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Abstract: Analysis of circulating nucleic acids in bodily fluids, referred to as “liquid biopsies”, is
rapidly gaining prominence. Studies have shown that cell-free DNA (cfDNA) has great potential
in characterizing tumor status and heterogeneity, as well as the response to therapy and tumor
recurrence. DNA methylation is an epigenetic modification that plays an important role in a broad
range of biological processes and diseases. It is well known that aberrant DNA methylation is
generalizable across various samples and occurs early during the pathogenesis of cancer. Methylation
patterns of cfDNA are also consistent with their originated cells or tissues. Systemic analysis of
cfDNA methylation profiles has emerged as a promising approach for cancer detection and origin
determination. In this review, we will summarize the technologies for DNA methylation analysis
and discuss their feasibility for liquid biopsy applications. We will also provide a brief overview
of the bioinformatic approaches for analysis of DNA methylation sequencing data. Overall, this
review provides informative guidance for the selection of experimental and computational methods
in cfDNA methylation-based studies.

Keywords: liquid biopsies; cell-free DNA; DNA methylation; bioinformatic; next-generation
sequencing

1. Introduction

Cancer is one of the leading causes of death worldwide and the total number of diagnosed
cancer cases keeps increasing globally [1]. Currently, tissue biopsies are the gold standards for cancer
diagnosis as well as for molecular characterization. However, these conventional sampling methods
have shown some limitations including difficulty in obtaining sufficient biomaterial, sampling bias
arising from tumor genetic heterogeneity, and even procedural complications [2]. To address these
issues, liquid biopsies, which are the analyses of circulating nucleic acids in blood or other body fluids,
have emerged as a critical supplement to the tissue biopsies. Compared to tissue biopsies, liquid
biopsies have several obvious advantages. First, the collection of blood is minimally invasive. Second,
circulating nucleic acids in blood have a short half-life between 16 minutes and 2.5 hours, allowing
liquid biopsies to be real-time and dynamic monitoring tools to estimate the tumor burden [3]. Third,
since circulating nucleic acids can originate from different tissues, including metastatic tumor sites,
liquid biopsies may represent a whole picture of a patient’s malignancy and solve the problem of
tumor heterogeneity [4,5]. Recent studies have shown that liquid biopsies have a great potential to
discover novel biomarkers for cancer diagnosis and prognosis [6–8]. Therefore, liquid biopsies have
attracted great attention in recent years.

Cell-free DNA (cfDNA) in body fluids is a mixture of extracellular DNA fragments that are
released from cells via apoptosis, necrosis, and active secretion [9]. The length of cfDNA is about 167 bp,
corresponding to the unit size of a nucleosome [10,11]. Compared to healthy controls, a significantly
higher level of cfDNA in cancer patients has been reported [12]. In addition, the increased cfDNA
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may decrease to the background level following surgery [13]. Results from these studies suggest
that tumor-derived cfDNA is present in the blood of cancer patients. This tumor-derived cfDNA
is called circulating tumor DNA (ctDNA). However, genetic analysis of ctDNA is very challenging
because cfDNA is often limited in yield and highly fragmented [14]. Most importantly, ctDNA
is extremely underrepresented in the high background of normal cfDNA [14]. The increasing
availability and reliability of highly sensitive technologies, such as droplet digital PCR (ddPCR) and
next-generation sequencing (NGS), are facilitating the development of liquid biopsies [15]. Currently,
detections of cancer-related hotspot mutations have been approved for clinical applications. However,
due to the limited number of recurrent mutations available for discriminating ctDNA from total
cfDNA, application of these hot-spot detections is very limited [16,17]. On the other hand, aberrant
DNA methylation occurs early during tumorigenesis and is abundantly present in the entire cancer
process [18]. Therefore, it is believed that analysis of the ctDNA methylation pattern may be a more
robust and sensitive approach for cancer diagnosis and prognosis [19].

DNA methylation is a common epigenetic modification achieved by adding a methyl group to the
fifth carbon of cytosine (5-methylcytosine, 5mC) via DNA methyltransferases (DNMTs) (Figure 1). This
modification occurs most frequently at cytosine residues in the sequence context of 5′-C-phosphate-G-3′

(CpG) [20]. The current human genome build contains about 28 million CpGs, 60–80% of which
are methylated [21]. Generally, the majority of all CpGs are methylated in human, except short
unmethylated regions called CpG islands (CGIs) [22]. On the contrary, the cancer genome is
characterized by global hypomethylation and CGI-specific hypermethylation, resulting in genomic
instability and transcriptional repression, respectively [23,24]. Growing evidence suggests that
aberrant DNA methylation contributes to the tumorigenesis and tumor progression, which enables
DNA methylation analysis as a promising approach for cancer detection [25–28]. Interestingly, the
methylation patterns of cfDNA are consistent with the cells or tissues where they originate [29],
implying that cfDNA methylation may serve as feasible and reliable cancer biomarkers [30,31].

Figure 1. Cytosine variants and their products by bisulfite conversion. DNA methyltransferases
(DNMTs) convert unmodified cytosine (C) to 5-methylcytosine (5mC) by adding a methyl
group. Ten-eleven translocation (TET) enzymes oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Thymine DNA glycosylase (TDG) and the base
excision repair (BER) pathway allow for regeneration of C from 5fC and 5caC. Upon bisulfite treatment,
unmethylated cytosine (C) is deaminated to uracil (U) and eventually converted to thymine (T) via
DNA amplification, while methylated C remains unaffected. 5hmC also protects C from deamination,
while 5fC and 5caC do not.

2. Technologies for DNA Methylation Detection

2.1. Restriction Enzyme-Based Methods

The use of methylation restriction enzymes (MREs) to cleave DNA at a specific nucleotide sequence
is a classical method for methylation study. Generally, two kinds of enzymes are used in this method.
Methylation-sensitive enzymes cleave only unmethylated DNA and leave the methylated DNA intact,
while methylation-insensitive enzymes can cleave regardless the methylation status of the recognition
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sites (see Reference [32] for all available MREs). Base on this principle, many array hybridization
methods have been developed for detecting 5mC. For example, the HpaII-tiny fragment Enrichment
by Ligation-mediated PCR (HELP) assay [33] and methyl-sensitive cut counting (MSCC) [34]. More
recently, MRE digestion followed by sequencing (MRE-seq or methyl-seq) has been developed and
used to study the role of DNA methylation in regulating alternative promoters [35,36]. After digestion,
the fragmented DNA is directly sized-selected for library preparation without the need for sonication.
However, due to the limited CpG-containing recognition sites, MRE-seq exhibits a lack of coverage of
the whole methylome. Importantly, the severely fragmented nature of cfDNA restricts the application
of MRE-seq for cfDNA methylation profiling as some restriction sites may have been destroyed. With
the emergence of ddPCR, absolute quantification of DNA methylation based on MRE digestion has
been developed [37]. Briefly, MRE is used to recognize methylated and unmethylated DNA. Then
the methylation level is determined quantitatively on the microfluidic chip using Poisson statistics.
Due to high sensitivity of ddPCR, this method allows ultra-low DNA input and therefore suitable for
target-specific liquid biopsies. Moreover, it allows for a relatively easy primer and probe design as it is
free from bisulfite conversion.

2.2. Bisulfite Conversion-Based Methods

Bisulfite conversion-based methods are regarded as the gold standard for DNA methylation
study. Upon sodium bisulfite treatment on denatured DNA, unmethylated cytosine (C) residues
are deaminated to uracil (U) and eventually converted to thymine (T) via DNA amplification, while
methylated C residues remain unaffected (Figure 1) [38]. Analysis of bisulfite-converted DNA was
previously coupled with Sanger sequencing to investigate specific DNA sequences. Nowadays, NGS
allows for genome-wide methylation study, where DNA methylation sites in a single-base resolution
can be detected. However, bisulfite conversion causes substantial DNA degradation [39], which may
result in loss of some critical information, especially when cfDNA input is typically low. Therefore, the
library preparation and treatment process should be optimized for high-quality bisulfite sequencing.

2.2.1. Whole-Genome Bisulfite Sequencing (WGBS)

WGBS presents the most comprehensive and informative DNA methylation profiling
technology [40], which was first developed to map the human DNA methylomes [41]. The major
advantage of WGBS is that the methylation state of every cytosine, including low CpG density regions
and non-CpG sites (CpA, CpT, and CpC), can be detected. However, since the whole genome is targeted,
the cost of WGBS is extremely high when producing high depth data. To apply WGBS for liquid
biopsies, end repair and methylated adapter ligation at both ends of cfDNA fragments are performed
before bisulfite treatment as it ensures amplification after bisulfite treatment (Figure 2) [42]. To address
increasing demand for the analysis of low input DNA, optional methods such as single-cell bisulfite
sequencing (scBS-seq) [43] and single-cell whole-genome bisulfite sequencing (scWGBS) [44] have also
been developed. scBS-seq adopts a post-bisulfite adapter tagging protocol to reduce bisulfite-induced
DNA loss and eliminate the need for global amplification [45], while scWGBS uses post-bisulfite,
single-strand library preparation. WGBS has been applied for mapping cancer-associated cfDNA
methylation in metastatic breast cancer (BC) [46]. However, as the cost of large-scale WGBS is
prohibitive, a sample pooling approach was adopted. In the absence of individual sample analysis,
a few samples may overshadow the other samples. As a result, the complexity of the pool is reduced.
Fortunately, the costs of sequencing have continuously decreased in recent years, making WGBS more
and more economically feasible.

2.2.2. Reduced-Representation Bisulfite Sequencing (RRBS)

To investigate DNA methylome more cost-effectively, RRBS was developed by integrating MspI
digestion, bisulfite conversion, and NGS for the analysis of CpG-rich regions [47,48]. This method
can detect more than 83% of CGIs in mammalian genome when the MspI-digested fragments are
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size-selected between 40 and 220 bp [49]. Similar to MRE-seq, RRBS has relatively low coverage toward
intergenic and distal regulatory elements because of the limited CpG-containing recognition sites.
To apply this method for limited cfDNA, single-cell RRBS (scRRBS) has been developed and the input
is significantly decreased. To avoid DNA loss, scRRBS integrates all the key RRBS reactions into a
single-tube reaction so that DNA purification does not occur until the bisulfite conversion is completed
(Figure 2). This is achieved by modifying the buffer system and the reaction volumes to preserve the
activities of different enzymes [50,51]. Also, it is recommended that a gel-based approach is used in
size selection step to thoroughly remove the primer dimers, which are more likely to occur when the
input is low. Capitalizing on this strategy, scRRBS has been successfully used for methylation profiling
of plasma cfDNA for the first time. Consequently, methylated haplotype analysis in plasma cfDNA
has demonstrated the quantitative estimation of tumor load and tissue-of-origin mapping [52].

2.2.3. Methylated CpG Tandems Amplification and Sequencing (MCTA-seq)

MCTA-seq is a highly sensitive technique for detecting hypermethylated CGIs [53]. In this
approach, a primer that consists of a semi-random sequence, a unique molecular identifier (UMI)
sequence, and an anchor sequence is used to amplify and extend the bisulfite converted DNA at the
3′-end. Compared to unmethylated CGIs and non-CGI fragments, methylated CGIs are expected to be
amplified to a higher degree because of the higher methylated CpG density. Then, the methylated
CpG tandem sites are selectively amplified using another primer containing the CpG tandem sequence
CGCGCGG. Only the methylated CGI sequences can be further amplified and sequenced (Figure 2).
This approach preferentially enriches CGIs and allows as little as 7.5 pg cfDNA input through multiple
rounds of amplification. However, as MCTA-seq can only detect CpG tandem regions, it will miss
the non-CpG methylation. Application of the MCTA-seq in cfDNA has identified dozens of DNA
hypermethylation markers for effective detection of hepatocellular carcinoma (HCC) and colorectal
cancer (CRC) [53,54]. These biomarkers, including known and novel, demonstrate a high sensitivity
and specificity for disease detection at an early stage.

