
RESEARCH Open Access

Linear-time protein 3-D structure searching with
insertions and deletions
Tetsuo Shibuya1*, Jesper Jansson2, Kunihiko Sadakane3

Abstract

Background: Two biomolecular 3-D structures are said to be similar if the RMSD (root mean square deviation)
between the two molecules’ sequences of 3-D coordinates is less than or equal to some given constant bound.
Tools for searching for similar structures in biomolecular 3-D structure databases are becoming increasingly
important in the structural biology of the post-genomic era.

Results: We consider an important, fundamental problem of reporting all substructures in a 3-D structure database
of chain molecules (such as proteins) which are similar to a given query 3-D structure, with consideration of indels
(i.e., insertions and deletions). This problem has been believed to be very difficult but its exact computational
complexity has not been known. In this paper, we first prove that the problem in unbounded dimensions is NP-
hard. We then propose a new algorithm that dramatically improves the average-case time complexity of the
problem in 3-D in case the number of indels k is bounded by a constant. Our algorithm solves the above problem
for a query of size m and a database of size N in average-case O(N) time, whereas the time complexity of the
previously best algorithm was O(Nmk+1).

Conclusions: Our results show that although the problem of searching for similar structures in a database based
on the RMSD measure with indels is NP-hard in the case of unbounded dimensions, it can be solved in 3-D by a
simple average-case linear time algorithm when the number of indels is bounded by a constant.

Background
It is widely known that biomolecules with similar 3-D
structures tend to have similar functions, and we can
estimate molecular functions by searching for structu-
rally similar molecules from 3-D structure databases of
biomolecules. Thus, to identify similar structures in a
biomolecular database is a fundamental task in struc-
tural biology [1-5]. Due to recent technological evolu-
tion of molecular structure determination methods such
as NMR (Nuclear Magnetic Resonance) and X-ray crys-
tallography, more and more structures of biomolecules,
especially proteins, are solved, as shown in the increase
of the size of the PDB (Protein Structure Data Bank)
database [6]. For example, the number of entries in PDB
was only around 1000 in 1993 but over 60, 000 in Octo-
ber 2009, and currently grows by about 20% per year.
Moreover, a huge number of molecular structures have
recently been predicted by various computational

techniques. Hence, faster searching techniques against
these molecular structure databases are seriously
needed. A protein structure is often represented by a
sequence of 3-D coordinates that represents the posi-
tions of amino acids. Usually, the 3-D coordinates of the
Ca atom in each amino acid is used as the representa-
tive position of that amino acid. Note that there are also
other important chain molecules in living cells, such as
DNAs, RNAs, and glycans. In this paper, we consider a
problem of searching for similar structures from a struc-
ture database of chain molecules, which consists of
sequences of 3-D coordinates that represent molecular
structures.
A tremendous number of algorithms for comparing/

searching protein structures have been developed [1-5],
which can be categorized roughly into two types. One is
a group of algorithms that compare two structures geo-
metrically in the 3-D space, considering the coordinates
of structures [7-13] as their inputs. They assume that
the structures are rigid or near-rigid, and superimpose
(substructures of) the two structures by rotating and

* Correspondence: tshibuya@hgc.jp
1Human Genome Center, Institute of Medical Science, University of Tokyo 4-
6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

© 2010 Shibuya et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:tshibuya@hgc.jp
http://creativecommons.org/licenses/by/2.0

translating one of them. The other is a group of algo-
rithms that use more abstract information of the struc-
tures, such as the secondary structure elements (SSEs)
[14-17]. In this paper, we focus on the first type of algo-
rithms, i.e., we compare the sequences of coordinates
without any abstraction. To compare two structures, we
need a way to measure their similarities. The most
widely-used geometrical similarity measure between two
molecular structures is the RMSD (Root Mean Square
Deviation) [5,18-23]. There are also many other mea-
sures, but many of them are just variants of the RMSD
[4]. The RMSD is also used in various other fields, such
as robotics and computer vision. It is defined as the
square root of the minimum value of the average
squared distance between each pair of corresponding
atoms, over all the possible rotations and translations.
(See the preliminaries section for more details.) The
RMSD measure corresponds to the Hamming distance
in the textual pattern matching, from the viewpoint that
it does not consider any indels (i.e., insertions and dele-
tions) between them. The RMSD can be computed very
easily if we are given the correspondence of the atoms
(see the preliminaries section), like in the case of com-
puting the Hamming distance.
In the case of textual bio-sequence comparison (such

as comparison of 1-D protein sequences), we often pre-
fer to use the string alignment score that takes indels
into account in comparing two bio-sequences, rather
than to use the Hamming distance. Likewise, it is also
important to consider indels when we compare two
molecular 3-D structures. In fact, most structural align-
ment algorithms consider indels. (Note that some of the
structural alignment algorithms ignore the order of the
atoms on the backbone, but we do not change the order
of the atoms in this paper.) But it is much harder than
the textual string cases to compare two 3-D structures
with consideration of indels, though an ordinary pair-
wise alignment algorithm for textual strings requires
only quadratic time. It has been believed to be almost
impossible to compute the alignment that optimizes the
RMSD measure. In fact, almost all the previous struc-
tural alignment/comparison/searching algorithms that
take indels into account are heuristic.
But there have been only a few theoretical results on

