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Abstract

Aim: Estrogen receptor α-positive (ER+) subtypes of breast cancer have the greatest predilection 

for forming osteolytic bone metastases (BMETs). Because tumor-derived factors mediate 

osteolysis, a possible role for tumoral ERα signaling in driving ER+ BMET osteolysis was 

queried using an estrogen (E2)-dependent ER+ breast cancer BMET model.

Methods: Female athymic Foxn1nu mice were inoculated with human ER+ MCF-7 breast 

cancer cells via the left cardiac ventricle post-E2 pellet placement, and age- and dose-dependent 

E2 effects on osteolytic ER+ BMET progression, as well as direct bone effects of E2, were 

determined.

Results: Osteolytic BMETs, which did not form in the absence of E2 supplementation, occurred 

with the same frequency in young (5-week-old) vs. skeletally mature (16-week-old) E2 (0.72 

mg)-treated mice, but were larger in young mice where anabolic bone effects of E2 were greater. 

However, in mice of a single age and across a range of E2 doses, anabolic E2 bone effects 

were constant, while osteolytic ER+ BMET lesion incidence and size increased in an E2-dose­

dependent fashion. Osteoclasts in ER+ tumor-bearing (but not tumor-naive) mice increased in 

an E2-dose dependent fashion at the bone-tumor interface, while histologic tumor size and 

proliferation did not vary with E2 dose. E2-inducible tumoral secretion of the osteolytic factor 
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parathyroid hormone-related protein (PTHrP) was dose-dependent and mediated by ERα, with 

significantly greater levels of secretion from ER+ BMET-derived tumor cells.

Conclusion: These results suggest that tumoral ERα signaling may contribute to ER+ BMET­

associated osteolysis, potentially explaining the greater predilection for ER+ tumors to form 

clinically-evident osteolytic BMETs.

Keywords

Breast cancer; estrogen receptor; bone metastasis; estradiol; osteolysis; osteoclasts; parathyroid 
hormone-related protein; bone

INTRODUCTION

Breast cancer is the most common female cancer in the world and the 2nd leading 

cause of cancer mortality[1]. The majority of women with metastatic breast cancer have 

bone metastases (BMETs), which are primarily osteolytic[2,3]. Eighty percent of women 

with breast cancer BMETs have ER+ tumors due to both the higher incidence of this 

subtype and its 2-fold greater proclivity to form metastases in bone[4]. This association of 

BMETs in metastatic breast cancer with tumoral ERα expression, which remains highly 

concordant between primary and bone metastatic tumors[5–7], introduces the possibility 

that tumor cell ERα signaling within the bone milieu, independent of proliferative effects 

that are important but not site-specific, may also be driving tumor-associated osteolysis, 

which is bone-specific, known to be dependent on tumor-derived factors[8–11], and of 

clear clinical relevance due to the morbidity and mortality associated with osteolytic ER+ 

BMETs. However, a specific role for ERα signaling in driving tumor-induced osteolysis 

in ER+ BMET has not, to our knowledge, been previously investigated. Given the 

frequent association of ERα-positivity with BMETs, this question is highly relevant for 

the management of breast cancer, particularly since many ER+ BMETs occur post-hormone 

therapy (HT) and/or are associated with ligand-independent activating ER mutations[12,13]. 

If tumoral E2 signaling contributes to ER+ BMET progression by driving tumor-associated 

osteolysis, targeting of specific downstream signaling pathways mediating this effect could 

provide novel molecular approaches for skeletal therapeutics to block BMET progression for 

ER+ tumors.

Because mice, unlike humans, lack aromatase expression in mammary tissue and bone 

cells[14,15] and also have 10-fold lower circulating 17β-estradiol (E2) levels than humans[16], 

the optimal growth of human ER+ breast cancer orthotopic tumors and osteolytic BMETs in 

preclinical murine models is dependent on exogenous E2 supplementation[17,18,19–26,27,28]. 