Figure 2. Schematic diagram of bisulfite-based cfDNA methylation profiling technologies, including
whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS),
methylated CpG tandems amplification and sequencing (MCTA-seq), and targeted bisulfite sequencing.
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2.2.4. Targeted Bisulfite Sequencing

Although allowing for the discovery of novel DNA methylation alterations, the methods described
above are not practical for clinical applications, where a rapid turn-around time, cost-efficient methods
and high depth of sequencing coverage are required [55]. Consequently, targeted methylation
sequencing is more clinically pragmatic, because it is scalable, economical, and allows for a higher
depth of sequencing coverage. Depending on target enrichment manners, targeted bisulfite sequencing
may be categorized into the following two groups: target amplification using PCR and target enrichment
using probe hybridization (Figure 2). Specific primers can be used to amplify regions of interest after
the bisulfite treatment, such as EFC#93 primers for disseminated BC [56] or Vimentin and Fibulin 1
primers for HCC [57]. Alternatively, probe sequences can be designed, synthesized, and 5’-biotinylated
for target enrichment of the bisulfite converted libraries. Namely, 5’-biotinylated capture probes are
used to specifically pull down DNA fragments that contain target CpG sites. This method has been
used for cancer detection and classification [58]. Although targeted bisulfite sequencing has been
investigated for cancer diagnostics and assessment of therapeutic outcomes, this method is constrained
by the relatively complicated primer and probe design for bisulfite-converted sites.

2.2.5. Methylation Array

Illumina Infinium HumanMethylation450 BeadChip (HM450K) contains predesigned probes for
more than 450k methylation sites that cover 96% of the CGIs [59] and dominated as the method of
choice for the cancer methylome studies before the prevalence of NGS [60]. Infinium MethylationEPIC
BeadChip, a further developed version, covers more than 850k CpG methylation sites, including almost
all sites on the 450K array plus additional CpG sites in the enhancer regions [61]. Currently, a huge
number of HM450K datasets on Gene Expression Omnibus (GEO) [62] and The Cancer Genome Atlas
(TCGA) [63] have become an outstanding public resource for the discovery of novel DNA methylation
markers [19,64] and the validation of new DNA methylation assays. As for liquid biopsies, the Infinium
methylation array has been applied for the epigenome-wide discovery of non-invasive methylation
biomarkers for CRC using a cfDNA pooling strategy [65]. The methylation data have also been used for
the deconvolution of the plasma methylome for the inference of tissue origins of cfDNA [29]. However,
all array-based methods have a drawback in poor genome-wide coverage of all methylation sites,
resulting in the loss of other methylation contexts.

2.2.6. Methylation-specific PCR (MSP)

MSP is based on the use of two distinct methylation-specific primer sets for detecting the DNA
of interest. The methylated primer will amplify bisulfite converted methylated DNA and untreated
DNA, while the unmethylated primer is specific for bisulfite converted DNA in an unmethylated
condition [66]. Taking advantage of real-time PCR, several quantitative MSP (qMSP) protocols have
been developed [67–69]. Moreover, methylation-sensitive high-resolution melting analysis (MS-HRM)
has been developed for methylation detection [70]. These technologies have been widely used in the
identification and validation of ctDNA-specific aberrant DNA methylation [71–75]. For example, the
plasma cfDNA methylation of SEPT9 has been identified as a biomarker for the noninvasive diagnosis
of CRC and hepatocellular carcinoma [76,77]. With a significant advance on ddPCR, a droplet digital
methylation-specific PCR (ddMSP) panel has been established for the cfDNA-based early detection
of BC [78]. Also, methylation of NPY and a five-genes panel have been reported as biomarkers for
metastatic CRC using ddMSP [79,80]. Yet, these individual markers only provided a limited picture of
the whole tumor methylome. Therefore, a combination of multiple markers is highly recommended in
a clinical setting to ensure a high sensitivity and specificity.
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2.3. Enrichment-based methods

The strategy for enrichment-based methods is to use anti-methylcytosine antibodies or methyl-CpG
binding proteins to pull-down the methylated genomic regions for subsequent analysis, while the
unmethylated fractions are excluded by stringent washing. Compared to WGBS methods, these
enrichment-based methods have not only shown a similar sensitivity and slightly better specificity [81]
but also many other advantages. They are cost-effective because only the enriched fragments are
sequenced so many more indexed samples can be pooled simultaneously for NGS. Furthermore,
the enrichment approach does not involve cytosine conversion and can discriminate 5mC from
5-hydroxymethylcytosine (5hmC) due to the protein-binding specificity. However, these methods have
a relatively low resolution of ≈100–300 bp, and therefore may not discriminate the exact methylation
context. Additionally, these methods tend to exhibit biases toward hypermethylated regions. As the
standard protocol of these methods require relatively large amount of DNA input, further optimization
for the library preparation and methylation enrichment is needed for cfDNA-based studies. It is
necessary to be aware that missing signal can mean an unmethylated sequence or an uncaptured
sequence due to low input.

2.3.1. Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq)

MeDIP was originally developed as an approach for the immunoprecipitation of methylated DNA
followed by a microarray analysis [82]. A low DNA input protocol has been reported to reduce the
required input from 5000 ng to 50 ng DNA. However, using less than 50 ng DNA as an input was not
recommended due to insufficient methylation enrichment [83]. To apply MeDIP-seq for low-input
cfDNA in liquid biopsies, cell-free methylated DNA immunoprecipitation and high-throughput
sequencing (cfMeDIP-seq) has been developed, where exogenous lambda DNA is used as a filler to
increase the initial DNA input (Figure 3) [84]. The filler DNA ensures a constant antibody/DNA ratio
and helps maintain a similar immunoprecipitation efficiency across different samples with different
cfDNA yields, while minimizing non-specific binding and DNA loss [85]. With the help of filler DNA,
the starting cfDNA can be reduced to ≈1-10 ng. Because the lambda DNA does not have sequencing
adapters, and hence no subsequent amplification, the use of filler DNA would not interfere with the
analysis of sequencing data. An application of the cfMeDIP-seq in a group of lung cancer patients and
controls has identified a set of significant differentially methylated genes [86]. However, the sample
size (n = 3) was too small and a large dataset is needed to validate the finding.

2.3.2. Methyl-CpG Binding Domain Protein Capture Sequencing (MBD-seq)

Instead of immunoprecipitation, the methyl-CpG binding domain (MBD) of methyl-CpG binding
proteins (MBD2 or MECP2) can be used to pull down methylated DNA fragments with the help of
magnetic beads [87]. It has been shown that MBD-based enrichment outperforms MeDIP in regions
with a higher CpG density and identifies the greatest proportion of CGIs [88]. Therefore, integrating
MBD-seq with liquid biopsies may facilitate the discovery of ctDNA hypermethylation signatures.
A study has described a low DNA input MBD-seq protocol by adjusting the DNA to beads ratio and
using more incubation time and more stringent wash conditions [89]. Using this protocol, MBD-seq
with a 15 ng DNA input detected 93% of the methylated loci that were reliably detected using WGBS
(sensitivity) at similar levels of the false positive rate (specificity). Even with as little as 5 ng DNA,
MBD-seq had a 90% of sensitivity and equal levels of specificity relative to WGBS [89]. Therefore,
this low-input technology is suitable for liquid biopsy studies. Also, it is expected that the use of
exogenous DNA as a filler to increase the initial input might increase the capture efficiency for MBD
proteins as it does for immunoprecipitation.
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Figure 3. Schematic diagram of enrichment-based cfDNA methylation profiling technologies, including
cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq),
5hmC-Seal, and hmC-CATCH.

2.4. 5-hydroxymethylation profiling

Ten-eleven translocation (TET) enzymes can oxidize 5mC to 5hmC, 5-formylcytosine (5fC), and
5-carboxylcytosine (5caC), which is known as DNA demethylation (Figure 1) [90,91]. Emerging
evidence indicates that 5hmC not only acts as a relatively stable epigenetic marker in mammals [92]
but also correlate with tumorigenesis and tumor progression [93]. Previously, studies have shown the
reduced global 5hmC levels but increased regional 5hmC levels in various cancer tissues [94]. These
observations suggest that 5hmC signatures may also be promising biomarkers for cancer diagnostics
and prognostics. Due to the low frequency of 5hmC, however, the detection of 5hmC is technically more
challenging. Also, bisulfite sequencing does not distinguish between 5mC and 5hmC because both are
resistant to bisulfite treatment [95]. Hence, bisulfite-free 5hmC profiling methods have been developed.

2.4.1. 5hmC-Seal (aka hMe-Seal)

In 5hmC-Seal, an azide-modified glucose is first introduced by β-glucosyltransferase (β-GT)
and subsequently biotinylated via click chemistry in selective chemical labeling (Figure 3) [96].
The biotinylated 5hmC is then enriched using streptavidin beads followed by NGS to determine the
genomic distribution of 5hmC, where spike-in probes are adopted to test the 5hmC capture efficiency
during the 5hmC-Seal assay. As 5hmC-Seal can work with ultra-low levels of starting DNA (≈5 ng) [94],
this technology has been applied for liquid biopsies, where cfDNA was first ligated with sequencing
adapters. The proof-of-principle global analysis of hydroxymethylome in cfDNA has been reported [97].
Since then, the 5hmC-Seal has been used to identify a genome-wide pattern of cancer-associated 5hmC
changes and tissue origins of such changes in plasma cfDNA from a patient-derived xenograft mouse
model [98]. The method has also been used to detect large-scale aberrant 5hmC alternations in both
gene bodies and promoter regions for non-small-cell Lung Cancer (NSCLC) [99], CRC [100], HCC [101],
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and esophageal cancer [102]. Because the total read count is used in predefined genomic regions to
estimate 5hmC level, the resolution of 5hmC-Seal is relatively low.

2.4.2. hmC-CATCH

To solve the problem of low resolution, hmC-CATCH, a bisulfite-free method for the genome-wide
detection of 5hmC, has been reported recently, where the single-base resolution hydroxymethylome in
human has been revealed for the first time [103]. This method is based on the principle of blocking 5fC,
selective oxidation of 5hmC to 5fC, chemical labeling of the newly generated 5fC, and a subsequent
C-to-T transition during PCR amplification (Figure 3). Because the endogenous 5fC is first blocked and
only the newly generated 5fC are detected, this technology is specific for 5hmC. To test hmC-CATCH
for liquid biopsies, 5hmC enrichment profiles in cfDNA using both hmC-CATCH and 5hmC-Seal have
been compared and the results showed good agreement [103]. Therefore, this technology has great
potential for high resolution 5hmC signature studies.

2.4.3. Hydroxymethylated DNA Immunoprecipitation Sequencing (hMeDIP-seq)

hMeDIP is modified from MeDIP and allows for specific enrichment of DNA fragments containing
5hmC [104]. This method has become an invaluable tool for determining genome-wide profiles of
5hmC. hMeDIP involves immunoselection and immunoprecipitation using anti-5hmC antibodies
followed by downstream analysis such as PCR, microarray, or NGS. So far, application of hMeDIP-seq
for liquid biopsies has not been reported, possibly due to the input limitation. Like cfMeDIP-seq, it
is expected that application of exogenous DNA as a filler to increase the initial input may facilitate
cfDNA 5hmC profiling analysis.

2.4.4. Oxidative Bisulfite Conversion

Taking advantage of the fact that cytosines in 5fC and 5caC are not protected from deamination by
sodium bisulfite (Figure 1), oxidative bisulfite sequencing (OxBS-seq) [105] and TET-assisted bisulfite
sequencing (TAB-seq) [106] have been developed, respectively. However, as longer bisulfite treatment
and oxidative environment are needed for the efficient conversion of 5mC to 5fC or 5caC, more DNA
degradation and DNA damage may occur [107]. Application of these methods in liquid biopsies need
further investigation.

3. Bioinformatics Analysis of Sequencing-Based DNA Methylation Data

The general workflow for the bioinformatics analysis of DNA methylation sequencing data
includes quality assessment of reads (FastQC [108]), adapter trimming (Trimmomatic [109], Trim
Galore [110]), read alignments to a reference genome, post-alignment quality control, data visualization
(UCSC Genome Browser [111], Integrative Genomics Viewer (IGV) [112], Methylation plotter [113],
and Web Service for Bisulfite Sequencing Data Analysis (WBSA) [114]), quantification of the DNA
methylation level or genomic coverage, and identification of differentially methylated cytosines (DMCs)
or differentially methylated regions (DMRs) (Figure 4) [115,116]. Here, we will provide the analysis
strategies for DNA methylation sequencing data. All these strategies are highly compatible when
cfDNA is used as a starting material.