the difficulty of the structural alignment/comparison/
searching problems. Goldman et al. [24] showed that
the contact map problem is NP-hard. They formulate
the structural alignment problem as a maximization
problem on a graph, without considering the structural
similarity measures like the RMSD. Zhu [25] showed
that the structure alignment problem under a measure
called ‘discrete Fréchet distance’ is also NP-hard.
Lathrop [26] showed that the protein threading problem
is also NP-hard, but it is not a problem of comparing

two molecular structures, but a problem of comparing a
molecular structure with a textual sequence of residues.
Bu et al. [27] and Shatsky et al. et al [28] showed that
several problem formulations of structural motif detec-
tion are NP-hard. But none of the above proofs show
the NP-hardness of any formulation of structural align-
ment/comparison problems based on the RMSD mea-
sure. It has been a long open problem.
In this paper, we consider a problem of searching for

all the substructures of database structures whose
RMSDs to a given query is within some constant, per-
mitting indels. Though our problem is one of the most
straightforward problem formulation for protein struc-
ture comparison/alignment/searching, its difficulty is not
known. In this paper, we show that our problem is NP-
hard if the dimension of the problem is arbitrary.
But it does not mean that our problem is always diffi-

cult. If the number of indels is at most some constant,
the problem can be solved in polynomial time, though
the time complexity of known algorithms is still very
large. The best-known algorithm for the problem is a
straightforward algorithm that requires O(Nmk+1) time
for a database of size N and a query of size m, where k
is the maximum number of indels. It is the worst-case
time complexity, but the average-case (expected) time
complexity of the algorithm is still all the same O(Nmk

+1). We propose in this paper a much faster algorithm
that runs in average-case O(N) time, assuming that the
database structures follow some model of molecular
physics. We do not mean that the time complexity is
against some ‘average’ structure, but it is the average-
case (or expected) time complexity against all the possi-
ble structures whose distribution follows the model.
Unlike most other structural alignment algorithms, our
algorithm is not a heuristic algorithm, i.e., our algorithm
enumerates all the substructures in the database whose
RMSD is less than some given bound, permitting a con-
stant number of indels. It means that we cannot achieve
better accuracy as long as we use the RMSD as a mea-
sure of the accuracy. The worst case time complexity of
our algorithm is the same as previous best-known algo-
rithm, i.e., O(Nmk+1), whether or not the structures fol-
low any model. Even if the structures do not follow any
statistical model, our algorithm outputs accurate results.
The model that we assume against the database struc-

tures is a model called the ‘random-walk model’ (also
called the ‘freely-jointed chain model’ or just the ‘ideal
chain model’). In the model, the structures are assumed
to be generated by random walks. The model is very
often used in molecular physics [29-32]. It is also used
in the analysis of algorithms for protein structure com-
parison [10]. As demonstrated in [10], theoretical ana-
lyses based on the random-walk model have high
consistency with the actual experimental results on the

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 2 of 8

PDB database. Note that our algorithm also runs in lin-
ear time if the query structure follows the random-walk
model, instead of the database structures.
The organization of this paper is as follows. ‘Prelimin-

aries’ section describes the notations used in this paper
and previous related work as preliminaries. ‘The k-Indel
3-D Substructure Search Problem’ section describes the
problem that we solve. ‘An NP-Hardness Result’ section
describes the NP-hardness of our problem. ‘The New
Average-Case Linear Time Algorithm’ section describes
our new algorithm and the computational time analysis
of the algorithm. ‘Conclusions’ section concludes our
results and discusses the future work.

Preliminaries
Notations and Definitions
A chain molecule S whose i-th 3-D coordinates (vector)

is

si is noted as S = (

s s sn1 2, ,...,). The length n of S is

denoted by |S|. A structure S[i..j] = (

s s si i j, , ...,1) (1 ≤ i

≤ j ≤ n) is called a substructure of S. A structure S’ =

(

s s sa a a1 2

, , ...,) (1 ≤ a1 <a2 < ... <aℓ ≤ n) is called a sub-

sequence structure of S. S’ is also called a k-reduced sub-
sequence structure of S, where k = |S| - |S’|. For two

structures S = (

s s sn1 2, ,...,) and T = (

t t tn1 2, ,...,), the

concatenated structure (

s s s t t tn n1 2 1 2, ,..., , , , ...,) is

denoted by S ∘ T. R·S denotes the structure S rotated by

the rotation matrix R, i.e., R·S = (Rs Rs Rsn

1 2, ,...,).

v t denotes the transpose of the vector

v and AT

denotes the transpose of the matrix A. trace(A) denotes
the trace of the matrix A. | v | denotes the norm of the
vector v .

