Ache and Cytochrome
P450 C17 inhibitors datasets displayed an activity predic-
tion accuracy of 100%. The activity of BZR inhibitors was
calculated with the accuracy of 96.36%. We were able to
predict the activities of COX-2 inhibitors with 98.13% in
a 7-descriptor model. In addition, the prediction accuracy
of activity of DHFR_RL, DHFR_PC, and DHFR_TG inhib-
itors were 97.74%, 98.41% and 97.74% respectively. The
best performing WEKA classifiers are also highlighted in
Table 3.

To verify the reliability of the accuracies given by 10-fold
cross validation standard deviations of the classification
accuracies were also calculated for each run of MILP based
hyper-boxes method. The sensitivity of classification accu-
racy to the number of descriptors is also examined and the
results are reported in Table 4. Small number of descrip-
tors may lead to poor models while a large number of
descriptors may lead to inefficient models that incorpo-
rate non-informative descriptors for classification. In all

Table 1: Comparison of R2 values for PLS models.

Data set CoMFA
*

CoMSIAbasic* CoMSIAextra* EVA* HQSAR
*

2D* 2.5D
*

e-DragonPLS-
7

e-DragonPLS-
10

e-DragonPLS-
15

AchE 0.88 0.86 0.86 0.96 0.72 0.40 0.38 0.84 0.90 0.95
BZR 0.61 0.62 0.62 0.51 0.64 0.51 0.52 0.51 0.67 0.79

COX-2 0.70 0.69 0.69 0.68 0.70 0.62 0.68 0.53 0.61 0.73
DHFR_RL 0.79 0.76 0.75 0.81 0.81 0.61 0.65 0.42 0.53 0.64
DHFR_PC N/A N/A N/A N/A N/A N/

A
N/A 0.44 0.54 0.65

DHFR_TG N/A N/A N/A N/A N/A N/
A

N/A 0.40 0.51 0.66

Cytochrome 
P450 C17

N/A N/A N/A N/A N/A N/
A

N/A 0.84 0.91 0.95

* PLS results reported by Sutherland et al. [26].
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of the datasets considered in this paper, this trend is
observed from the accuracy values and standard deviation
of accuracies for 10-fold cross validation.

Detailed analysis: Cytochrome P450 C17 inhibitors
We applied our approach to classify activities of drug mol-
ecules in a new data set (P450 C17) that is constructed
from data in literature [27,29]. The molecular structures
and IC50 values for these molecules are given in Addi-
tional File 1. This approach may be utilized for the new
molecules that inhibit activity of Cytochrome P450 C 17
before channeling them into experiments.

For the 7, 10 and 15 attribute models the selected most
significant descriptors as a result of the initial PLS study
are listed with R2 values (Table 1) of 0.946, 0.907 and
0.838 respectively.

When the hyper-boxes model was implemented, 10 and
the 15-attribute models reached 100% accuracy, by 10-
fold cross validation. The 7-attribute model, however, still
needed to be improved since the classification results
reached an average accuracy of 96.35%. This led us to con-
clude that there may be some overestimated descriptors
actually having low significance in terms of classifying the
drug activity. Therefore, significance tests were performed
after the preliminary classification runs.

Table 5 shows the p-values for the descriptors at each iter-
ation. At iteration 1, C-027 was detected as insignificant
since it has the largest p-value among the other descrip-

tors. Then from the significance analysis of 10 descriptor
model, EEig04x was chosen to replace it, since its maxi-
mum p-value is the minimum among the other descrip-
tors. After each replacement, the hyper-boxes
classification model was built and performed with the
new attributes and, average classification accuracy was
determined. The runs were stopped after iteration 3 since
we reached 100% accuracy. The classification results are
reported in Table 6.

The results of the final run of hyper-boxes classification
for the 7-descriptor model shows that the effect of chang-
ing the less significant descriptors with the more signifi-
cant ones improved the accuracy of the classification from
96.36% to 100%. Since we have reached 100% accuracy
in 7-descriptors models, the significant ones may be
included in this model among 912-descriptors that are
initially calculated by e-DRAGON. Brief explanations of
the descriptors can be found in Table 7.[9].