3.1. Alignment and Quality Controls

Standard aligners are not available for bisulfite sequencing data because the bisulfite converted
DNA does not align to the reference genome. To address this issue, two algorithms have been
developed for the alignment of bisulfite sequencing data: wild card algorithm (GSNAP [117]) and
three-letter algorithm (Bismark [118], BS Seeker 2 [119,120]). The wild card algorithm allows both Cs
and Ts in reads to map into Cs in the reference genome, while the three-letter algorithm converts all
Cs in the reference genome and the reads into Ts, and thus standard aligners can be adopted [121].
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Post-alignment quality control is important for bisulfite sequencing data to reliably quantify read
counts and the methylation level per base. For example, base-calling quality should be checked because
miscalled bases can be counted as C-T conversions. Since the end repair step in library preparation may
introduce either methylated or unmethylated Cs [115], low quality bases on sequence ends should be
trimmed to minimize false C-T conversions. It is critical to check the unique alignment rates and insert
lengths after trimming because bisulfite treatment causes substantial DNA degradation. Incomplete
bisulfite conversion also causes false positive results as unconverted unmethylated Cs are considered
as methylated. To address this issue, spike-in sequences with unmethylated Cs are usually added to
measure the bisulfite conversion rate. As the majority of CpGs with high inter-population differences
contain common single nucleotide polymorphisms (SNPs) [122], filtering out known C/T SNPs is
highly recommended. Additionally, removal of duplicate reads that align to the same genomic position
arising from PCR bias is considerable. However, this is problematic in RRBS because by design reads
start at the same position even if they are not PCR duplicates. Instead, one can remove regions with an
unusually high coverage.

Figure 4. Computational pipeline for DNA methylation sequencing data analysis.

Differing from bisulfite-based methods, standard aligner (bowtie2 [123], BWA [124]) can be used
for the alignment of enrichment-based sequencing data as no mutation is introduced during library
preparation. In the cases of enrichment-based sequencing data, none of the post-alignment quality
control issues mentioned above except duplicate reads, need to be considered. Duplicate reads are
increasingly likely to occur because reads are expected to align to a smaller methylation-enriched
genome, while some duplicate reads occur by chance owing to the methylation enrichment, not the
PCR over-amplification. Poisson statistic has been used to determine the maximal number of duplicate
reads allowed per genomic position [125].

3.2. DNA Methylation Calling

After a series of quality control, the methylation level of each CpG site can be calculated in the
bisulfite sequencing data, which is a number ranging from 0 to 1. This is simply done by counting
the number of C-T conversions and dividing the number of Cs by the sum of Cs and Ts for each C.
As relative ratio, the methylation level would normalize the coverage difference at each individual
CpG site, which vary dramatically due to genomic feature and amplification differences. Also, the
methylation level can be easily fit into many commonly used statistics models as it is a continuous
variable. However, the methylation level calculated from the CpG site with a low sequencing depth is
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less reliable [126]. Alternatively, analysis on the read counts or CpG coverage data may be considered,
which means directly analyzing the number of methylated and unmethylated Cs at each CpG site.

Unlike bisulfite sequencing data, data from enrichment-based methods are usually analyzed by
comparing the relative abundance of fragments. Generally, the genome is divided into non-overlapped
adjacent windows of a specified width and the number of read counts in each window across all
samples can be used for further analysis. For analysis involving multiple samples, data normalization
is crucial to remove biases between samples or different batches. Reads per kilobase million (rpkm)
is a popular choice as it rescales read counts to correct for differences in both the library size and
fragment length [127]. The trimmed mean of M-values (TMM) [128] and DESeq [129] calculate a
scaling factor via different algorithms. Then read counts are normalized by using these scaling factors.
The genomic binning function and both rpkm and TMM normalization are implemented in the R
package MEDIPS [125], while DESeq normalization is implemented in the R package DESeq2. More
recently, a Bayesian statistical model that transforms the methylation enrichment read counts to
absolute methylation levels has been developed and is implemented in the R package QSEA [130,131].
Additionally, a non-parametric method that uses isolated CpGs to estimate sample-specific fragment
size distributions for the estimation of the CpG coverage of each CpG site has also been developed and
is implemented in the R package RAMWAS [132,133].

3.3. Determination of Differential Methylation

Following methylation calling, statistical tests can be employed to identify differential methylation
between cases and controls. Differential methylation in cancer means CpG sites or regions that
have different DNA methylation patterns between cancer patients and healthy individuals. For a
comparative analysis of the methylation level on a CpG site or region between multiple samples,
standard statistical methods such as t-test, ANOVA, nonparametric test (Mann–Whitney U test and
Kruskal-Wallis test), and beta regression may be used. Considering the distribution of methylation
level among the study population is unknown, a nonparametric test is more preferentially adopted in
methylation studies (R package BSmooth [134] and limma [135]). ANOVA is based on linear models
and allows for a multiple-group comparison (R package Minfi [136]). Thus, it is more suitable in
a clinical setting as it allows for the incorporation of covariates. For read counts analysis, Fisher’s
exact (or chi-square) test, clustered data analysis [137], logistic regression [138], and the beta-binomial
model [139–141] may be used. Fisher’s exact test is the method of choice when replicates are not
available, however, it does not take the biological variability of methylation into consideration due
to the pooling analysis. Regression methods also allow adding covariates, such as age and sex into
the tests, which are shown to be influential on the methylation level [142]. Among these models, the
beta-binomial model is the best method for balanced sensitivity and specificity in DMC detection [126].

As the methylation level between neighboring CpG sites are potentially positively correlated, a
combination of multiple adjacent CpG sites into a defined region called DMR can reduce the number of
hypothesis tests and thereby improve the statistical power [115]. DMRs can be determined by clustering
nearby CpGs or DMCs, or by applying segmentation methods to segment the differential CpGs into
hyper/hypo-methylated regions [143]. DMRs can also be defined based on predefined regions, such as
gene promoters and CpG islands, or adjacent CpG sites within user-defined non-overlapped windows
across the whole genome [144]. To better measure weak methylation differences, increasing the
biological replicates and sequencing depth present a good strategy to obtain more robust p-values.
The inherent limitation of high dimensional data is false positive. Therefore, statistical results must be
subjected to multiple testing corrections. Among all options, Bonferroni and false discovery rate (FDR)
are the most commonly used. Comprehensive evaluation of almost all tools and statistical methods for
identifying DMRs for DNA methylation sequencing data has been summarized [126,145–149]. After
the calling of DMRs, the regions of interest often need to be integrated with genome annotation datasets,
which allows for determining whether the DMRs are related to genes and gene regulatory regions. The R
package Genomation [150] and ChIPpeakAnno [151] are good annotation tools to be recommended.
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3.4. Identification of Tumor-Specific Methylation Profile

Due to the high background of normal cells-derived cfDNA, the ctDNA concentration in cfDNA
is generally low in cancer patients. Therefore, it is challenging to identify ctDNA methylation,
especially in early-stage cancer. One common strategy is to use the methylation profile of tumor-free
peripheral blood mononuclear cells (PBMCs) as a negative control. By comparing DMRs between
cancer cfDNA and healthy cfDNA to those between cancer cfDNA and PBMC genomic DNA, the
shared regions are considered to be tumor-specific DMRs. This strategy has been applied in many
studies that identified the ctDNA methylation signatures [19,84,97,98]. Additionally, a reference-based
deconvolution algorithm has been developed for correcting cell-type heterogeneity for studying
methylation [152]. This algorithm allows for the recovery of the original signal from a mixture of
signal sources by using reference datasets. Therefore, it is suitable for the deconvolution of data from
heterogeneous samples, including cfDNA, when tissue-specific and cancer-specific methylation data
are available. The deconvolution algorithm has been successfully applied to estimate ctDNA content
and differentiate tissue-of-origin in cfDNA of patients with lung or colorectal cancer [52]. Recently,
probabilistic models have been formulated to identify ctDNA methylation. CancerLocator, a tool for
non-invasive cancer diagnosis and tissue-of-origin prediction, is based on such a model [153]. By using
Infinium HM450K data from TCGA, CancerLocator identified many CpG cluster features that have
significant methylation variation across cancer and normal samples, as well as modeled methylation
levels in different cancer types. Thus, the ctDNA burden and the likelihood of the presence of a specific
cancer type can be inferred based on the methylation data of informative CpG clusters. A further
developed version, CancerDetector, adopts the joint methylation states of multiple adjacent CpG sites
on an individual sequencing read and jointly deconvolutes the tumor fraction across all markers,
has achieved a high sensitivity and specificity in detecting ctDNA methylation [154]. The Bayesian
hierarchical model and methylation haplotype analysis share a similar strategy that enables information
sharing across a cluster of neighboring CpG sites in order to enhance the statistical power [52,130,139].

4. Current Challenges and Future Directions

In the early years of development, whole blood (buffy coat) DNA was preferentially used as a
starting material. However, the high background of the hematopoietic cell genome may cause a false
positive detection of cfDNA-specific DMRs. Later, plasma was proven to be a superior source of cfDNA
owing to the lower background levels of wild-type DNA [155]. Although superior, the combination of
limiting cfDNA fragments and low ctDNA fraction in a typical early-stage cancer plasma sample still
restrict the detection of methylation signatures. One should be aware that if a certain region of DNA is
not present in the sample, no target enrichment technique can retrieve it. Given the extremely low
ctDNA content, each sample is expected to contain a low copy number of tumor genome equivalents.
Therefore, the regions with a low sequencing coverage should be considered as a potential tumor
signal, rather than filtering out as low quality reads. Unfortunately, most analytical pipelines do not
take such a scenario into consideration and remove low-coverage regions as part of routine quality
control. This may sound reasonable for recurrence detection in an advanced stage cancer, in which
tumor burden is high. However, it is obviously improper for early stage cancer since the tumor burden
is extremely low.

The use of NGS in epigenetic studies has significantly facilitated our discovery of DNA methylation
biomarkers. However, these studies also face some challenges, including the lack of a uniform pipeline
for both experimental and computational methods. Thus, different laboratories may generate different
set of biomarkers from the same type of disease or the same set of samples, and in some cases, different
interpretations for the same datasets. To eliminate the inconsistency arising from tumor heterogeneity
and distinctive analytical methodologies, integration of different assays and multiple biomarkers
may be considered as a strategy of choice. It is believed that the combination of various methylation
assays will ensure the generation of more reliable biomarkers or novel assays. For example, the high
sensitivity of cfMeDIP-seq for low DNA input has been validated by comparing the results with
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traditional MeDIP-seq, RRBS, and WGBS [84]. Additionally, the combination of multiple methylation
markers will help to achieve a higher analytical performance. For instance, the recent assays for
the early detection of BC and monitoring of treatment response in CRC used multiple methylation
signatures to improve outcome [78,80]. Furthermore, the integration of cfDNA methylation analysis
with other aberrant cfDNA alternations assays, such as copy number variations and point mutations,
may also improve the diagnostic sensitivity and specificity.

Although promising, the integrated strategy will produce more complicated data, which requires
a more sophisticated analytical algorithm. With the rapid development of new computational
technologies, the use of machine learning for diagnostic and therapeutic decision- making is receiving
more popularity. For example, artificial intelligence systems have been adopted for methylation analysis
in recent studies [84,156,157]. It is expected that machine learning will allow for the identification
of trends and cancer-specific patterns with ease. However, machine learning has many obstacles.
First, it requires massive training data sets. For a cancer diagnosis, more cohort information, such
as sex, age, cancer type and stage, as well as diverse environmental factors (sample collection and
storage), are necessary. Second, labeling and annotating the training data is a time-consuming process.
Furthermore, computer program skills are also required for scientists to comprehensively analyze and
interpret the vast amount of data. Therefore, significant effort is still needed to fully realize clinical
application of cfDNA methylation markers in the cancer detection and outcome prediction.