0 denotes the zero vector. 〈x〉 denotes the

expected value of x. P rob() denotes the probability of
the event .
RMSD: Root Mean Square Deviation
The RMSD (root mean square deviation) [18-23] is the
most widely-used geometric similarity measure between
two sequences of 3-D coordinates. The RMSD between
two 3-D coordinates sequences S = (

s s sn1 2, ,...,) and T

= (

t t tn1 2, ,...,) is defined as the minimum value of

E
n

s R t vR v i i

i

n

, (,) | () |
S T

1 2

1

(1)

over all the possible rotation matrices R and transla-
tion vectors

v . Note that the RMSD can be defined in

any other dimensions by considering the above vectors
and matrices in any d dimensions. Let RMSD(S, T)
denote the minimum value, and let R̂ (S, T) and ̂

v (S,
T) denote the rotation matrix and the translation vector
that minimizes ER v,

 (S, T).

Kabsch [20,21] proposed an efficient linear-time algo-
rithm to compute RMSD(S, T), R̂ (S, T) and ̂

v (S, T) (in
3-D space) as follows. If the rotation matrix R is fixed,
ER v,

 (S, T) is known to be minimized when the centroid
(center of mass) of R·T is translated to the centroid of S
by the translation vector

v , regardless of what the rota-

tion matrix R is. It means that ̂v (S, T) can be com-

puted in linear time if we are given R̂ (S, T). Moreover,

it also means that the problem of computing the RMSD

can be reduced to a problem of finding R (i.e., R̂ (S, T))

that minimizes ER (S, T) = | |

s R ti ii

n 2
1

, by trans-

lating both S and T so that both of their centroids are
moved to the origin of the coordinates, which can be
done in linear time. If both structures have been already
translated so that both centroids are moved to the ori-

gin, we can compute R̂ (S, T) in linear time as follows

[18,20,21]. Let J =
s ti i

t
i

n 1
. Clearly, J can be com-

puted in O(n) time. Then ER (S, T) can be described as

()

s s t ti

t
i i

t
ii

n 1
- 2·trace(R·J), and trace(R·J) is maxi-

mized when R = VUT, where UΛV is the singular value

decomposition (SVD) of J. Thus R̂ (S, T) can be

obtained from J in constant time, as J is a 3 × 3 matrix
and the SVD can be computed in O(d3) time for a d ×
d matrix [33]. Note that there are degenerate cases
where det(V U T) = -1, which means that V U T is a
reflection matrix. See [18,19] for the details of the
degenerate cases. Finally, we can compute the RMSD in

linear time once we have obtained R̂ (S, T). In total, we

can compute the RMSD in O(n) time.
Random-Walk Model for Chain Molecules
The random-walk model (also called the freely-jointed
chain model, or just the ideal chain model), is a very
widely used simple model for analyzing behavior of chain
molecules in molecular physics [29-32]. The model is
also used for analyzing the computational time complex-
ities of algorithms for protein structures [10]. In the
model, we assume that the chain molecules can be con-
sidered as random walks. The model ignores many physi-
cal/chemical constraints, but it is known to reflect the
behavior of real molecules very well. In fact, experiments
in [10] showed high consistency between the experimen-
tal results obtained from the PDB database and the theo-
retical results deduced from the random-walk model.
Consider a chain molecule S = (

s s sn0 2, ,...,) of length n

+ 1, in which the distance between any two adjacent atoms
is fixed to some constant r. In the random-walk model, a
bond between two adjacent atoms, i.e.,

b s si i i 1 , is

considered as a random vector that satisfies |

bi | = r, and

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 3 of 8

b j is considered to be independent from any other bond
b j (j ≠ i). In the case of proteins, the distance between
two adjacent Ca atoms is fixed to 3.8Å. Note that we can
let r = 1 by considering the distance between two adjacent
atoms as the unit of distance.
Shibuya’s Lower Bound of the RMSD [10]

Let Uleft denote (

u u u1 2 2, ,..., /) and Uright denote

(

 u u u/ / /, , ...,2 1 2 2 2 2) for a structure U =

(

u u u1 2, ,...,). Let G(U) denote the centroid of the

structure U, i.e., G(U) = 1
1

uii . Let F (U) denote |G

(Uleft) - G(Uright)|/2, and let D(S, T) denote

2 | | / | | | () () |S S S Tleft F F for two structures such

that |S| = |T|. Shibuya proved the following two lemmas
in [10]:
Lemma 1 (Shibuya [10]) D(S, T) is always smaller

than or equal to RMSD(S, T).
Lemma 2 (Shibuya [10]) The probability Prob(D(S, T)

<c) is in O(c/ n), where n = |S| = |T|, under the
assumption that either S or T follows the random-walk
model.
Shibuya utilized the above lower bound D(S, T) for

developing his breakthrough average-case linear time
algorithm for searching substructures from 3-D data-
bases without indels. Moreover, he showed that experi-
mental results on the whole PDB database had very high
consistency with Lemma 2. We will also utilize the
above two lemmas for developing our average-case lin-
ear algorithm for a problem with indels, but our algo-
rithm is different from the algorithms in [10].