Discussion
Early analysis and estimation of the drug activities by
computational methods are widely studied in order to
narrow down drug candidates for further experimental
tests. The accuracy comparison of our algorithm with
other QSAR algorithms suggests that drug activities can be
classified with a significantly higher accuracy with the
method introduced in this study.

After model building by E-dragon QSAR software, the PLS
runs were performed to determine the best model in rep-

Table 2: Classification Accuracies of each iteration.

Iter #0 Iter #1 Iter #2 Iter #3

ACHE 7 Attributes 91.89 100.00
10 Attributes 86.48 89.19 91.89
15 Attributes 86.05 89.18

BZR 7 Attributes 90.90 96.36
10 Attributes 92.73 94.55
15 Attributes 90.09 92.73

COX-2 7 Attributes 94.39 95.33 97.20 98.13
10 Attributes 91.58 97.20
15 Attributes 88.78 89.72 90.65

DHFR_RL 7 Attributes 94.73 96.99
10 Attributes 93.98 97.74
15 Attributes 94.73

DHFR_PC 7 Attributes 95.23 96.83 97.62
10 Attributes 94.44 95.24 98.41
15 Attributes 92.06 93.65

DHFR_TG 7 Attributes 96.24 97.74
10 Attributes 93.23 93.98 96.24
15 Attributes 96.24 97.74

P450 C17 7 Attributes 86.36 90.00 97.20 100.00
10 Attributes 100.00
15 Attributes 100.00
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Table 3: Comparison of classification accuracies of best WEKA classifiers with the MILP based hyper-boxes classification.

% accuracy % accuracy

ACHE 7-
attribute

10-attribute 15-attribute BZR 7-
attribute

10-attribute 15-attribute

MILP based hyper-
boxes method

100 91.89 89.19 MILP based hyper-
boxes method

96.36 94.55 92.73

Bayes Network 79.28 77.48 78.38 Bayes Network 77.91 77.3 73.62
Naive Bayes 80.18 80.18 81.08 Naive Bayes 80.37 77.91 66.26
Naive Bayes Simple 81.08 80.18 81.98 Naive Bayes Simple 79.14 77.3 68.71
Naive Bayes Updatable 80.18 80.18 81.08 Naive Bayes Updatable 80.37 77.91 66.26
Lojistic 79.28 84.68 80.18 Lojistic 83.44 80.98 80.98
Multilayer Perceptron 82.88 81.08 81.08 Multilayer Perceptron 79.75 80.98 79.14
SimpleLogistic 83.78 82.88 79.28 SimpleLogistic 80.98 82.82 79.14
SMO (WEKA SVM) 79.28 80.18 80.18 SMO (WEKA SVM) 79.14 77.91 77.91
IB1 70.27 80.18 77.48 IB1 72.39 74.85 75.46
Ibk 70.27 80.18 77.48 IBk 72.39 74.85 75.46
Logit Boost 82.88 81.08 82.88 Logit Boost 78.53 77.3 77.91
Multi Class Classifier 79.28 84.68 80.18 Multi Class Classifier 83.44 80.98 80.98
Threshold Selector 47.75 68.47 60.36 Threshold Selector 78.53 76.69 75.46
LMT 83.78 82.88 79.28 LMT 80.98 82.82 79.14
RandomForest 80.18 80.18 81.98 RandomForest 77.3 79.75 80.98
OneR 81.08 72.97 72.97 OneR 74.85 74.23 79.14