Besides cfDNA methylation, other epigenetic biomarkers have also been explored for liquid
biopsies. With the rapid development of cell sorting technologies, investigation of the methylome
in circulating tumor cells (CTCs) has become possible [158]. A fundamental connection between
phenotypic features of CTCs and DNA methylation dynamics in stemness and metastasis has been
identified recently [159]. More knowledge regarding the CTC methylome remains to be further
explored. Meanwhile, cell-free RNA methylation and cfDNA fragmentation patterns also deserve
more research attentions in the future [160,161].

5. Conclusions

This review discussed the feasibility of current DNA methylation profiling methods in liquid biopsy
applications and how technical issues are addressed by improvements in technology. We summarized
the advantages and disadvantages of each technique in Table 1 as guidance toward selecting the
experimental method that best fits the research topic. Whole-genome methylation profiling methods are
more suitable for lab research, such as discovery of novel biomarkers, while targeted and locus-specific
methods are more applicable for clinical settings. Currently, most cfDNA methylation studies are
based on bisulfite conversion, while enrichment-based methods and the 5hmC profiling of cfDNA are
beginning to show their potential. However, these approaches may result in the loss of key methylation
information since bisulfite treatment causes substantial DNA degradation and methylation enrichment
recovers only a small fraction of the total DNA input. Hence, integrating different methylation profiling
assays will provide complementary information and minimize the risk of missing significant signatures,
ensuring generation of more reliable biomarkers. Also, joint analysis of multiple cancer methylation
signatures is believed as a promising strategy for improving the diagnostic outcome. This review also
provided a brief overview of methylation sequencing data analysis. Currently, most liquid biopsy
studies adopted the same methods as tissue-based data analysis, while the deconvolution of data
from heterogeneous cfDNA is gaining more attention. The invention of novel analysis methodologies
that allow for the discrimination of ctDNA methylation signal is clearly needed. Future applications
will be facilitated using artificial intelligence and machine-learning algorithms to identify clinically
meaningful patterns in the data. Particular attention should be paid to ameliorate the cfDNA extraction
procedures for high quality cfDNA, optimizing library preparation and methylation treatment methods
for low input cfDNA, increasing the sequencing depth for accurate methylation calculations, and
exploiting analytical methodologies for ctDNA-specific methylation detection.
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Table 1. Strengths and weaknesses of all major methylation assays for liquid biopsies

Class Technology Strength Weakness Cost

Restriction
enzyme-based -High CGI coverage -Low resolution

-Limited to regions in proximity to restriction enzyme sites

qPCR or ddPCR -Allows ultra-low DNA input -Easy
primer design -Loci-specific studies only Low

Bisulfite-based -Single-based resolution -Substantial DNA degradation during bisulfite treatment
-Cannot discriminate between 5mC and 5hmC

WGBS -The most comprehensive profiling of the
whole methylome -Relatively low sequencing depth High

RRBS -High CGIs coverage -Limited to regions in proximity to restriction enzyme sites Moderate

MTCA-seq -High CGIs coverage -Limited to CGIs and might decrease other methylation
backgrounds Moderate

Targeted -Detect target CpG sites at high coverage -Complicated primer or probe design Low

Microarray -Pre-designed panel covering hotspot
methylation -Low genome-wide coverage of CpGs Low

qMSP or ddMSP -Allows ultra-low DNA input -Loci-specific studies only
-Complicated primer or probe design Low

Enrichment-based -No mutation introduced -Low resolution
-Biased toward hypermethylated regions

MeDIP-seq -Antibody is specific to 5mC -Less sensitive in regions with high CpG density than MBD-seq Moderate

5hmC profiling -Specific to 5hmC -High sequencing depth is required as 5hmC has a low
abundance

5hmC-Seal -Ensures accurate capture of DNA
containing 5hmC -Low resolution Moderate

hmC-CATCH -Single-based resolution -Oxidative environment would cause DNA damage Moderate

Abbreviations: CGI: CpG island. CpG: 5′-C-phosphate-G-3′. qPCR: Quantitative polymerase chain reaction. ddPCR: Droplet digital polymerase chain reaction. qMSP: Quantitative
methylation-specific PCR. ddMSP: Droplet digital methylation-specific PCR. MBD: Methyl-CpG binding domain.



Cancers 2019, 11, 1741 14 of 22

Author Contributions: Conceptualization, L.W.; Writing—original draft preparation, J.H.; Writing—review and
editing, J.H and L.W.; Supervision, L.W.; funding acquisition, L.W.

Funding: This research was supported in part by National Institute of Health (R01CA212097) and by H. Lee
Moffitt Cancer Center & Research Institute.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J.
Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

2. Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.;
Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev.
Cancer 2017, 17, 223–238. [CrossRef] [PubMed]

3. Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.;
Szabo, S.A.; et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 2008, 14, 985–990. [CrossRef]
[PubMed]

4. Jamal-Hanjani, M.; Wilson, G.A.; Horswell, S.; Mitter, R.; Sakarya, O.; Constantin, T.; Salari, R.; Kirkizlar, E.;
Sigurjonsson, S.; Pelham, R.; et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA
from patients with early-stage non-small-cell lung cancer. Ann. Oncol. 2016, 27, 862–867. [CrossRef]

5. Mattos-Arruda, L.; Weigelt, B.; Cortes, J.; Won, H.H.; Ng, C.K.Y.; Nuciforo, P.; Bidard, F.C.; Aura, C.; Saura, C.;
Peg, V.; et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating
cell-free tumor DNA: A proof-of-principle. Ann. Oncol. 2018, 29, 2268. [CrossRef]

6. Chan, K.C.; Jiang, P.; Zheng, Y.W.; Liao, G.J.; Sun, H.; Wong, J.; Siu, S.S.; Chan, W.C.; Chan, S.L.;
Chan, A.T.; et al. Cancer genome scanning in plasma: Detection of tumor-associated copy number aberrations,
single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 2013,
59, 211–224. [CrossRef]

7. Crowley, E.; Di Nicolantonio, F.; Loupakis, F.; Bardelli, A. Liquid biopsy: Monitoring cancer-genetics in the
blood. Nat. Rev. Clin. Oncol. 2013, 10, 472–484. [CrossRef]

8. Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer.
Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [CrossRef]

9. Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of
circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [CrossRef]

10. Chandrananda, D.; Thorne, N.P.; Bahlo, M. High-resolution characterization of sequence signatures due to
non-random cleavage of cell-free DNA. BMC Med. Genom. 2015, 8, 29. [CrossRef]

11. Lo, Y.M.; Chan, K.C.; Sun, H.; Chen, E.Z.; Jiang, P.; Lun, F.M.; Zheng, Y.W.; Leung, T.Y.; Lau, T.K.; Cantor, C.R.;
et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus.
Sci. Transl. Med. 2010, 2, 61ra91. [CrossRef] [PubMed]

12. Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev.
Cancer 2011, 11, 426–437. [CrossRef] [PubMed]

13. Catarino, R.; Ferreira, M.M.; Rodrigues, H.; Coelho, A.; Nogal, A.; Sousa, A.; Medeiros, R. Quantification
of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008, 27, 415–421.
[CrossRef] [PubMed]

14. El Messaoudi, S.; Rolet, F.; Mouliere, F.; Thierry, A.R. Circulating cell free DNA: Preanalytical considerations.
Clin. Chim. Acta 2013, 424, 222–230. [CrossRef] [PubMed]

15. Diaz, L.A., Jr.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32,
579–586. [CrossRef] [PubMed]

16. Janku, F.; Huang, H.J.; Claes, B.; Falchook, G.S.; Fu, S.; Hong, D.; Ramzanali, N.M.; Nitti, G.; Cabrilo, G.;
Tsimberidou, A.M.; et al. BRAF Mutation Testing in Cell-Free DNA from the Plasma of Patients with
Advanced Cancers Using a Rapid, Automated Molecular Diagnostics System. Mol. Cancer Ther. 2016, 15,
1397–1404. [CrossRef] [PubMed]

http://dx.doi.org/10.3322/caac.21492
http://www.ncbi.nlm.nih.gov/pubmed/30207593
http://dx.doi.org/10.1038/nrc.2017.7
http://www.ncbi.nlm.nih.gov/pubmed/28233803
http://dx.doi.org/10.1038/nm.1789
http://www.ncbi.nlm.nih.gov/pubmed/18670422
http://dx.doi.org/10.1093/annonc/mdw037
http://dx.doi.org/10.1093/annonc/mdx804
http://dx.doi.org/10.1373/clinchem.2012.196014
http://dx.doi.org/10.1038/nrclinonc.2013.110
http://dx.doi.org/10.1038/nrclinonc.2017.14
http://dx.doi.org/10.1007/s10555-016-9629-x
http://dx.doi.org/10.1186/s12920-015-0107-z
http://dx.doi.org/10.1126/scitranslmed.3001720
http://www.ncbi.nlm.nih.gov/pubmed/21148127
http://dx.doi.org/10.1038/nrc3066
http://www.ncbi.nlm.nih.gov/pubmed/21562580
http://dx.doi.org/10.1089/dna.2008.0744
http://www.ncbi.nlm.nih.gov/pubmed/18694299
http://dx.doi.org/10.1016/j.cca.2013.05.022
http://www.ncbi.nlm.nih.gov/pubmed/23727028
http://dx.doi.org/10.1200/JCO.2012.45.2011
http://www.ncbi.nlm.nih.gov/pubmed/24449238
http://dx.doi.org/10.1158/1535-7163.MCT-15-0712
http://www.ncbi.nlm.nih.gov/pubmed/27207774


Cancers 2019, 11, 1741 15 of 22

17. Janku, F.; Huang, H.J.; Fujii, T.; Shelton, D.N.; Madwani, K.; Fu, S.; Tsimberidou, A.M.; Piha-Paul, S.A.;
Wheler, J.J.; Zinner, R.G.; et al. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from
the plasma of patients with advanced cancers using droplet digital polymerase chain reaction. Ann. Oncol.
2017, 28, 642–650. [CrossRef]

18. Baylin, S.B.; Esteller, M.; Rountree, M.R.; Bachman, K.E.; Schuebel, K.; Herman, J.G. Aberrant patterns of
DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet. 2001, 10, 687–692.
[CrossRef] [PubMed]

19. Vrba, L.; Futscher, B.W. A suite of DNA methylation markers that can detect most common human cancers.
Epigenetics 2018, 13, 61–72. [CrossRef]

20. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet.
2012, 13, 484–492. [CrossRef]

21. Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013, 14,
204–220. [CrossRef] [PubMed]

22. Suzuki, M.M.; Bird, A. DNA methylation landscapes: Provocative insights from epigenomics. Nat. Rev.
Genet. 2008, 9, 465–476. [CrossRef] [PubMed]

23. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 2008, 358, 1148–1159. [CrossRef] [PubMed]
24. Baylin, S.B.; Jones, P.A. A decade of exploring the cancer epigenome - biological and translational implications.

Nat. Rev. Cancer 2011, 11, 726–734. [CrossRef] [PubMed]
25. Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.;

Van Neste, L.; et al. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018,
15, 459–466. [CrossRef]

26. Laird, P.W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 2003, 3, 253–266.
[CrossRef]

27. Takeshima, H.; Ushijima, T. Accumulation of genetic and epigenetic alterations in normal cells and cancer
risk. NPJ Precis Oncol. 2019, 3, 7. [CrossRef]

28. Widschwendter, M.; Jones, A.; Evans, I.; Reisel, D.; Dillner, J.; Sundstrom, K.; Steyerberg, E.W.; Vergouwe, Y.;
Wegwarth, O.; Rebitschek, F.G.; et al. Epigenome-based cancer risk prediction: Rationale, opportunities and
challenges. Nat. Rev. Clin. Oncol. 2018, 15, 292–309. [CrossRef]

29. Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.; Druid, H.;
Arner, P.; et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free
DNA in health and disease. Nat. Commun. 2018, 9, 5068. [CrossRef]

30. Board, R.E.; Knight, L.; Greystoke, A.; Blackhall, F.H.; Hughes, A.; Dive, C.; Ranson, M. DNA methylation in
circulating tumour DNA as a biomarker for cancer. Biomark. Insights 2008, 2, 307–319. [CrossRef]

31. Feng, H.; Jin, P.; Wu, H. Disease prediction by cell-free DNA methylation. Brief. Bioinform. 2019, 20, 585–597.
[CrossRef] [PubMed]

32. Dam-Dcm and CpG Methylation. Available online: https://www.neb.com/tools-and-resources/selection-
charts/dam-dcm-and-cpg-methylation (accessed on 6 November 2019).