The k-Indel 3-D Substructure Search Problem
We focus on the following problem.
k-Indel 3-D Substructure Search Problem: We are

given a text structure P of size N and a query structure
Q of size m (1 <m ≤ N), both of which are represented
by 3-D coordinates sequences of the residues. We are
also given a constant positive real c and a positive inte-
ger k (k <m). The problem is to find all the positions i
(1 ≤ i ≤ N - m + k + 1) such that the RMSD between
some k’-reduced subsequence structure of Q and some
k”-reduced subsequence structure of P [i..i - k’ + k” + m
- 1] is at most c, for some non-negative integers k’ and
k” (k’ + k” ≤ k, k” - k’ ≤ N - m - i + 1).
If there exists some triple set {i, k’, k”} that satisfies the

above condition, we say that Q matches with P [i..i - k’
+ k” + m - 1] with threshold c and (at most) k’ + k”
indels. Usually, c is set to a constant proportional to the
distance between two adjacent residue coordinates in
the molecular structures. In the case of protein struc-
tures, c is often set to 1-2Å, while the distance between

two adjacent Ca atoms is 3.8Å. Structure databases
usually contain more than one structure, but problems
against the databases with multiple structures can be
reduced to the above single-text problem by just conca-
tenating all the structures into a single long text struc-
ture and ignoring matches that cross over the
boundaries of two concatenated structures.
The special case of the problem where k = 0 has been

well studied. If we directly apply the Kabsch’s algorithm
[20,21], the problem without indels can be solved in O
(Nm) time. For the problem, Schwartz and Sharir [22] pro-
posed an algorithm based on the fast Fourier transform
technique that runs in O(N log N) time, which can be
easily improved into an algorithm that runs in O(N log m)
time [10]. Recently, Shibuya [10] proposed an average-case
linear time algorithm, assuming that the text structures
follow the random-walk model. He showed that the
experimental results on the whole PDB database agrees
with the theoretical analysis based on the random-walk
model. But none of these algorithms considers any indels.
On the other hand, there have been almost no algo-

rithmic study for cases k > 0, due to the difficulty of the
problem, though the problem is very important. Any of
the above algorithms for the case k = 0 cannot be
applied to the k > 0 cases. (Note that our algorithm in
this paper can be applied to the k = 0, but it could be
less efficient than the algorithm in [10].) Moreover, the
difficulty of the problem is not well known. In a later
section, we will show that the problem is NP-hard, in
case the dimension of the problem is arbitrary. Accord-
ing to the preliminaries section, the RMSD between two
structures of size m can be computed in O(m) time.
The possible number of subsequence structures to be
compared in the k-indel 3-D substructure search pro-
blem is less than 2m+kCk·N, which is in O(Nmk). Thus,
our problem can be computed in O(Nmk+1) time, either
in the worst-case analysis or in the average-case analysis.
As far as we know, it is the best-known time complex-
ity, and there have been known no algorithms other
than the above straightforward algorithm. But it also
means that the problem can be computed in polynomial
time, in case the number of indels is bounded by some
constant. In a later section, we will propose the first
algorithm with better average-case time complexity, i.e.,
O(N), for the above problem in case the number of the
indels is at most some constant, which is a substantial
improvement for the problem. Note that the worst-case
time complexity of our algorithm is still the same as the
above straightforward algorithm. Note also that our ana-
lysis of the average-case time complexity is based on the
assumption that the text structure follows the random-
walk model, like the analysis in [10]. We give no
assumption on the query structures, but the same can

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 4 of 8

be said in case we give the random-walk assumption on
the query structures instead of the text structures.

An NP-Hardness Result
Consider the following variant of the k-indel 3-D sub-
structure search problem.
k-Indel Structure Comparison Problem: We are

given two structures P and Q, both of whose lengths
are n. Find a k-reduced subsequence structure P’ of P
and a k-reduced subsequence structure Q’ of Q, such
that the RMSD between P’ and Q’ is at most some
given threshold c.
It is trivial that the k-indel structure comparison pro-

blem is in the class NP, as the correctness of any
instance can be checked in linear time. Moreover, it is
also trivial that the k-indel 3-D substructure search pro-
blem is at least as difficult as the k-indel comparison
problem in 3-D, and the k-indel 3-D substructure search
problem is NP-hard if the k-indel structure comparison
problem in 3-D is NP-complete. The two problems can
be extended to the problems in any dimensional space.
From now on, we show the k-indel structure compari-
son problem in arbitrary dimension is NP-complete, by
reduction from the following k-cluster problem (or the
densest k-subgraph problem), whose decision problem is
known to be NP-complete [34].
k-Cluster Problem (Densest k-Subgraph Problem):

Given a graph G = (V, E) and a positive integer k (k < |
V|), find a size k subset of V such that the number of
edges induced by the subset is the largest.
Let V = {v1, v2, ..., vn}. Consider an arbitrary subset V’

= {vg1, vg2, ..., vgk} of V, where g1 <g2 < ... <gk, and let x
be the number of edges induced by V’.
There must exist a sequence of points P =

(

p p pn1 2, ,...,) in n - 1 dimensional space, such that

| |

p pi j = a if {vi, vj} � E and | |

p pi j = b if {vi, vj} ∉

E, where a and b are any constants that satisfy 0 <a <b
< 2a. Let Q be a sequence of n zero vectors (

0 , ...,

0)

in the same n - 1 dimensional space. Let PV ’ =

(

p p pg g gk1 2

, , ...,), and QV’ be a sequence of k zero vec-

tors (

0 , ...,

0) in the n - 1 dimensional space.