% accuracy % accuracy

DHFR_TG 7-
attribute

10-attribute 15-attribute COX-2 7-
attribute

10-attribute 15-attribute

MILP based hyper-
boxes method

97.74 96.24 97.74 MILP based hyper-
boxes method

98.13 97.2 90.65

Bayes Network 77.33 78.09 73.05 Bayes Network 67.2 67.2 66.88
Naive Bayes 76.57 79.35 72.54 Naive Bayes 71.66 70.06 64.65
Naive Bayes Simple 75.57 78.84 67 Naive Bayes Simple 72.29 70.06 64.65
Naive Bayes Updatable 76.57 79.35 72.54 Naive Bayes Updatable 71.66 70.06 64.65
Lojistic 75.82 78.84 75.57 Lojistic 72.29 70.38 70.06
Multilayer Perceptron 76.32 77.08 75.06 Multilayer Perceptron 72.61 72.29 75.16
SimpleLogistic 74.56 77.83 75.31 SimpleLogistic 72.29 71.97 68.47
SMO (WEKA SVM) 72.54 79.09 72.54 SMO (WEKA SVM) 71.02 69.43 69.43
IB1 75.31 79.09 75.82 IB1 69.11 71.02 70.06
Ibk 75.31 79.09 75.82 IBk 69.11 71.02 70.06
Logit Boost 77.33 78.34 78.34 Logit Boost 71.66 70.06 70.7
Multi Class Classifier 75.82 78.84 75.57 Multi Class Classifier 72.29 70.38 70.06
Threshold Selector 69.77 74.81 73.55 Threshold Selector 68.47 65.29 64.65
LMT 76.07 76.57 77.83 LMT 71.34 71.02 68.15
RandomForest 77.58 79.09 80.35 RandomForest 71.97 74.2 70.06
OneR 69.77 69.77 70.53 OneR 70.7 70.38 70.06

% accuracy % accuracy

DHFR_RL 7-
attribute

10-attribute 15-attribute DHFR_PC 7-
attribute

10-attribute 15-attribute

MILP based hyper-
boxes method

96.99 97.74 94.73 MILP based hyper-
boxes method

97.62 98.41 93.65

Bayes Network 63.72 71.78 70.5 Bayes Network 80.42 80.42 78.04
Naive Bayes 63.97 68.76 71.7 Naive Bayes 82.54 81.48 80.95
Naive Bayes Simple 63.97 67.75 71 Naive Bayes Simple 82.8 79.89 81.22
Naive Bayes Updatable 63.98 68.77 71.78 Naive Bayes Updatable 82.54 81.48 80.95
Lojistic 69.52 73.8 78.58 Lojistic 81.75 83.33 81.75
Multilayer Perceptron 62.72 76.57 77.58 Multilayer Perceptron 82.8 82.8 84.13
SimpleLogistic 66.75 73.55 78.33 SimpleLogistic 80.42 84.13 81.22
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resenting the depended variables (IC50 values) in terms of
the independent variables (the attributes). The corre-
sponding R2 values were calculated to determine the relia-
bility of the PLS models, where a model with a higher R2

value can be regarded as a more reliable model to proceed
to the classification step. The R2 values for the 15, 10 and
7 descriptor models of P450 C17 were obtained by PLS
runs and, with a considerable strength in representing the
IC50 values we accepted the initial models. While the high
R2 values of the Ache inhibitor models also were promis-
ing on its own to build the classification model, the initial
models of BZR and COX-2 inhibitor sets were chosen after
the comparison of PLS results with the results reported in
the literature as presented in Table 3. For DHFR inhibitors
data sets such comparison was not also possible, therefore
the models with the best R2values in PLS studies were cho-
sen among all other possible models calculated. R2 value
directly depends on the values of attributes (the descrip-

tors) and the number of attributes in the corresponding
model.

We first applied our iterative algorithm to the large and
widely used QSAR data sets in order to validate our meth-
odology. The strength of our algorithm was presented by
comparing our classification accuracies with the classifica-
tion accuracies of 63 WEKA classifiers, on 7 inhibitor sets.
The attribute sets prepared as the input for WEKA classifi-
ers were the same as the ones, by which we built the last
iteration of our MILP based hyper-boxes classification
model. In other words, those were the most significant
attributes that we used to develop the final classification
models and reached our best accuracies. Our approach
outperformed all of the classifiers available in WEKA for
each model of the all of the 7 data sets, even reaching
100% accuracy in predicting the activity classification of
the inhibitor sets, Ache inhibitors and Cytochrome P450

SMO (WEKA SVM) 64.99 73.05 79.59 SMO (WEKA SVM) 82.28 83.33 79.1
IB1 62.97 75.06 81.11 IB1 82.28 80.16 81.75
Ibk 62.97 75.06 81.11 IBk 82.28 80.16 81.75
Logit Boost 64.99 75.06 77.33 Logit Boost 83.33 81.48 81.48
Multi Class Classifier 69.52 73.8 78.59 Multi Class Classifier 81.75 83.33 81.75
Threshold Selector 64.99 69.52 78.59 Threshold Selector 83.33 79.1 81.22
LMT 65.24 77.33 77.83 LMT 83.6 83.07 85.19
RandomForest 68.51 77.08 77.83 RandomForest 82.8 80.95 83.07
OneR 61.46 66 62.72 OneR 79.89 79.89 80.16

Table 3: Comparison of classification accuracies of best WEKA classifiers with the MILP based hyper-boxes classification. (Continued)

Table 4: Final average classification accuracies and corresponding standard deviations of classification with 10-fold cross validation with 
various number of descriptors.