33. Oda, M.; Glass, J.L.; Thompson, R.F.; Mo, Y.; Olivier, E.N.; Figueroa, M.E.; Selzer, R.R.; Richmond, T.A.;
Zhang, X.; Dannenberg, L.; et al. High-resolution genome-wide cytosine methylation profiling with
simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 2009, 37,
3829–3839. [CrossRef] [PubMed]

34. Ball, M.P.; Li, J.B.; Gao, Y.; Lee, J.H.; LeProust, E.M.; Park, I.H.; Xie, B.; Daley, G.Q.; Church, G.M. Targeted
and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol. 2009,
27, 361–368. [CrossRef] [PubMed]

35. Maunakea, A.K.; Nagarajan, R.P.; Bilenky, M.; Ballinger, T.J.; D'Souza, C.; Fouse, S.D.; Johnson, B.E.; Hong, C.;
Nielsen, C.; Zhao, Y.; et al. Conserved role of intragenic DNA methylation in regulating alternative promoters.
Nature 2010, 466, 253–257. [CrossRef] [PubMed]

36. Brunner, A.L.; Johnson, D.S.; Kim, S.W.; Valouev, A.; Reddy, T.E.; Neff, N.F.; Anton, E.; Medina, C.; Nguyen, L.;
Chiao, E.; et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells
and developing human fetal liver. Genome Res. 2009, 19, 1044–1056. [CrossRef]

37. Wu, Z.; Bai, Y.; Cheng, Z.; Liu, F.; Wang, P.; Yang, D.; Li, G.; Jin, Q.; Mao, H.; Zhao, J. Absolute quantification
of DNA methylation using microfluidic chip-based digital PCR. Biosens. Bioelectron. 2017, 96, 339–344.
[CrossRef]

http://dx.doi.org/10.1093/annonc/mdw670
http://dx.doi.org/10.1093/hmg/10.7.687
http://www.ncbi.nlm.nih.gov/pubmed/11257100
http://dx.doi.org/10.1080/15592294.2017.1412907
http://dx.doi.org/10.1038/nrg3230
http://dx.doi.org/10.1038/nrg3354
http://www.ncbi.nlm.nih.gov/pubmed/23400093
http://dx.doi.org/10.1038/nrg2341
http://www.ncbi.nlm.nih.gov/pubmed/18463664
http://dx.doi.org/10.1056/NEJMra072067
http://www.ncbi.nlm.nih.gov/pubmed/18337604
http://dx.doi.org/10.1038/nrc3130
http://www.ncbi.nlm.nih.gov/pubmed/21941284
http://dx.doi.org/10.1038/s41571-018-0004-4
http://dx.doi.org/10.1038/nrc1045
http://dx.doi.org/10.1038/s41698-019-0079-0
http://dx.doi.org/10.1038/nrclinonc.2018.30
http://dx.doi.org/10.1038/s41467-018-07466-6
http://dx.doi.org/10.1177/117727190700200003
http://dx.doi.org/10.1093/bib/bby029
http://www.ncbi.nlm.nih.gov/pubmed/29672679
https://www.neb.com/tools-and-resources/selection-charts/dam-dcm-and-cpg-methylation
https://www.neb.com/tools-and-resources/selection-charts/dam-dcm-and-cpg-methylation
http://dx.doi.org/10.1093/nar/gkp260
http://www.ncbi.nlm.nih.gov/pubmed/19386619
http://dx.doi.org/10.1038/nbt.1533
http://www.ncbi.nlm.nih.gov/pubmed/19329998
http://dx.doi.org/10.1038/nature09165
http://www.ncbi.nlm.nih.gov/pubmed/20613842
http://dx.doi.org/10.1101/gr.088773.108
http://dx.doi.org/10.1016/j.bios.2017.05.021


Cancers 2019, 11, 1741 16 of 22

38. Frommer, M.; McDonald, L.E.; Millar, D.S.; Collis, C.M.; Watt, F.; Grigg, G.W.; Molloy, P.L.; Paul, C.L.
A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual
DNA strands. Proc. Natl. Acad. Sci. USA 1992, 89, 1827–1831. [CrossRef]

39. Tanaka, K.; Okamoto, A. Degradation of DNA by bisulfite treatment. Bioorg. Med. Chem. Lett. 2007, 17,
1912–1915. [CrossRef]

40. Beck, S.; Rakyan, V.K. The methylome: Approaches for global DNA methylation profiling. Trends Genet.
2008, 24, 231–237. [CrossRef]

41. Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.;
Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature 2009, 462, 315–322. [CrossRef]

42. Clark, S.J.; Smallwood, S.A.; Lee, H.J.; Krueger, F.; Reik, W.; Kelsey, G. Genome-wide base-resolution mapping
of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 2017, 12,
534–547. [CrossRef] [PubMed]

43. Smallwood, S.A.; Lee, H.J.; Angermueller, C.; Krueger, F.; Saadeh, H.; Peat, J.; Andrews, S.R.; Stegle, O.;
Reik, W.; Kelsey, G. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.
Nat. Methods 2014, 11, 817–820. [CrossRef] [PubMed]

44. Farlik, M.; Sheffield, N.C.; Nuzzo, A.; Datlinger, P.; Schonegger, A.; Klughammer, J.; Bock, C. Single-cell
DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 2015,
10, 1386–1397. [CrossRef]

45. Miura, F.; Enomoto, Y.; Dairiki, R.; Ito, T. Amplification-free whole-genome bisulfite sequencing by
post-bisulfite adaptor tagging. Nucleic Acids Res. 2012, 40, e136. [CrossRef] [PubMed]

46. Legendre, C.; Gooden, G.C.; Johnson, K.; Martinez, R.A.; Liang, W.S.; Salhia, B. Whole-genome bisulfite
sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Clin. Epigenet.
2015, 7, 100. [CrossRef] [PubMed]

47. Meissner, A.; Mikkelsen, T.S.; Gu, H.; Wernig, M.; Hanna, J.; Sivachenko, A.; Zhang, X.; Bernstein, B.E.;
Nusbaum, C.; Jaffe, D.B.; et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells.
Nature 2008, 454, 766–770. [CrossRef]

48. Gu, H.; Smith, Z.D.; Bock, C.; Boyle, P.; Gnirke, A.; Meissner, A. Preparation of reduced representation
bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 2011, 6, 468–481.
[CrossRef]

49. Smith, Z.D.; Gu, H.; Bock, C.; Gnirke, A.; Meissner, A. High-throughput bisulfite sequencing in mammalian
genomes. Methods 2009, 48, 226–232. [CrossRef]

50. Guo, H.; Zhu, P.; Wu, X.; Li, X.; Wen, L.; Tang, F. Single-cell methylome landscapes of mouse embryonic stem
cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013, 23,
2126–2135. [CrossRef]

51. Guo, H.; Zhu, P.; Guo, F.; Li, X.; Wu, X.; Fan, X.; Wen, L.; Tang, F. Profiling DNA methylome landscapes of
mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 2015, 10, 645–659.
[CrossRef]

52. Guo, S.; Diep, D.; Plongthongkum, N.; Fung, H.L.; Zhang, K.; Zhang, K. Identification of methylation
haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping
from plasma DNA. Nat. Genet. 2017, 49, 635–642. [CrossRef] [PubMed]

53. Wen, L.; Li, J.; Guo, H.; Liu, X.; Zheng, S.; Zhang, D.; Zhu, W.; Qu, J.; Guo, L.; Du, D.; et al. Genome-scale
detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.
Cell Res. 2015, 25, 1376. [CrossRef] [PubMed]

54. Li, J.; Zhou, X.; Liu, X.; Ren, J.; Wang, J.; Wang, W.; Zheng, Y.; Shi, X.; Sun, T.; Li, Z.; et al. Detection of
Colorectal Cancer in Circulating Cell-Free DNA by Methylated CpG Tandem Amplification and Sequencing.
Clin. Chem. 2019. [CrossRef] [PubMed]

55. Samorodnitsky, E.; Datta, J.; Jewell, B.M.; Hagopian, R.; Miya, J.; Wing, M.R.; Damodaran, S.; Lippus, J.M.;
Reeser, J.W.; Bhatt, D.; et al. Comparison of custom capture for targeted next-generation DNA sequencing.
J. Mol. Diagn. 2015, 17, 64–75. [CrossRef]

56. Widschwendter, M.; Evans, I.; Jones, A.; Ghazali, S.; Reisel, D.; Ryan, A.; Gentry-Maharaj, A.; Zikan, M.;
Cibula, D.; Eichner, J.; et al. Methylation patterns in serum DNA for early identification of disseminated
breast cancer. Genome Med. 2017, 9, 115. [CrossRef]

http://dx.doi.org/10.1073/pnas.89.5.1827
http://dx.doi.org/10.1016/j.bmcl.2007.01.040
http://dx.doi.org/10.1016/j.tig.2008.01.006
http://dx.doi.org/10.1038/nature08514
http://dx.doi.org/10.1038/nprot.2016.187
http://www.ncbi.nlm.nih.gov/pubmed/28182018
http://dx.doi.org/10.1038/nmeth.3035
http://www.ncbi.nlm.nih.gov/pubmed/25042786
http://dx.doi.org/10.1016/j.celrep.2015.02.001
http://dx.doi.org/10.1093/nar/gks454
http://www.ncbi.nlm.nih.gov/pubmed/22649061
http://dx.doi.org/10.1186/s13148-015-0135-8
http://www.ncbi.nlm.nih.gov/pubmed/26380585
http://dx.doi.org/10.1038/nature07107
http://dx.doi.org/10.1038/nprot.2010.190
http://dx.doi.org/10.1016/j.ymeth.2009.05.003
http://dx.doi.org/10.1101/gr.161679.113
http://dx.doi.org/10.1038/nprot.2015.039
http://dx.doi.org/10.1038/ng.3805
http://www.ncbi.nlm.nih.gov/pubmed/28263317
http://dx.doi.org/10.1038/cr.2015.141
http://www.ncbi.nlm.nih.gov/pubmed/26620315
http://dx.doi.org/10.1373/clinchem.2019.301804
http://www.ncbi.nlm.nih.gov/pubmed/31010820
http://dx.doi.org/10.1016/j.jmoldx.2014.09.009
http://dx.doi.org/10.1186/s13073-017-0499-9


Cancers 2019, 11, 1741 17 of 22

57. Holmila, R.; Sklias, A.; Muller, D.C.; Degli Esposti, D.; Guilloreau, P.; McKay, J.; Sangrajrang, S.; Srivatanakul, P.;
Hainaut, P.; Merle, P.; et al. Targeted deep sequencing of plasma circulating cell-free DNA reveals Vimentin
and Fibulin 1 as potential epigenetic biomarkers for hepatocellular carcinoma. PLoS ONE 2017, 12, e0174265.
[CrossRef]

58. Liu, L.; Toung, J.M.; Jassowicz, A.F.; Vijayaraghavan, R.; Kang, H.; Zhang, R.; Kruglyak, K.M.; Huang, H.J.;
Hinoue, T.; Shen, H.; et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection
and classification. Ann. Oncol. 2018, 29, 1445–1453. [CrossRef] [PubMed]

59. Bibikova, M.; Barnes, B.; Tsan, C.; Ho, V.; Klotzle, B.; Le, J.M.; Delano, D.; Zhang, L.; Schroth, G.P.;
Gunderson, K.L.; et al. High density DNA methylation array with single CpG site resolution. Genomics 2011,
98, 288–295. [CrossRef]