It is well known that the translation of the two struc-
tures in 3-D is optimized when the centroids of the two
structures are placed at the same position (e.g., at the
origin of the coordinates) [18,20], in computing the
RMSD. It is also true in any dimensions d, which can be
easily proved as follows. Consider two arbitrary d-
dimensional structures S = (

s s sn1 2, ,...,) and T =

(

t t tn1 2, ,...,), and an arbitrary d-dimensional translation

vector

v . Then the following equation holds:

()

{
()

}

()

s t v

n v
si t ii

n

n

s t

i i

i

n

i i

i

 2

1

2

2

1

1

nn si t ii
n

n
{ ()}

.

 2
1

(2)

Thus the translation is optimized when

v
si t ii

n

n
 ()1 . It means that the translation is opti-

mized when the two structures are moved so that the
centroids of the two structures are at the same position.
From now on, we consider computing the RMSD
between PV’ and QV’. It is trivial that the centroid of QV’

is at the origin of the coordinates, and moreover QV’

does not change its shape by any rotation, as all the vec-
tors in QV’ are zero vectors. Hence, we do not have to
consider the optimization of the rotation for computing
the RMSD between the two structures. Therfore we
obtain the following equation:

RMSD

p
pg jj

k

k
k

p p

V V

g

i

k

g g

i

i j

(,)

{ () / }

{ ()

/

P Q

1 2 1 2

1

2 // }

{((
()

)) / }

/

/

k

x
k k

x k

j i

k

i

k
1 2

11

1

2 2 1 21
2

(3)

It means that RMSD(PV’, QV’) is smaller if x is larger,
as 0 <a <b. Thus we can obtain the answer of the deci-
sion problem of the k-cluster problem by solving the (n
- k)-indel n - 1 dimensional structure comparison pro-
blem on the two structures P and Q. Hence the k-indel
structure comparison problem in arbitrary dimensional
space is NP-complete, and consequently we conclude
that the k-indel substructure search problem in arbitrary
dimensional space is NP-hard:
Theorem 1 The k-indel substructure search problem

in arbitrary dimensional space is NP-hard.

The New Average-Case Linear Time Algorithm for
3-D
The Algorithm
To improve the performance of the algorithms for
approximate matching of ordinary textual strings, we

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 5 of 8

often divide the query into several parts and use them to
filter out hopelessly dissimilar parts in the text [35]. For
example, in case we want to search for textual strings
with k indels, we can efficiently enumerate candidates of
the matches by dividing the query into k + 1 substrings
and finding the exact matches of these divided sub-
strings, as at least one of the divided substrings must
exactly match somewhere in the text. In a similar way,
we also divide the query 3-D structure into several sub-
structures and use them to improve the query perfor-
mance in our algorithm for the k-indel 3-D substructure
search problem. Our strategy is very simple and is as
follows: Our algorithm first divides the query into 3k +
2 parts, and then enumerates candidates of the matches
by filtering out text substructures without enough sub-
structures seeming to be similar to the divided query
substructures. Finally, our algorithm naively computes
the RMSDs against each of the remaining candidates to
check whether they are actually matches or not.
Before describing our algorithms in detail, we intro-

duce the following lemma, on which our algorithm is
based.
Lemma 3 Consider a pair of two structures S =

(

s s sn1 2, ,...,) and T = (

t t tn1 2, ,...,), both of whose

length is n. Let S’ = (

s s sa a an1 2

, , ...,
) be some subse-

quence structure of S, and let T’ = (

t t ta a an1 2

, , ...,

).

Then, RMSD (S’, T’), ≤ n n/ ·RMSD(S, T).

Proof: According to the definition of the RMSD, the
following inequality holds:

RMSD

n
s R t v

n

R v
a a

i

n

R v

i i

(,)

min | () |

min

,

,

S T

 1

1

2

1

|| () |

/ (,).

s R t v

n n RMSD

i i

i

n

 2

1

S T

(4)

In our algorithm, we divide the query Q of size m into
3k + 2 equal-length substructures of size m’ = bm/(3k +
2)c. Note that k is the number of maximum indels,
which is considered to be a small constant. We call each
substructure a ‘divided substructure’. Let Qj denote the
j-th divided substructure, i.e., Q [(j - 1)m’ + 1.. j·m’]. Let
M denote the remaining part Q [(3k + 2)m’ + 1.. m]. (If
m = (3k + 2)m’, M is a zero-length structure.) Note that
Q1 ∘ Q2 ∘ ... ∘ Q3k+2 ∘ M = Q. Then the following
lemma holds:
Lemma 4 If Q matches with P [i..i - k’ + k” + m - 1]

with threshold c and k = k’ + k” indels, then at least 2k
+ 2 divided substructures Qj = Q[(j - 1)m’ + 1.. j·m’] of
Q (among the 3k + 2 divided substructures) satisfy the
following constraint (Constraint 1).
Constraint 1 There exists a substructure P [ℓ..ℓ + m’ -

1] of P such that RMSD(Q j , P [ℓ..ℓ + m’ - 1]) ≤ c

m m/ and i + (j - 1)m’ - k ≤ ℓ ≤ i + (j - 1) m’ + k.