Average Accuracy Std. Dev Average Accuracy Std. Dev

ACHE 4 Attributes 80.83 4.36 DHFR_RL 4 Attributes 82.15 2.76
6 Attributes 83.36 3.67 6 Attributes 91.67 1.86
7 Attributes 100 0 7 Attributes 96.99 2.14
8 Attributes 96.36 1.89 8 Attributes 96.64 0.72
10 Attributes 91.89 2.22 10 Attributes 97.74 0.82
12 Attributes 86.63 3.28 12 Attributes 97.37 1.33
15 Attributes 89.18 1.18 15 Attributes 94.73 1.94
20 Attributes 83.65 3.26 20 Attributes 95.25 3.28

BZR 4 Attributes 86.83 1.36 DHFR_PC 4 Attributes 81.27 4.72
6 Attributes 88.36 2.57 6 Attributes 94.48 3.97
7 Attributes 96.36 2.06 7 Attributes 97.62 2.22
8 Attributes 93.65 3.83 8 Attributes 96.15 0.82
10 Attributes 94.55 2.37 10 Attributes 98.41 1.18
12 Attributes 95.63 1.06 12 Attributes 92.18 2.83
15 Attributes 92.73 1.46 15 Attributes 93.65 0.98
20 Attributes 86.25 2.12 20 Attributes 94.25 4.02

COX-2 4 Attributes 91.86 3.86 DHFR_TG 4 Attributes 84.94 1.47
6 Attributes 94.36 1.42 6 Attributes 94.03 3.49
7 Attributes 98.13 1.73 7 Attributes 97.74 1.62
8 Attributes 97.65 1.23 8 Attributes 96.05 0.72
10 Attributes 97.2 2.29 10 Attributes 96.24 2.47
12 Attributes 96.63 2.16 12 Attributes 95.42 1.79
15 Attributes 90.65 3.06 15 Attributes 97.74 2.78
20 Attributes 88.06 1.41 20 Attributes 93.5 2.67
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C17. A total number of 21 QSAR models were built in this
study for 7 inhibitor sets, and in 18 of them the accuracy
of our methodology exceeded the accuracy of the second
best classifier with more than 10%. Through all of the 21
models, the smallest difference in the accuracies is 6.31%
and the largest difference is 27.47%.

The higher prediction accuracy of the model not only
comes from the choice of initial models by PLS analysis
but also the characteristics of MILP based hyper-boxes
method. The MILP based hyper-boxes approach allows
using more than one hyper-box in order to define a single
class [30]. Moreover, this approach deals with problem-
atic and non-problematic instances separately and pre-
vents overlapping of final hyper-boxes [31]. Therefore,
these strengths significantly improve the accuracy and effi-
ciency of the MILP based hyper-boxes approach compared
to other data classification methods. Data on true positive
and false positive rates for accuracy comparison of classi-
fiers for all data sets are given in Additional File 2.

Conclusion
Drug molecules can be classified as low active or high
active based on IC50 values. In this study an integrated
approach was introduced, which combines the MILP
based hyper-boxes method with partial least squares
regression to effectively classify the drug candidates. As a
result, the most significant molecular descriptors of the
drug molecules were also reported. WEKA is used to com-
pare the classification accuracies of the developed model
with the classifiers in the WEKA data mining package. The
best classification algorithm in WEKA database gave an
accuracy of maximum 85% in classifying the activity of
drug molecules, through the datasets used in this study.