This presents a challenge when studying murine models of human ER+ BMETs given the 

responsiveness of both tumor and bone cells to E2
[29–33] and the absence of syngeneic 

models of murine ER+ breast cancer BMET. Indeed, the E2 doses required to promote 

ER+ breast cancer growth in osteolytic xenograft models also increase murine bone 

mass[18,20,21,26,28,34] and furthermore, can induce osteolytic murine osteosarcomas in some 

animals, as previously demonstrated by our laboratory[34].
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Evidence from ER-BMET models, which represent the majority of preclinical breast cancer 

BMET research, has allowed for an assessment of the influence of estrogenic effects on the 

bone microenvironment, independent of tumor cell ER signaling, on osteolytic ER− BMET 

progression. Taken together, these ER− breast cancer xenograft studies suggest that both 

induction of bone formation by E2-treatment[35,36] and bone resorption by E2-deprivation 

[via ovariectomy (OVX)][28,37,38] promote ER− BMET progression. In ER+ BMET models, 

E2 bone-microenvironmental effects have often not been considered[19,21–26,39,40] and are 

rarely documented[18,20,28], while a role of tumor ERα signaling in driving tumor-associated 

osteolysis has not, to our knowledge, previously been studied.

To address these knowledge gaps regarding the effects of ERα signaling in the tumor 

itself vs. the bone microenvironment in driving tumor-associated osteolysis and osteolytic 

progression for ER+ BMET, E2 effects were assessed in a murine model of osteolytic 

ER+ BMET using intracardiac (IC) injection of ER+ human breast cancer cells. Studies 

included an exploration of dose- and age-dependent effects of E2 with the goal of identifying 

conditions under which E2 effects on bone turnover could be accounted for separately 

from direct effects of E2 on ER+ tumor-mediated osteolysis. The primary objective of 

these studies was to determine whether tumoral ERα signaling, in addition to well-known 

proliferative effects that are not site-specific, could be driving osteolysis within the bone 

microenvironment, thus potentially explaining the greater proclivity of ER+ (vs. ER−) breast 

cancer cells to form clinically evident osteolytic BMET.

METHODS

Cell lines and culture

Human ER+ breast cancer tumor cell lines, MCF-7, T47D, and ZR-75-1 [American Type 

Culture Collection (ATCC), Manassas, VA], or bone-tropic ER− human MDA-MB-231 

(MDA-SA) cells[41,42], generously provided by Dr. Theresa Guise, were cultured in 

E2-replete Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, Carlsbad, CA) 

or RPMI-1640 (Invitrogen), as per ATCC’s recommendation, containing 10% of heat­

inactivated fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA), 1% 

of penicillin/streptomycin (Thermo Fisher, Waltham, MA) in 37 °C, and 5% of CO2 

in a humidified atmosphere. All human cell lines were authenticated, as previously 

described[41,43], including MCF-7 BMET-derived tumor cells used in parathyroid hormone­

related protein (PTHrP) secretion experiments, which were isolated from osteolytic BMET­

bearing limbs 42–56 days post-inoculation and passaged twice to remove non-immortalized 

and non-adherent murine cells prior to authentication.

Animal studies

All animal protocols were approved by the Institutional Animal Care and Use Committee 

at The University of Arizona (UA) in accordance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. Four or 15-week-old female Foxn1nu 

athymic nude outbred mice (Envigo, Indianapolis, IN) were received and housed in plastic 

cages (maximum 5/cage) in laminar flow isolated hoods with ad libitum access to water and 

autoclaved mouse chow (NIH-31 Modified diet, Envigo). The number of animals required 
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was determined a priori with the statistical goal of detecting a significant difference of 

osteolytic lesion area between groups assuming a moderate effect size with α = 0.05 

and β = 0.80 (G*Power Software v3.1)[44]. Mice (n = 8–13/group) were inoculated at 

approximately 5- or 16-week of age with 1 × 105 human breast cancer cells (MCF-7, 

MDA-SA, T47D, or ZR-75-1) via the left cardiac ventricle (IC), as previously described[41], 

either in estrogen-naive mice, or in estrogen-supplemented mice 3 days post-placement 

of 60-day extended-release 17β-estradiol (E2) pellets (0.05, 0.10, 0.18, 0.36, or 0.72 mg, 