Proof: Suppose that Q matches with P [i..i - k’ + k’’ +
m - 1] with threshold c and k = k’ + k” indels. Let Q’
and P’ denote the k”-reduced subsequence structure of
Q and the k”-reduced subsequence structure of P [i..i -
k’ + k” + m - 1] respectively, such that RMSD(Q’, P’) ≤

c. Let Q Q Q1 2 3 2, ,..., k and M’ be 3k + 3 substructures

of Q’ such that Q j is a subsequence structure of Qi, M’

is a subsequence structure of M, and

 Q Q Q M Q1 2 3 2 k . Let hj (1 ≤ j ≤ 3k + 2)

denote the first index of Q j in Q’, and let h3k+3 denote

the first index of M’ in Q’ (i.e., Q j = Q’ [hj..hj+1 - 1]).

Let P j P’ [hj..hj+1 - 1] (1 ≤ j ≤ 3k + 2). It is easy to see

that there are at least 2k + 2 pairs of 3k + 2 subse-

quence structures Q j and P j such that Q j = Qj and

P j is a substructure of P [i..i - k’ + k” + m - 1] (1 ≤ j ≤

3k + 2). We call these (at least 2k + 2 pairs of) substruc-
tures ‘ungapped substructures’ (See Figure 1).

Figure 1 Ungapped substructures. There are at least 2k + 2 pairs of subsequence structures Q j and P j such that such that Q j = Qj and P j

is a substructure of P.

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 6 of 8

According to lemma 3, an inequality RMSD(Q j , P j)
≤ c· m m/ holds for ungapped substructures Q j and
P j , as | P j | = | Q j | = |Qj| = m’. If an ungapped struc-

ture P j is the equivalent of P [ℓ..ℓ + m’ - 1], it is easy
to see that i+(j - 1)m’ - k ≤ ℓ ≤ i+(j - 1)m’ + k, as we
allow only at most k indels. Hence, at least 2k + 2
divided substructures Qj = Q [(j - 1)m’ + 1.. j·m’]
(among the 3k + 2 divided substructures) must satisfy
Constraint 1.
Recall from Lemma 1 in the preliminaries section that

D(S, T) provides a lower bound on the value of RMSD
(S, T). This immediately yields the following lemma
analogous to Lemma 4 for a somewhat weaker con-
straint (Constraint 2) which can be checked more effi-
ciently than Constraint 1.
Lemma 5 If some Q matches with P [i..i - k’ + k” + m

- 1] with threshold c and k = k’ + k” indels, then at least
2k + 2 divided substructures Qj = Q [(j - 1)m’ + 1.. j·m’]
of Q (among the 3k + 2 divided substructures) satisfy the
following constraint (Constraint 2).
Constraint 2 There exists a substructure P [ℓ..ℓ + m’ -

1] of P such that D (Q j , P [ℓ..ℓ + m’ - 1]) ≤
c· m m/ and i + (j - 1)m’ - k ≤ ℓ ≤ i + (j - 1)m’ + k.
Proof: According to Lemma 4, at least 2k + 2 divided

substructures satisfy Constraint 1. Moreover, it is trivial
that a divided substructure that satisfies Constraint 1
also satisfies Constraint 2, as an inequality D(S, T) ≤
RMSD(S, T) holds for any pair of same-length structures
S and T by Lemma 1. Hence, at least 2k + 2 divided
substructure satisfy Constraint 2.
We call a divided substructure a ‘hit substructure’ for

the position i iff it satisfies Constraint 2. Based on the
above discussions, we propose the following simple algo-
rithm for the k-indel 3-D substructure problem.
Algorithm

1. Enumerate all the positions i in P such that there
are at least 2k + 2 hit substructures for the position
i, by computing all the D(Qj, P [i..i + m’ - 1]) values
for all the pairs of i (1 ≤ i ≤ N - m’ + 1) and j (1 ≤ j
≤ 3k + 2).
2. For each position i found in step 1, check the
RMSDs between all the pairs of k’-reduced subse-
quence structure of Q and k”-reduced subsequence
substructure of P [i..i + m - k’ + k” + m - 1] such
that k’ + k” = k and k” - k’ ≤ N - m - i + 1. If any
one of the checked RMSDs is smaller or equal to c,
output i as the position of a substructure similar to
the query Q.