Our method was applied in order to predict the activities
of widely known inhibitor datasets for Acetylcholineste-
rase (ACHE), Benzodiazepine Receptor (BZR), Dihydro-
folate Reductase (DHFR), Cyclooxygenase-2 (COX-2)
with known IC50 values. The results suggests that the
approach used in this paper results in better classification
accuracies compared to other classification methods
reported in literature. This approach also applied to Cyto-
chrome P450 C17 inhibitors and their activities were pre-
dicted with 100% accuracy.

Methods
In this paper, we present an integrated approach combin-
ing statistical analysis and MILP based hyper-boxes classi-
fication method for early prediction of drug behavior
targeting Ache, BZR, COX-2, DHFR_TG, DHFR_RL,
DHFR_PC, and finally Cytochrome P450 C17.

Table 5: The descriptors leave the 7 descriptor model and the 
descriptors replacing them.

Iteration 1 Iteration 2 Iteration 3

Leaving maxmax1 maxmax2 maxmax3
C-027 EEig01d Mor22m

0.96416 0.9491 0.67855
Entering minmax1 minmax2 minmax3

EEig04x nHAcc Mor14e
0.5455 0.5783 0.5946

Table 6: Comparison of classification accuracies of best WEKA classifiers with MILP based hyper-boxes classification on P450 C17 
inhibitors.

% accuracy

Cytochrome P450 C17 7-attribute 10-attribute 15-attribute

MILP based hyper-boxes method 100.00 100.00 100.00
Bayes Network 81.25 81.25 81.25
Naive Bayes 62.50 71.88 53.13
Naive Bayes Simple 62.50 68.75 50.00
Naive Bayes Updatable 62.50 71.88 53.13
Lojistic 71.88 56.25 62.50
Multilayer Perceptron 62.50 71.88 59.38
SimpleLogistic 75.00 75.00 81.25
SMO 81.25 81.25 81.25
IB1 59.38 59.38 81.25
IBk 59.38 59.38 62.50
Logit Boost 71.88 62.50 62.50
Multi Class Classifier 71.88 56.25 62.50
Threshold Selector 43.75 40.63 62.50
LMT 75.00 75.00 81.25
RandomForest 75.00 68.75 65.63
OneR 75.00 71.88 75.00
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The approach used in this paper is composed of five main
steps. In the first step, molecular structures of the drug
candidates is built and optimized the by Marvin
Sketch[32]. Then, the molecular descriptors of these drug
candidates are obtained using the web server E-Dragon [6-
8]. The second step consists of building the regression
model using PLS, which will result in selecting the most
significant descriptors. Then drug candidates are classified
based on the most significant descriptors that are
obtained by the previous step, using MILP based hyper-
boxes method. This primary classification may result in
relatively lower classification accuracy due to the existence
of a few insignificant descriptors in the model; therefore,
a significance testing analysis is conducted in order to
determine the insignificant descriptors that might inter-
fere with our classification accuracy in fourth step. If there
are insignificant descriptors in the model we replace the
insignificant descriptors with more significant ones; then
return to the third step where we classify the drug activities
again with the new model that is obtained in step five.
After the significance tests if all of the descriptors are sig-
nificant we build our model with the most significant
ones, and report the classification results.

We use an iterative algorithm such that, some of the steps
can be repeated when the significance tests give unsatis-
factory results for the selected descriptors of a particular
model. Less significant descriptors are replaced with a
more significant ones affecting the final classification of
the drugs at each iteration, thus improves the success of
the study. The outline of our method is given in Figure 1.

Data sets
We applied our algorithm to widely known QSAR data
sets available in literature. Dihydrofolate Reductase
(DHFR), Acetylcholinesterase (AchE), Benzodiazepine
Receptor (BZR) and Cyclooxygenase-2 (COX-2) inhibitor
sets are used for classification. We also introduce a new
dataset of Cytochrome P450 C17 inhibitors, which we
have derived from the literature and calculated their 3D
structures.