60. Stirzaker, C.; Taberlay, P.C.; Statham, A.L.; Clark, S.J. Mining cancer methylomes: Prospects and challenges.
Trends Genet. 2014, 30, 75–84. [CrossRef]

61. Moran, S.; Arribas, C.; Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the
human genome enriched in enhancer sequences. Epigenomics 2016, 8, 389–399. [CrossRef] [PubMed]

62. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.;
Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets–update. Nucleic Acids
Res. 2013, 41, D991–D995. [CrossRef] [PubMed]

63. The Cancer Genome Atlas. Available online: https://www.cancer.gov/tcga (accessed on 6 November 2019).
64. Hao, X.K.; Luo, H.Y.; Krawczyk, M.; Wei, W.; Wang, W.Q.; Wang, J.; Flagg, K.; Hou, J.Y.; Zhang, H.; Yi, S.H.;

et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA
2017, 114, 7414–7419. [CrossRef] [PubMed]

65. Gallardo-Gomez, M.; Moran, S.; Paez de la Cadena, M.; Martinez-Zorzano, V.S.; Rodriguez-Berrocal, F.J.;
Rodriguez-Girondo, M.; Esteller, M.; Cubiella, J.; Bujanda, L.; Castells, A.; et al. A new approach to
epigenome-wide discovery of non-invasive methylation biomarkers for colorectal cancer screening in
circulating cell-free DNA using pooled samples. Clin. Epigenet. 2018, 10, 53. [CrossRef] [PubMed]

66. Herman, J.G.; Graff, J.R.; Myohanen, S.; Nelkin, B.D.; Baylin, S.B. Methylation-specific PCR: A novel PCR
assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 1996, 93, 9821–9826. [CrossRef]

67. Eads, C.A.; Danenberg, K.D.; Kawakami, K.; Saltz, L.B.; Blake, C.; Shibata, D.; Danenberg, P.V.; Laird, P.W.
MethyLight: A high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000, 28, E32.
[CrossRef]

68. Lo, P.K.; Watanabe, H.; Cheng, P.C.; Teo, W.W.; Liang, X.; Argani, P.; Lee, J.S.; Sukumar, S. MethySYBR,
a novel quantitative PCR assay for the dual analysis of DNA methylation and CpG methylation density.
J. Mol. Diagn. 2009, 11, 400–414. [CrossRef]

69. Dugast-Darzacq, C.; Grange, T. MethylQuant: A real-time PCR-based method to quantify DNA methylation
at single specific cytosines. Methods Mol. Biol. 2009, 507, 281–303. [CrossRef]

70. Wojdacz, T.K.; Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for
sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007, 35, e41. [CrossRef]

71. Li, D.; Li, P.; Wu, J.; Yi, J.; Dou, Y.; Guo, X.; Yin, Y.; Wang, D.; Ma, C.; Qiu, L. Methylation of NBPF1 as a novel
marker for the detection of plasma cell-free DNA of breast cancer patients. Clin. Chim. Acta 2018, 484, 81–86.
[CrossRef]

72. Eissa, M.A.L.; Lerner, L.; Abdelfatah, E.; Shankar, N.; Canner, J.K.; Hasan, N.M.; Yaghoobi, V.; Huang, B.;
Kerner, Z.; Takaesu, F.; et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for
early detection of pancreatic cancer in blood. Clin. Epigenet. 2019, 11, 59. [CrossRef]

73. Giannopoulou, L.; Mastoraki, S.; Buderath, P.; Strati, A.; Pavlakis, K.; Kasimir-Bauer, S.; Lianidou, E.S. ESR1
methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous
ovarian cancer. Gynecol. Oncol. 2018, 150, 355–360. [CrossRef] [PubMed]

74. Wasenang, W.; Chaiyarit, P.; Proungvitaya, S.; Limpaiboon, T. Serum cell-free DNA methylation of OPCML
and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other
biliary diseases. Clin. Epigenet. 2019, 11, 39. [CrossRef] [PubMed]

75. Nunes, S.P.; Moreira-Barbosa, C.; Salta, S.; Palma de Sousa, S.; Pousa, I.; Oliveira, J.; Soares, M.; Rego, L.;
Dias, T.; Rodrigues, J.; et al. Cell-Free DNA Methylation of Selected Genes Allows for Early Detection of the
Major Cancers in Women. Cancers (Basel) 2018, 10, 357. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0174265
http://dx.doi.org/10.1093/annonc/mdy119
http://www.ncbi.nlm.nih.gov/pubmed/29635542
http://dx.doi.org/10.1016/j.ygeno.2011.07.007
http://dx.doi.org/10.1016/j.tig.2013.11.004
http://dx.doi.org/10.2217/epi.15.114
http://www.ncbi.nlm.nih.gov/pubmed/26673039
http://dx.doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
https://www.cancer.gov/tcga
http://dx.doi.org/10.1073/pnas.1703577114
http://www.ncbi.nlm.nih.gov/pubmed/28652331
http://dx.doi.org/10.1186/s13148-018-0487-y
http://www.ncbi.nlm.nih.gov/pubmed/29686738
http://dx.doi.org/10.1073/pnas.93.18.9821
http://dx.doi.org/10.1093/nar/28.8.e32
http://dx.doi.org/10.2353/jmoldx.2009.080126
http://dx.doi.org/10.1007/978-1-59745-522-0_21
http://dx.doi.org/10.1093/nar/gkm013
http://dx.doi.org/10.1016/j.cca.2018.05.030
http://dx.doi.org/10.1186/s13148-019-0650-0
http://dx.doi.org/10.1016/j.ygyno.2018.05.026
http://www.ncbi.nlm.nih.gov/pubmed/29807696
http://dx.doi.org/10.1186/s13148-019-0634-0
http://www.ncbi.nlm.nih.gov/pubmed/30832707
http://dx.doi.org/10.3390/cancers10100357
http://www.ncbi.nlm.nih.gov/pubmed/30261643


Cancers 2019, 11, 1741 18 of 22

76. Fu, B.; Yan, P.; Zhang, S.; Lu, Y.; Pan, L.; Tang, W.; Chen, S.; Chen, S.; Zhang, A.; Liu, W. Cell-Free Circulating
Methylated SEPT9 for Noninvasive Diagnosis and Monitoring of Colorectal Cancer. Dis. Markers 2018, 2018,
6437104. [CrossRef]

77. Oussalah, A.; Rischer, S.; Bensenane, M.; Conroy, G.; Filhine-Tresarrieu, P.; Debard, R.; Forest-Tramoy, D.;
Josse, T.; Reinicke, D.; Garcia, M.; et al. Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic
Biomarker to Diagnose Hepatocellular Carcinoma. EBioMedicine 2018, 30, 138–147. [CrossRef]

78. Uehiro, N.; Sato, F.; Pu, F.; Tanaka, S.; Kawashima, M.; Kawaguchi, K.; Sugimoto, M.; Saji, S.; Toi, M.
Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res. 2016, 18,
129. [CrossRef]

79. Boeckx, N.; Op de Beeck, K.; Beyens, M.; Deschoolmeester, V.; Hermans, C.; De Clercq, P.; Garrigou, S.;
Normand, C.; Monsaert, E.; Papadimitriou, K.; et al. Mutation and Methylation Analysis of Circulating
Tumor DNA Can Be Used for Follow-up of Metastatic Colorectal Cancer Patients. Clin. Colorectal Cancer
2018, 17, e369–e379. [CrossRef]

80. Barault, L.; Amatu, A.; Siravegna, G.; Ponzetti, A.; Moran, S.; Cassingena, A.; Mussolin, B.; Falcomata, C.;
Binder, A.M.; Cristiano, C.; et al. Discovery of methylated circulating DNA biomarkers for comprehensive
non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut 2018, 67, 1995–2005.
[CrossRef]

81. Chan, R.F.; Shabalin, A.A.; Xie, L.Y.; Adkins, D.E.; Zhao, M.; Turecki, G.; Clark, S.L.; Aberg, K.A.;
van den Oord, E. Enrichment methods provide a feasible approach to comprehensive and adequately
powered investigations of the brain methylome. Nucleic Acids Res. 2017, 45, e97. [CrossRef]

82. Weber, M.; Davies, J.J.; Wittig, D.; Oakeley, E.J.; Haase, M.; Lam, W.L.; Schubeler, D. Chromosome-wide and
promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human
cells. Nat. Genet. 2005, 37, 853–862. [CrossRef]

83. Taiwo, O.; Wilson, G.A.; Morris, T.; Seisenberger, S.; Reik, W.; Pearce, D.; Beck, S.; Butcher, L.M. Methylome
analysis using MeDIP-seq with low DNA concentrations. Nat. Protoc. 2012, 7, 617–636. [CrossRef] [PubMed]

84. Shen, S.Y.; Singhania, R.; Fehringer, G.; Chakravarthy, A.; Roehrl, M.H.A.; Chadwick, D.; Zuzarte, P.C.;
Borgida, A.; Wang, T.T.; Li, T.T.; et al. Sensitive tumour detection and classification using plasma cell-free
DNA methylomes. Nature 2018, 563, 579. [CrossRef] [PubMed]

85. Shen, S.Y.; Burgener, J.M.; Bratman, S.V.; De Carvalho, D.D. Preparation of cfMeDIP-seq libraries for
methylome profiling of plasma cell-free DNA. Nat. Protoc. 2019, 14, 2749–2780. [CrossRef] [PubMed]

86. Xu, W.; Lu, J.; Zhao, Q.; Wu, J.; Sun, J.; Han, B.; Zhao, X.; Kang, Y. Genome-Wide Plasma Cell-Free DNA
Methylation Profiling Identifies Potential Biomarkers for Lung Cancer. Dis. Markers 2019, 2019, 4108474.
[CrossRef] [PubMed]

87. Brinkman, A.B.; Simmer, F.; Ma, K.; Kaan, A.; Zhu, J.; Stunnenberg, H.G. Whole-genome DNA methylation
profiling using MethylCap-seq. Methods 2010, 52, 232–236. [CrossRef]

88. Nair, S.S.; Coolen, M.W.; Stirzaker, C.; Song, J.Z.; Statham, A.L.; Strbenac, D.; Robinson, M.D.; Clark, S.J.
Comparison of methyl-DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain (MBD) protein
capture for genome-wide DNA methylation analysis reveal CpG sequence coverage bias. Epigenetics 2011, 6,
34–44. [CrossRef]

89. Aberg, K.A.; Chan, R.F.; Shabalin, A.A.; Zhao, M.; Turecki, G.; Staunstrup, N.H.; Starnawska, A.; Mors, O.;
Xie, L.Y.; van den Oord, E.J. A MBD-seq protocol for large-scale methylome-wide studies with (very) low
amounts of DNA. Epigenetics 2017, 12, 743–750. [CrossRef]

90. Tahiliani, M.; Koh, K.P.; Shen, Y.; Pastor, W.A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Iyer, L.M.; Liu, D.R.;
Aravind, L.; et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL
partner TET1. Science 2009, 324, 930–935. [CrossRef]

91. He, Y.F.; Li, B.Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; et al. Tet-mediated
formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307.
[CrossRef]

92. Bachman, M.; Uribe-Lewis, S.; Yang, X.; Williams, M.; Murrell, A.; Balasubramanian, S.
5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 2014, 6, 1049–1055.
[CrossRef]

93. Vasanthakumar, A.; Godley, L.A. 5-hydroxymethylcytosine in cancer: Significance in diagnosis and therapy.
Cancer Genet. 2015, 208, 167–177. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2018/6437104
http://dx.doi.org/10.1016/j.ebiom.2018.03.029
http://dx.doi.org/10.1186/s13058-016-0788-z
http://dx.doi.org/10.1016/j.clcc.2018.02.006
http://dx.doi.org/10.1136/gutjnl-2016-313372
http://dx.doi.org/10.1093/nar/gkx143
http://dx.doi.org/10.1038/ng1598
http://dx.doi.org/10.1038/nprot.2012.012
http://www.ncbi.nlm.nih.gov/pubmed/22402632
http://dx.doi.org/10.1038/s41586-018-0703-0
http://www.ncbi.nlm.nih.gov/pubmed/30429608
http://dx.doi.org/10.1038/s41596-019-0202-2
http://www.ncbi.nlm.nih.gov/pubmed/31471598
http://dx.doi.org/10.1155/2019/4108474
http://www.ncbi.nlm.nih.gov/pubmed/30867848
http://dx.doi.org/10.1016/j.ymeth.2010.06.012
http://dx.doi.org/10.4161/epi.6.1.13313
http://dx.doi.org/10.1080/15592294.2017.1335849
http://dx.doi.org/10.1126/science.1170116
http://dx.doi.org/10.1126/science.1210944
http://dx.doi.org/10.1038/nchem.2064
http://dx.doi.org/10.1016/j.cancergen.2015.02.009
http://www.ncbi.nlm.nih.gov/pubmed/25892122