In the next section, we analyze the average-case time
complexity of the algorithm.
The Average-Case Time Complexity of the Algorithm
For each Qj (whether it is a hit substructure or not), we
can compute D(Qj, P [i..i + m’ - 1]) for all i (1 ≤ i ≤ N -

m’ + 1) in total O(N) time, as G(P [i..i + m’ - 1]) (i.e.,
the centroid of P [i..i + m’ - 1]) can be computed in O
(N) time for all i. Thus, we can execute the step 1 of
our algorithm in O(k2·N) time. Let N’ denote the num-
ber of candidates enumerated in step 1 of our algorithm.
As the number of pairs to check in step 2 for each posi-
tion is less than 2m+kCk (which is in O(mk)), and each
RMSD can be computed in O(m) time, the computa-
tional complexity of step 2 is O(N ’mk+1). In total, the
computational complexity of the algorithm is O(k2·N +
N ‘mk+1). In the worst case, the algorithm could be as
bad as the naive O(Nmk+1)-time algorithm, as N’ could
be N at worst.
But, in the following, we show that 〈N’〉 is only in O

(N/mk+1) and consequently the average-case time com-
plexity of the algorithm is astonishingly O(N), under the
assumption that P follows the random-walk model and
k = O(1). According to Lemma 2 in the preliminaries
section, the probability that a divided substructure Qi is
a hit substructure for the position i is in O

(k·c· m m m/ /) = O(c·k2/ m), under the random-

walk assumption. Consider that the above probability

can be bounded by a·c·k2/ m , where a is some appro-

priate constant. Then, the probability that at least 2k +
2 of the 3k + 2 divided substructures are hit substruc-

tures is O((a·c·k2/ m)2k+2·3k+2C2k+2), which is in O(c2k

+2·k5k+4/mk+1). Thus 〈N’〉 is in O(N·c2k+2·k5k+4/mk+1), and
the following lemma holds, considering that both c and
k are small fixed constants.
Lemma 6 〈N’〉 is in O(N/mk+1), under the assumption

that k is a constant.
Consequently the average-case time complexity of the

step 2 of the above algorithm is only in O(N). More pre-
cisely, it is O(c2k+2·k5k+4·N), which means our algorithm
is not so efficient for large k, but the time complexity is
still linear if k is a constant. In conclusion, the total
average-case time complexity of our algorithm is only O
(N), under the assumption that P follows the random
walk model. Note that the same discussion can be done
if the query Q, instead of P, follows the random walk
model. Thus we obtain the following theorem.
Theorem 2 The total average-case time complexity of

our algorithm is O(N), under the assumption that k is a
constant and P follows the random walk model.

Conclusions
We considered the k-indel 3-D substructure search pro-
blem, in which we search for similar 3-D substructures
from molecular 3-D structure databases, with considera-
tion of indels. We showed that the same problem in
arbitrary dimensional space is NP-hard. Moreover, we
proposed an average-case linear time algorithm, under

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 7 of 8

the assumption that the number of indels is bounded by
a constant and the database structures follow the ran-
dom-walk model. There are several open problems. First
of all, the computational complexity of our problem
restricted to 3-D space is still unknown. As for our algo-
rithm, it would be very interesting to examine the effi-
ciency of our algorithm against actual existing databases
such as the PDB database. The average-case time com-
plexity of our algorithm is O(N) for a database of size N,
but its coefficient, i.e., c2k+2·k5k+4, is very large (c is the
threshold of the RMSD and k is the maximum number
of indels, both of which we consider as constant num-
bers). It would be more practical if we could design
algorithms with better coefficients. Another open pro-
blem is whether we can design a worst-case (determinis-
tically) linear-time, or near linear-time algorithm for our
problem, though no worst-case linear-time algorithm is
known even for the no-indel case.

Acknowledgements
A preliminary version of this paper appeared in the proceedings of the 9th
Workshop on Algorithms in Bioinformatics (WABI 2009), LNCS, vol. 5724, pp.
310-320. This work was partially supported by the Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technology of Japan.
Jesper Jansson was supported by the Special Coordination Funds for
Promoting Science and Technology.

Author details
1Human Genome Center, Institute of Medical Science, University of Tokyo 4-
6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. 2Ochanomizu University,
2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan. 3National Institute of
Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

Authors’ contributions
TS designed and analyzed the average-case linear time algorithm, and
mainly wrote this paper. TS, JJ and KS proved the NP-hardness of the
problem in arbitrary dimensions. All the authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 8 August 2009
Accepted: 4 January 2010 Published: 4 January 2010

References
1. Aung Z, Tan KL: Rapid retrieval of protein structures from databases.

Drug Discovery Today 2007, 12:732-739.
2. Eidhammer I, Jonassen I, Taylor WR: Structure comparison and structure

patterns. J Computational Biology 2000, 7(5):685-716.
3. Gerstein M: Integrative database analysis in structural genomics. Nat

Struct Biol 2000, , Suppl: 960-963.
4. Hasegawa H, Holm L: Advances and pitfalls of protein structural

alignment. Current Opinion in Structural Biology 2009, 19:341-348.
5. Koehl P: Protein structure similarities. Current Opinion in Structural Biology

2001, 11:348-353.
6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The protein data bank. Nucl Acids Res 2000,
28:235-242.

7. Gergely C, Birzele F, Zimmer R: Protein structure alignment considering
phenotypic plasticity. Bioinformatics 2008, 24:i98-i104.