Seven data sets were used for the validation of our meth-
odology by applying the algorithm on these large and

known data sets and comparing our classification accu-
racy on these data sets with the other widely used classifi-
ers available in the WEKA data mining package.
Representative compounds from each data set are shown
in Figure 2. The experimental IC50 values for the dihydro-
folate reductase (DHFR) inhibitor set were calculated and
reported [16,19,22,26] for the DHFR enzyme from three
different species: P. carinii (PC), T. gondii (TG) and rat
liver (RL), where the activity of the DHFR inhibitors to the
enzymes from different species differ. Therefore, activities
of the inhibitors towards the enzymes from these three
species for DHFR inhibitors are studied separately in our
study. A set of 397 dihydrofolate reductase inhibitors
(DHFR) were used for P. carinii DHFR with IC50 values
from 0.31 nM to 3700 μM, a set of 378 inhibitors were
used for T. gondii DHFR with values from 0.88 nM to 392
μM and 397 inhibitors were used for rat liver DHFR with
values from 0.156 nM to 7470 μM. A set of 111 acetylcho-
linesterase (AchE) inhibitors were used with experimen-
tally calculated IC50 values, reported by within the range
of 0.3 nM to 100 μM [23-26]. The data set of the benzodi-
azepine receptor (BZR) inhibitors consisted of 163 inhib-
itors, whose IC50 values were calculated experimentally
from 1.2 nM to 5 μM[20,26]. The 322 molecules of
cyclooxygenase-2 (COX2) inhibitor set were derived such
that IC50 values from 1 nM to 100 μM [17,21,26]. The
QSAR sets used in this study were also used in a compari-
son study of QSAR methods by Sutherland et al[26]. We
also compared the R2 values of our 3D descriptor models,
which were calculated by the Minitab PLS runs in the first
phase of our algorithm, with the reported R2 values by
Sutherland et al [27] for several PLS models on the same
data sets.

Structure building and obtaining the descriptor model
As outlined above, in our study the first step is finding
molecular descriptors for the drug candidates. Therefore,
Marvin Sketch [32] was used to calculate the molecular
structures of each drug candidate should be constructed
by building their structure and optimize their energy by
minimization to determine their confirmation in 3-D
space. Next, the optimized 3-D structures are loaded to E-
Dragon and molecular descriptors are calculated by using
the web server.

Table 7: Brief explanation of the most significant descriptors.

Descriptor Brief explanation

Mor10m 3D-MoRSE – signal 10/weighted by atomic masses
DISPp d COMMA2 value/weighted by atomic polarizabilities
Mor14e 3D-MoRSE – signal 14/weighted by atomic Sanderson electronegativities
Mor08m 3D-MoRSE – signal 08/weighted by atomic masses
nHAcc number of acceptor atoms for H-bonds (N. O. F)
EEig04x Eigenvalue 04 from edge adj. matrix weighted by edge degrees
DISPv d COMMA2 value/weighted by atomic van der Waals volumes
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E-Dragon suggests many descriptor blocks, each of which
contains parameters that describe the characterization of
molecules, and the ones that are used in this study can be
listed as follows: constitutional descriptors (48), topolog-
ical descriptors (119), connectivity indices (33), informa-
tion indices (47), edge adjacency indices (107),
topological charge indices (21), geometrical descriptors
(74), 3D-MoRSE descriptors (160), functional group
counts (154), atom-centered fragments (120), molecular
properties (29)[9]. Therefore, the total number of descrip-
tors considered is 912 while building our QSAR descriptor
model. PLS[15] is selected for regression analysis because
the number of instances is much smaller than the number
of attributes (descriptors) by using MINITAB[28]. As we
mentioned before, PLS is widely used to develop QSAR
models by reducing the number of attributes in the
descriptor set to a small number of attributes correlated

with the defined property being modeled, which is exper-
imental IC50 values in our study.

Model building with PLS for the selection of the most 
informative descriptors
The main purpose of the regression analysis is to deter-
mine the model that predicts the activity (IC50) of the
drug candidates in terms of the descriptors. PLS can be
referred as an MLR method closely related to principal
component regression. Basically, by conducting a PLS
study we can predict a set of dependent variables Y based
on a set of independent variables X by MINITAB[28],
which gave us the PLS runs automatically based on the
upper limit we determined on the number of most signif-
icant descriptors. Each PLS run provides a linear model of
the dependent variable (IC50 values) with respect to the
independent variables (most significant descriptors). At

Outline of classification approachFigure 1
Outline of classification approach.
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this point, the relevant model is built and the most signif-
icant descriptors are determined. The next step would be
the initial classification of the drugs based on the descrip-
tors. The choice of the significant descriptors by the first
PLS runs may not be the most effective ones in classifica-
tion. Therefore, we perform significance tests on the
selected descriptors by the regression analysis to increase
the classification accuracies.