Cancers 2019, 11, 1741 19 of 22

94. Han, D.; Lu, X.; Shih, A.H.; Nie, J.; You, Q.; Xu, M.M.; Melnick, A.M.; Levine, R.L.; He, C. A Highly Sensitive
and Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations. Mol. Cell 2016, 63, 711–719.
[CrossRef] [PubMed]

95. Huang, Y.; Pastor, W.A.; Shen, Y.; Tahiliani, M.; Liu, D.R.; Rao, A. The behaviour of 5-hydroxymethylcytosine
in bisulfite sequencing. PLoS ONE 2010, 5, e8888. [CrossRef] [PubMed]

96. Song, C.X.; Szulwach, K.E.; Fu, Y.; Dai, Q.; Yi, C.; Li, X.; Li, Y.; Chen, C.H.; Zhang, W.; Jian, X.; et al. Selective
chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011,
29, 68–72. [CrossRef] [PubMed]

97. Song, C.X.; Yin, S.; Ma, L.; Wheeler, A.; Chen, Y.; Zhang, Y.; Liu, B.; Xiong, J.; Zhang, W.; Hu, J.; et al.
5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages.
Cell Res. 2017, 27, 1231–1242. [CrossRef] [PubMed]

98. Li, W.; Zhang, X.; Lu, X.; You, L.; Song, Y.; Luo, Z.; Zhang, J.; Nie, J.; Zheng, W.; Xu, D.; et al.
5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human
cancers. Cell Res. 2017, 27, 1243–1257. [CrossRef] [PubMed]

99. Zhang, J.; Han, X.; Gao, C.; Xing, Y.; Qi, Z.; Liu, R.; Wang, Y.; Zhang, X.; Yang, Y.G.; Li, X.; et al.
5-Hydroxymethylome in Circulating Cell-free DNA as A Potential Biomarker for Non-small-cell Lung
Cancer. Genom. Proteom. Bioinform. 2018, 16, 187–199. [CrossRef]

100. Gao, P.; Lin, S.; Cai, M.; Zhu, Y.; Song, Y.; Sui, Y.; Lin, J.; Liu, J.; Lu, X.; Zhong, Y.; et al. 5-Hydroxymethylcytosine
profiling from genomic and cell-free DNA for colorectal cancers patients. J. Cell Mol. Med. 2019, 23, 3530–3537.
[CrossRef]

101. Cai, J.; Chen, L.; Zhang, Z.; Zhang, X.; Lu, X.; Liu, W.; Shi, G.; Ge, Y.; Gao, P.; Yang, Y.; et al. Genome-wide
mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early
detection of hepatocellular carcinoma. Gut 2019. [CrossRef]

102. Tian, X.; Sun, B.; Chen, C.; Gao, C.; Zhang, J.; Lu, X.; Wang, L.; Li, X.; Xing, Y.; Liu, R.; et al. Circulating tumor
DNA 5-hydroxymethylcytosine as a novel diagnostic biomarker for esophageal cancer. Cell Res. 2018, 28,
597–600. [CrossRef]

103. Zeng, H.; He, B.; Xia, B.; Bai, D.; Lu, X.; Cai, J.; Chen, L.; Zhou, A.; Zhu, C.; Meng, H.; et al. Bisulfite-Free,
Nanoscale Analysis of 5-Hydroxymethylcytosine at Single Base Resolution. J. Am. Chem. Soc. 2018, 140,
13190–13194. [CrossRef] [PubMed]

104. Nestor, C.E.; Meehan, R.R. Hydroxymethylated DNA immunoprecipitation (hmeDIP). Methods Mol. Biol.
2014, 1094, 259–267. [CrossRef] [PubMed]

105. Booth, M.J.; Ost, T.W.; Beraldi, D.; Bell, N.M.; Branco, M.R.; Reik, W.; Balasubramanian, S. Oxidative bisulfite
sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat. Protoc. 2013, 8, 1841–1851. [CrossRef]
[PubMed]

106. Yu, M.; Hon, G.C.; Szulwach, K.E.; Song, C.X.; Jin, P.; Ren, B.; He, C. Tet-assisted bisulfite sequencing of
5-hydroxymethylcytosine. Nat. Protoc. 2012, 7, 2159–2170. [CrossRef]

107. Barros-Silva, D.; Marques, C.J.; Henrique, R.; Jeronimo, C. Profiling DNA Methylation Based on
Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel) 2018, 9, 429.
[CrossRef]

108. FastQC. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on
6 November 2019).

109. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics
2014, 30, 2114–2120. [CrossRef]

110. Trim Galore. Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed
on 6 November 2019).

111. Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.;
Hinrichs, A.S.; Gonzalez, J.N.; et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res.
2019, 47, D853–D858. [CrossRef]

112. Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance
genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [CrossRef]

113. Mallona, I.; Diez-Villanueva, A.; Peinado, M.A. Methylation plotter: A web tool for dynamic visualization of
DNA methylation data. Source Code Biol. Med. 2014, 9, 11. [CrossRef]

http://dx.doi.org/10.1016/j.molcel.2016.06.028
http://www.ncbi.nlm.nih.gov/pubmed/27477909
http://dx.doi.org/10.1371/journal.pone.0008888
http://www.ncbi.nlm.nih.gov/pubmed/20126651
http://dx.doi.org/10.1038/nbt.1732
http://www.ncbi.nlm.nih.gov/pubmed/21151123
http://dx.doi.org/10.1038/cr.2017.106
http://www.ncbi.nlm.nih.gov/pubmed/28820176
http://dx.doi.org/10.1038/cr.2017.121
http://www.ncbi.nlm.nih.gov/pubmed/28925386
http://dx.doi.org/10.1016/j.gpb.2018.06.002
http://dx.doi.org/10.1111/jcmm.14252
http://dx.doi.org/10.1136/gutjnl-2019-318882
http://dx.doi.org/10.1038/s41422-018-0014-x
http://dx.doi.org/10.1021/jacs.8b08297
http://www.ncbi.nlm.nih.gov/pubmed/30278133
http://dx.doi.org/10.1007/978-1-62703-706-8_20
http://www.ncbi.nlm.nih.gov/pubmed/24162994
http://dx.doi.org/10.1038/nprot.2013.115
http://www.ncbi.nlm.nih.gov/pubmed/24008380
http://dx.doi.org/10.1038/nprot.2012.137
http://dx.doi.org/10.3390/genes9090429
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1093/bioinformatics/btu170
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://dx.doi.org/10.1093/nar/gky1095
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1186/1751-0473-9-11


Cancers 2019, 11, 1741 20 of 22

114. Liang, F.; Tang, B.; Wang, Y.; Wang, J.; Yu, C.; Chen, X.; Zhu, J.; Yan, J.; Zhao, W.; Li, R. WBSA: Web service for
bisulfite sequencing data analysis. PLoS ONE 2014, 9, e86707. [CrossRef]

115. Bock, C. Analysing and interpreting DNA methylation data. Nat. Rev. Genet. 2012, 13, 705–719. [CrossRef]
[PubMed]

116. Bock, C.; Tomazou, E.M.; Brinkman, A.B.; Muller, F.; Simmer, F.; Gu, H.; Jager, N.; Gnirke, A.;
Stunnenberg, H.G.; Meissner, A. Quantitative comparison of genome-wide DNA methylation mapping
technologies. Nat. Biotechnol. 2010, 28, 1106–1114. [CrossRef] [PubMed]

117. Wu, T.D.; Reeder, J.; Lawrence, M.; Becker, G.; Brauer, M.J. GMAP and GSNAP for Genomic Sequence
Alignment: Enhancements to Speed, Accuracy, and Functionality. Methods Mol. Biol. 2016, 1418, 283–334.
[CrossRef] [PubMed]

118. Krueger, F.; Andrews, S.R. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications.
Bioinformatics 2011, 27, 1571–1572. [CrossRef] [PubMed]

119. Guo, W.; Fiziev, P.; Yan, W.; Cokus, S.; Sun, X.; Zhang, M.Q.; Chen, P.Y.; Pellegrini, M. BS-Seeker2: A versatile
aligning pipeline for bisulfite sequencing data. BMC Genom. 2013, 14, 774. [CrossRef] [PubMed]

120. Chen, P.Y.; Cokus, S.J.; Pellegrini, M. BS Seeker: Precise mapping for bisulfite sequencing. BMC Bioinform.
2010, 11, 203. [CrossRef]

121. Kunde-Ramamoorthy, G.; Coarfa, C.; Laritsky, E.; Kessler, N.J.; Harris, R.A.; Xu, M.; Chen, R.; Shen, L.;
Milosavljevic, A.; Waterland, R.A. Comparison and quantitative verification of mapping algorithms for
whole-genome bisulfite sequencing. Nucleic Acids Res. 2014, 42, e43. [CrossRef]

122. Daca-Roszak, P.; Pfeifer, A.; Zebracka-Gala, J.; Rusinek, D.; Szybinska, A.; Jarzab, B.; Witt, M.; Zietkiewicz, E.
Impact of SNPs on methylation readouts by Illumina Infinium HumanMethylation450 BeadChip Array:
Implications for comparative population studies. BMC Genom. 2015, 16, 1003. [CrossRef]

123. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.
[CrossRef]

124. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics
2009, 25, 1754–1760. [CrossRef]

125. Lienhard, M.; Grimm, C.; Morkel, M.; Herwig, R.; Chavez, L. MEDIPS: Genome-wide differential coverage
analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 2014, 30, 284–286.
[CrossRef] [PubMed]

126. Zhang, Y.; Baheti, S.; Sun, Z. Statistical method evaluation for differentially methylated CpGs in base
resolution next-generation DNA sequencing data. Brief. Bioinform. 2018, 19, 374–386. [CrossRef] [PubMed]

127. Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian
transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [CrossRef] [PubMed]

128. Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq
data. Genome Biol. 2010, 11, R25. [CrossRef] [PubMed]

129. Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106.
[CrossRef]

130. Down, T.A.; Rakyan, V.K.; Turner, D.J.; Flicek, P.; Li, H.; Kulesha, E.; Graf, S.; Johnson, N.; Herrero, J.;
Tomazou, E.M.; et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome
analysis. Nat. Biotechnol. 2008, 26, 779–785. [CrossRef] [PubMed]

131. Lienhard, M.; Grasse, S.; Rolff, J.; Frese, S.; Schirmer, U.; Becker, M.; Borno, S.; Timmermann, B.; Chavez, L.;
Sultmann, H.; et al. QSEA-modelling of genome-wide DNA methylation from sequencing enrichment
experiments. Nucleic Acids Res. 2017, 45, e44. [CrossRef]

132. van den Oord, E.J.; Bukszar, J.; Rudolf, G.; Nerella, S.; McClay, J.L.; Xie, L.Y.; Aberg, K.A. Estimation of CpG
coverage in whole methylome next-generation sequencing studies. BMC Bioinform. 2013, 14, 50. [CrossRef]

133. Shabalin, A.A.; Hattab, M.W.; Clark, S.L.; Chan, R.F.; Kumar, G.; Aberg, K.A.; van den Oord, E. RaMWAS:
Fast methylome-wide association study pipeline for enrichment platforms. Bioinformatics 2018, 34, 2283–2285.
[CrossRef]

134. Hansen, K.D.; Langmead, B.; Irizarry, R.A. BSmooth: From whole genome bisulfite sequencing reads to
differentially methylated regions. Genome Biol. 2012, 13, R83. [CrossRef]

135. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray
experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3. Article3. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0086707
http://dx.doi.org/10.1038/nrg3273
http://www.ncbi.nlm.nih.gov/pubmed/22986265
http://dx.doi.org/10.1038/nbt.1681
http://www.ncbi.nlm.nih.gov/pubmed/20852634
http://dx.doi.org/10.1007/978-1-4939-3578-9_15
http://www.ncbi.nlm.nih.gov/pubmed/27008021
http://dx.doi.org/10.1093/bioinformatics/btr167
http://www.ncbi.nlm.nih.gov/pubmed/21493656
http://dx.doi.org/10.1186/1471-2164-14-774
http://www.ncbi.nlm.nih.gov/pubmed/24206606
http://dx.doi.org/10.1186/1471-2105-11-203
http://dx.doi.org/10.1093/nar/gkt1325
http://dx.doi.org/10.1186/s12864-015-2202-0
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btt650
http://www.ncbi.nlm.nih.gov/pubmed/24227674
http://dx.doi.org/10.1093/bib/bbw133
http://www.ncbi.nlm.nih.gov/pubmed/28040747
http://dx.doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
http://dx.doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1038/nbt1414
http://www.ncbi.nlm.nih.gov/pubmed/18612301
http://dx.doi.org/10.1093/nar/gkw1193
http://dx.doi.org/10.1186/1471-2105-14-50
http://dx.doi.org/10.1093/bioinformatics/bty069
http://dx.doi.org/10.1186/gb-2012-13-10-r83
http://dx.doi.org/10.2202/1544-6115.1027
http://www.ncbi.nlm.nih.gov/pubmed/16646809


Cancers 2019, 11, 1741 21 of 22

136. Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A.
Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation
microarrays. Bioinformatics 2014, 30, 1363–1369. [CrossRef] [PubMed]

137. Xu, H.; Podolsky, R.H.; Ryu, D.; Wang, X.; Su, S.; Shi, H.; George, V. A method to detect differentially
methylated loci with next-generation sequencing. Genet. Epidemiol. 2013, 37, 377–382. [CrossRef] [PubMed]

138. Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit:
A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012,
13, R87. [CrossRef] [PubMed]

139. Feng, H.; Conneely, K.N.; Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from
single nucleotide resolution sequencing data. Nucleic Acids Res. 2014, 42, e69. [CrossRef] [PubMed]

140. Park, Y.; Figueroa, M.E.; Rozek, L.S.; Sartor, M.A. MethylSig: A whole genome DNA methylation analysis
pipeline. Bioinformatics 2014, 30, 2414–2422. [CrossRef] [PubMed]

141. Dolzhenko, E.; Smith, A.D. Using beta-binomial regression for high-precision differential methylation
analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinform. 2014, 15, 215.
[CrossRef] [PubMed]

142. Day, K.; Waite, L.L.; Thalacker-Mercer, A.; West, A.; Bamman, M.M.; Brooks, J.D.; Myers, R.M.; Absher, D.
Differential DNA methylation with age displays both common and dynamic features across human tissues
that are influenced by CpG landscape. Genome Biol. 2013, 14, R102. [CrossRef]

143. Wreczycka, K.; Gosdschan, A.; Yusuf, D.; Gruning, B.; Assenov, Y.; Akalin, A. Strategies for analyzing bisulfite
sequencing data. J. Biotechnol. 2017, 261, 105–115. [CrossRef]

144. Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-wide association studies for common human
diseases. Nat. Rev. Genet. 2011, 12, 529–541. [CrossRef]

145. Ayyala, D.N.; Frankhouser, D.E.; Ganbat, J.O.; Marcucci, G.; Bundschuh, R.; Yan, P.; Lin, S. Statistical methods
for detecting differentially methylated regions based on MethylCap-seq data. Brief. Bioinform. 2016, 17,
926–937. [CrossRef] [PubMed]

146. Chen, D.P.; Lin, Y.C.; Fann, C.S. Methods for identifying differentially methylated regions for sequence- and
array-based data. Brief. Funct. Genom. 2016, 15, 485–490. [CrossRef] [PubMed]

147. Tsuji, J.; Weng, Z. Evaluation of preprocessing, mapping and postprocessing algorithms for analyzing whole
genome bisulfite sequencing data. Brief. Bioinform. 2016, 17, 938–952. [CrossRef] [PubMed]

148. Sun, X.; Han, Y.; Zhou, L.; Chen, E.; Lu, B.; Liu, Y.; Pan, X.; Cowley, A.W., Jr.; Liang, M.; Wu, Q.; et al.
A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data.
Bioinformatics 2018, 34, 2715–2723. [CrossRef] [PubMed]

149. Yong, W.S.; Hsu, F.M.; Chen, P.Y. Profiling genome-wide DNA methylation. Epigenet. Chromatin 2016, 9, 26.
[CrossRef]

150. Akalin, A.; Franke, V.; Vlahovicek, K.; Mason, C.E.; Schubeler, D. Genomation: A toolkit to summarize,
annotate and visualize genomic intervals. Bioinformatics 2015, 31, 1127–1129. [CrossRef]

151. Zhu, L.J.; Gazin, C.; Lawson, N.D.; Pages, H.; Lin, S.M.; Lapointe, D.S.; Green, M.R. ChIPpeakAnno: A
Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 2010, 11, 237. [CrossRef]

152. Teschendorff, A.E.; Breeze, C.E.; Zheng, S.C.; Beck, S. A comparison of reference-based algorithms for
correcting cell-type heterogeneity in Epigenome-Wide Association Studies. BMC Bioinform. 2017, 18, 105.
[CrossRef]

153. Kang, S.; Li, Q.; Chen, Q.; Zhou, Y.; Park, S.; Lee, G.; Grimes, B.; Krysan, K.; Yu, M.; Wang, W.; et al.
CancerLocator: Non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of
cell-free DNA. Genome Biol. 2017, 18, 53. [CrossRef]

154. Li, W.; Li, Q.; Kang, S.; Same, M.; Zhou, Y.; Sun, C.; Liu, C.C.; Matsuoka, L.; Sher, L.; Wong, W.H.; et al.
CancerDetector: Ultrasensitive and non-invasive cancer detection at the resolution of individual reads using
cell-free DNA methylation sequencing data. Nucleic Acids Res. 2018, 46, e89. [CrossRef]

155. Jung, M.; Klotzek, S.; Lewandowski, M.; Fleischhacker, M.; Jung, K. Changes in concentration of DNA in
serum and plasma during storage of blood samples. Clin. Chem. 2003, 49, 1028–1029. [CrossRef] [PubMed]

156. Panagopoulou, M.; Karaglani, M.; Balgkouranidou, I.; Biziota, E.; Koukaki, T.; Karamitrousis, E.; Nena, E.;
Tsamardinos, I.; Kolios, G.; Lianidou, E.; et al. Circulating cell-free DNA in breast cancer: Size profiling,
levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene 2019, 38, 3387–3401.
[CrossRef] [PubMed]

http://dx.doi.org/10.1093/bioinformatics/btu049
http://www.ncbi.nlm.nih.gov/pubmed/24478339
http://dx.doi.org/10.1002/gepi.21726
http://www.ncbi.nlm.nih.gov/pubmed/23554163
http://dx.doi.org/10.1186/gb-2012-13-10-r87
http://www.ncbi.nlm.nih.gov/pubmed/23034086
http://dx.doi.org/10.1093/nar/gku154
http://www.ncbi.nlm.nih.gov/pubmed/24561809
http://dx.doi.org/10.1093/bioinformatics/btu339
http://www.ncbi.nlm.nih.gov/pubmed/24836530
http://dx.doi.org/10.1186/1471-2105-15-215
http://www.ncbi.nlm.nih.gov/pubmed/24962134
http://dx.doi.org/10.1186/gb-2013-14-9-r102
http://dx.doi.org/10.1016/j.jbiotec.2017.08.007
http://dx.doi.org/10.1038/nrg3000
http://dx.doi.org/10.1093/bib/bbv089
http://www.ncbi.nlm.nih.gov/pubmed/26454095
http://dx.doi.org/10.1093/bfgp/elw018
http://www.ncbi.nlm.nih.gov/pubmed/27323952
http://dx.doi.org/10.1093/bib/bbv103
http://www.ncbi.nlm.nih.gov/pubmed/26628557
http://dx.doi.org/10.1093/bioinformatics/bty174
http://www.ncbi.nlm.nih.gov/pubmed/29579198
http://dx.doi.org/10.1186/s13072-016-0075-3
http://dx.doi.org/10.1093/bioinformatics/btu775
http://dx.doi.org/10.1186/1471-2105-11-237
http://dx.doi.org/10.1186/s12859-017-1511-5
http://dx.doi.org/10.1186/s13059-017-1191-5
http://dx.doi.org/10.1093/nar/gky423
http://dx.doi.org/10.1373/49.6.1028
http://www.ncbi.nlm.nih.gov/pubmed/12766024
http://dx.doi.org/10.1038/s41388-018-0660-y
http://www.ncbi.nlm.nih.gov/pubmed/30643192


Cancers 2019, 11, 1741 22 of 22

157. Tian, Q.; Zou, J.; Tang, J.; Fang, Y.; Yu, Z.; Fan, S. MRCNN: A deep learning model for regression of
genome-wide DNA methylation. BMC Genom. 2019, 20, 192. [CrossRef] [PubMed]

158. Pantel, K.; Alix-Panabieres, C. Liquid biopsy and minimal residual disease - latest advances and implications
for cure. Nat. Rev. Clin. Oncol. 2019. [CrossRef] [PubMed]

159. Gkountela, S.; Castro-Giner, F.; Szczerba, B.M.; Vetter, M.; Landin, J.; Scherrer, R.; Krol, I.; Scheidmann, M.C.;
Beisel, C.; Stirnimann, C.U.; et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable
Metastasis Seeding. Cell 2019, 176, 98–112.e114. [CrossRef] [PubMed]

160. Cristiano, S.; Leal, A.; Phallen, J.; Fiksel, J.; Adleff, V.; Bruhm, D.C.; Jensen, S.O.; Medina, J.E.; Hruban, C.;
White, J.R.; et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 2019, 570,
385–389. [CrossRef] [PubMed]

161. Ovcharenko, A.; Rentmeister, A. Emerging approaches for detection of methylation sites in RNA. Open Biol.
2018, 8. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s12864-019-5488-5
http://www.ncbi.nlm.nih.gov/pubmed/30967120
http://dx.doi.org/10.1038/s41571-019-0187-3
http://www.ncbi.nlm.nih.gov/pubmed/30796368
http://dx.doi.org/10.1016/j.cell.2018.11.046
http://www.ncbi.nlm.nih.gov/pubmed/30633912
http://dx.doi.org/10.1038/s41586-019-1272-6
http://www.ncbi.nlm.nih.gov/pubmed/31142840
http://dx.doi.org/10.1098/rsob.180121
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Technologies for DNA Methylation Detection 
	Restriction Enzyme-Based Methods 
	Bisulfite Conversion-Based Methods 
	Whole-Genome Bisulfite Sequencing (WGBS) 
	Reduced-Representation Bisulfite Sequencing (RRBS) 
	Methylated CpG Tandems Amplification and Sequencing (MCTA-seq) 
	Targeted Bisulfite Sequencing 
	Methylation Array 
	Methylation-specific PCR (MSP) 

	Enrichment-based methods 
	Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) 
	Methyl-CpG Binding Domain Protein Capture Sequencing (MBD-seq) 

	5-hydroxymethylation profiling 
	5hmC-Seal (aka hMe-Seal) 
	hmC-CATCH 
	Hydroxymethylated DNA Immunoprecipitation Sequencing (hMeDIP-seq) 
	Oxidative Bisulfite Conversion 


	Bioinformatics Analysis of Sequencing-Based DNA Methylation Data 
	Alignment and Quality Controls 
	DNA Methylation Calling 
	Determination of Differential Methylation 
	Identification of Tumor-Specific Methylation Profile 

	Current Challenges and Future Directions 
	Conclusions 
	References