8. Holm L, Sander C: Protein structure comparison by algnment of distance
matrices. J Mol Biol 1993, 233:123-138.

9. Jewett AI, Huang CC, Ferrin TE: MINRMS: an efficient algorithm for
determining protein structure similarity using root-mean-squared-
distance. Bioinformatics 2003, 19(5):625-634.

10. Shibuya T: Searching protein 3-D structures in linear time. Proc Conference
on Research in Computational Molecular Biology (RECOMB ‘09), LNBI 2009,
5541:1-15.

11. Shindyalov IN, Bourne PE: Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Engineering
1998, 11(9):739-747.

12. Taylor WR, Orengo CA: Protein structure alignment. J Mol Biol 1989, 208:1-
22.

13. Zu-Kang F, Sippl MJ: Optimum superimposition of protein structures:
ambiguities and implications. Folding and Design 1996, 1(2):123-132.

14. Chionh CH, Huang Z, Tan KL, Yao Z: Towards SCALEable Protein Structure
Comparison and Database Search. International Journal on Aritificial
Intelligence Tools 2005, 14(5):827-847.

15. Comin M: PROuST: a server-based comparison method of three-
dimensional structures of proteins using indexing techniques. J Comput
Biol 2004, 11:1061-1072.

16. Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for
fast protein structure alignment in three dimensions. Acta Cryst Sect
2004, D60:2256-2268.

17. Martin ACR: The ups and downs of protein topology: rapid comparison
of protein structure. Protein Eng 2000, 13:829-837.

18. Arun KS, Huang TS, Blostein SD: Least-squares fitting of two 3-D point
sets. IEEE Trans Pattern Anal Machine Intell 1987, 9:698-700.

19. Eggert DW, Lorusso A, Fisher RB: Estimating 3-D rigid body
transformations: a comparison of four major algorithms. Machine Vision
and Applications 1997, 9:272-290.

20. Kabsch W: A solution for the best rotation to relate two sets of vectors.
Acta Cryst 1976, A32:922-923.

21. Kabsch W: A discussion of the solution for the best rotation to relate
two sets of vectors. Acta Cryst 1978, A34:827-828.

22. Schwartz JT, Sharir M: Identification of partially obscured objects in two
and three dimensions by matching noisy characteristic curves. Intl J of
Robotics Res 1987, 6:29-44.

23. Shibuya T: Efficient substructure RMSD query algorithms. J Comput Biol
2007, 14(9):1201-1207.

24. Goldman D, Istrail S, Papadimitriou CH: Algorithmic aspects of protein
structure similarity. Proc 40th Annual Symposium on Foundations of
Computer Science 1999, 512-522.

25. Zhu B: Protein local structure alignment under the discrete Fréchet
Distance. J Comput Biol 2007, 14(10):1343-1351.

26. Lathrop RH: The protein threading problem with sequence amino acid
interaction preferences is NP-complete. Protein Engineering 1994,
7(9):1059-1068.

27. Bu D, Li M, Li SC, Qian J, Xu J: Finding compact structural motifs.
Theoretical Computer Science 2009, doi:10.1016/j.tcs.2009.03.023.

28. Shatsky M, Shulman-Peleg A, Nussinov R, Wolfson HJ: Recognition of
binding patterns common to a set of protein structures. Proc Conference
on Research in Computational Molecular Biology (RECOMB ‘05), LNBI 2005,
3500:440-455.

29. Boyd RH, Phillips PJ: The Science of Polymer Molecules: An Introduction
Concerning the Synthesis, Structure and Properties of the Individual Molecules
That Constitute Polymeric Materials Cambridge University Press 1996.

30. de Gennes PG: Scaling Concepts in Polymer Physics Cornell University Press
1979.

31. Flory PJ: Statistical Mechanics of Chain Molecules New York: Interscience
1969.

32. Kramers HA: The behavior of macromolecules in inhomogeneous flow. J
Chem Phys 1946, 14(7):415-424.

33. Golub GH, Van Loan CF: Matrix Computation John Hopkins University Press,
3 1996.

34. Corneil DG, Perl Y: Clustering and domination in perfect graphs. Discrete
Appllied Mathematics 1984, 9:27-39.

35. Navarro G: A guided tour to approximate string matching. ACM
Computing Surveys 2001, 33:31-88.

doi:10.1186/1748-7188-5-7
Cite this article as: Shibuya et al.: Linear-time protein 3-D structure
searching with insertions and deletions. Algorithms for Molecular Biology
2010 5:7.

Shibuya et al. Algorithms for Molecular Biology 2010, 5:7
http://www.almob.org/content/5/1/7

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/17826686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11104000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19481444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11406386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12651721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12651721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12651721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9796821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9796821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2769748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9079372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9079372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15662198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15662198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11239082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11239082?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17990976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18052775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7831276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7831276?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Preliminaries
	Notations and Definitions
	RMSD: Root Mean Square Deviation
	Random-Walk Model for Chain Molecules
	Shibuya’s Lower Bound of the RMSD 10

	The k-Indel 3-D Substructure Search Problem
	An NP-Hardness Result
	The New Average-Case Linear Time Algorithm for 3-D
	The Algorithm
	Algorithm

	The Average-Case Time Complexity of the Algorithm

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