Classification of drug candidates with MILP based hyper-
boxes method
The third step is devoted to the classification of drugs; we
apply the MILP based hyper-boxes method [30,31] by
using the selected descriptors from the previous step.

The objective in data classification problems is to assign
data points, which are described with certain number of
attributes, into predefined classes. The strength of hyper-
boxes classification method is from its ability to use more
than one hyper-box when defining a class as shown in Fig-
ure 3, and this ability prevents overlapping in the classes,

which would not be prevented if the classes were defined
with a single hyper-box only[30].

The data classification problem is solved in two steps:
training step and testing step. In the training step, the
boundaries of the classes are formed by the construction
of hyper-boxes, where as the effectiveness of the con-
structed classes are tested in the testing step[30].

The MILP problem for the classification is constructed
such that the objective function is the minimization of the
misclassifications in the data set with the minimum
number of hyper-boxes in the training step. The minimi-
zation of the number of hyper-boxes, i.e. the elimination
of unnecessary use of hyper-boxes, is enforced by penaliz-
ing the existence of a box with a small scalar in the objec-
tive function. In the training part the upper and lower
bound of each hyper-box also calculated by the data
points enclosed in that hyper-box[30].

In the testing step, the data points are assigned to classes
by calculating the distance between the data point to the

Representative compounds from each QSAR dataFigure 2
Representative compounds from each QSAR data.
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each box, and determining the box that is closest to the
data point. Finally, the original and assigned classes of test
data points are compared and the effectiveness of the clas-
sification is obtained by means of correctly classified
instances[30].

Solving the proposed MILP problem to optimality is com-
putationally challenging for large datasets due to the large
number of binary variables. Hence, a three-stage decom-
position method for obtaining optimal solutions of large
data classification problems is developed[31]. Instances
that are difficult to classify are identified in the first stage
that we refer to as preprocessing. Moreover, seeds are
determined for each class to improve the computational
efficiency. With greater emphasis given to these observa-
tions, a solution to the problem is obtained in the second
stage with the modified model. Last, final assignments
and intersection eliminations are carried out in the third
step[31].

In this paper, we apply this method described above in
classifying the activities of drug molecules for the data sets
considered. We perform 10-fold cross validation while
choosing the training and test sets, where we partition the
datasets randomly into 10 subsamples with equal number
of members. From these 10 subsamples 9 of them are
combined and used as the training set, and the remaining
1 sub sample is used as the test set. Then the classification
is performed 10 times with each of the 10 subsamples
used exactly once as the test set. Finally, the accuracy of the
classification is reported as the average of these 10 classi-
fications.

We classify each of the drug candidates in the test set as
having a low or high IC50 value. In this iterative study, this
classification step is performed several times: first with the
initial set of descriptors then using the enhanced set of
descriptors derived from significance analysis.

Schematic representation of multi-class data classification using hyper-boxesFigure 3
Schematic representation of multi-class data classification using hyper-boxes.
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Significance analysis
In the fourth step, significance tests are performed. After
the PLS runs it is possible to conclude a descriptor as sig-
nificant while it is not in reality and this problem is
resolved by conducting significance tests after primary
classification. The main idea behind the significance test
is as follows: If Z is the whole set of drug candidates,
assume after the classification it is divided into two
classes, A and B. For a successful classification, the vari-
ances of descriptor values should be smaller within classes
A and B than it is for the whole population, Z.

The equation given below in Eq. 2.1 exhibits the F distri-
bution.

where,  is the sample variance of values for descriptor

i for drug set j, ν = n-1 and η = m-1 are degrees of freedom,
and n is the number of values of descriptor i for the drug
set j, and m is the number of values of descriptor i for the
drug set k.

Then the hypothesis testing is performed by the null

hypothesis , which suggests that the variance of

the whole set of drug candidates is equal to the variance of
the drugs within the same class. Since the variance of the
whole set of drugs should be larger than the variance
within the class, we define our alternative hypothesis as:

, where j is a member of a whole data set

and k is a member of the class. Note that the p-value of fvη

in the current should be smaller than the p-value of fvη in

the previous model to accept the alternative hypothesis.

Building the new classification model
This last step is performed when we conclude that there
are overestimated descriptors in the model during step
four.

Therefore, a total number of 3 models are constructed
through regression analysis by selecting 7, 10 and 15
descriptors respectively as representative variables of each
model, and the significance analysis is applied to all of the
descriptors in these 3 models. If we conclude existence of
an insignificant variable in one of these models, we
replace them with the ones that are significant in the other
models. This adjustment is proved to improve our classi-
fication accuracy. When we are replacing the less signifi-
cant ones, the remaining 880 descriptors that are

eliminated during the PLS analysis are ignored, since these
7, 10, and 15 attributes were chosen by the PLS regression
analysis and have a proven strength in describing the IC50
values. The main purpose of the PLS regression study in
fact is eliminating the statistically meaningless features,
and provide us with the most meaningful sample space to
further work with.

The results obtained by our method are compared with all
of the 63 classification methods available in WEKA, and
16 best WEKA classifiers reported with the results
obtained by our algorithm in Table 3, with the corre-
sponding classification accuracy. The attributes used in
WEKA classifiers are the same descriptors that are found
after the significance tests, and 10-fold cross validation
was applied to each classifier including our classification
method.

WEKA is a powerful data mining tool to use for compari-
son purposes, since it includes all widely known machine-
learning algorithms among its 63 classifiers. The success
of these existing machine learning algorithms in binary
classification of active and inactive compounds based on
their descriptor values were also previously reported[33].
Following is a brief overview of the best performing data
classification methods available in WEKA. A Bayesian net-
work[34]B = <N, A, Φ > is a directed acyclic graph <N, A>
with a conditional probability distribution attached to
each node, collectively represented by Φ. Each node n ∈ N
represents a dataset attribute, and each arc a ∈ A between
nodes represents a probabilistic dependency. The Naive
Bayes classifier assumes that all of the variables are inde-
pendent of each other, where the classification node is
represented as the parent node of all other nodes[35].
Naive Bayes Simple uses the normal distribution for the
modelling of the attributes and handle numeric attributes
using supervise discretization, where as Naive Bayes
Updateable is an incremental version, which processes
one instance at a time, and uses a kernel estimator instead
of discretization.

The Logistic classifier[35] builds a two-class logistic
regression model. It is a statistical regression model,
where logistic regression assumes that the log likelihood
ratio of class distributions is linear in the observations.
The Simple Logistic classifier builds linear logistic regres-
sion models based on a single attribute[35]. The model is
a generalized model of the ordinary least squares regres-
sion model. Multilayer perceptron[35] is a neural network
that uses back propagation. The perceptron, which is a
processing element, computes a single output, a nonlinear
activation function of linear combination of multiple
inputs, whose parameters are learned through the training
phase. SMO (sequential minimal optimization)[36], also
called the WEKA SVM (support vector machine), is a
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method to train a support vector classifier using polyno-
mial kernels by breaking a large quadratic programming
optimization problem into smaller QP optimization
problems.

IB1[35] is listed as a lazy classifier, in a sense that it stores
the training instances and it does not really do any work
until the classification time. IB1 is an instance based
learner. It finds the training instance closest in Euclidian
distance to the given test instance. IBk is a k-nearest-neigh-
bor classifier that uses the same idea.

Logit Boost[37] uses additive logistic regression. The algo-
rithm can be accelerated by assigning a specific threshold
for weights. Multi Class Classifier[38] uses four distinct
two-class classification methods for multiclass problems.
The Threshold Selector[35], which is a meta learner opti-
mizes the F-measure by selecting a probability threshold
on the classifiers output.

Random forest and LMT are decision tree methods. Ran-
dom Forest generates random trees by collecting ensem-
bles of random trees, where as LMT builds logistic model
trees, and uses cross validation to determine the number
of iterations while fitting the logistic regression functions
at each node. OneR (one rule)[35] builds a one-level deci-
sion tree and learns a rule from each attribute and selects
the rule having the smallest error rate as the one rule.
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