Innovative Research of America, Sarasota, FL)[34]. In separate experiments, as indicated, 

mice not inoculated with tumor cells (tumor-naive) were similarly treated with E2 pellets to 

determine effects on bone turnover independent of tumor-associated osteolysis. Additionally, 

to examine the possible influence of E2 supplementation on tumor cell dissemination to 

bone, mice 3-days post-E2 pelleting (vs. controls, n = 3–5/group) were inoculated with 8 × 

105 MCF-7 cells freshly labeled with Vybrant DiD, as per the manufacturer’s instructions 

(Thermo Fisher), with fluorescent membrane staining remaining detectable for up to 7 

days in culture. Twenty-four hours post-inoculation, cells were isolated from each proximal 

(25%) tibia, the most common and earliest site of BMET (data not shown), by flushing 

with media and repeated washing and crushing of bone. Cells thus isolated were seeded 

into 48-well cell-culture plates (3 wells/tibia) and allowed to adhere overnight prior to 

imaging of DiD-positive cells using the Cy5 filter of a Keyence BZ-X700 fluorescent 

microscope (Keyence Corporation of America, Itasca, IL). DiD-positive (DiD+) tumor cells, 

quantified using ImageJ software (National Institutes of Health, NIH), are reported as DiD+ 

cells/106 bone marrow cells for each tibia. Similarly isolated cells from tumor-naive mice 

were included as negative controls, and cultured MCF-7 cells 24 h-post DiD labeling were 

used as positive microscopy controls. No changes in health status necessitating euthanasia 

occurred in mice, which were also examined 6-week post-tumor cell inoculation at gross 

necropsy for non-bone metastases, as determined by researchers and UA veterinary staff: 

rare unanticipated deaths were attributable to anesthesia, weights were unchanged in E2­

treated and/or tumor-bearing mice vs. controls, and urinary retention, a well-characterized 

side-effect of E2-supplementation in mice[45,46] that was not severe enough to warrant early 

termination, was observed in 20%–30% of mice treated with higher E2 doses, as previously 

reported[34].

Radiographic determination of osteolytic BMET lesions and E2 effects on bone

To assess the size and incidence of radiographically-evident osteolytic BMET lesions, 

radiographs of mouse hind limbs (Faxitron UltraFocus 1000, Faxitron Bioptics, Tucson, 

AZ) in E2-supplemented tumor cell-inoculated mice were obtained weekly over the 

6-week course of experiments. Radiographic osteolytic lesion incidence and area per 

mouse were determined in a blinded fashion with radiographic images assessed by 

three independent investigators using ImageJ software (NIH)[34]. Because E2 can induce 

osteolytic osteosarcomas in nude mice[34], the identity of osteolytic BMETs in E2­

supplemented mice was verified by correlating radiographic lesions in each hind limb 

bone with histologic evidence of cytokeratin-positive breast cancer tumors[20,34] prior 

to calculating radiographic osteolytic BMET incidence or lesion area per mouse. When 

calculating average osteolytic lesion size, mice lacking osteolytic BMET were excluded so 

that E2 effects on lesion size could be assessed independent of effects on incidence. In 
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parallel experiments to determine E2 effects on bone in the absence of osteolytic BMET, 

dual-energy X-ray absorptiometry (DXA) was performed weekly in E2-supplemented mice 

not inoculated with tumor cells (tumor naive) to assess changes in tibial areal bone 

mineral density (aBMD) (Faxitron UltraFocus 1000)[34]. At termination of these 6-week 

experiments, to examine E2 effects specific to trabecular bone, microcomputed tomography 

(microCT) imaging was performed ex vivo in a subset of mice to assess proximal tibial 

metaphyseal trabecular bone volume/total volume (BV/TV) by the Endocrine Research Unit 

at the San Francisco VA Medical Center (Scanco microCT 50, Scanco Medical, Basserdorf, 

Switzerland) as previously described[34,47].

Bone metastatic breast cancer tumor histology and bone histomorphometry

Hind limbs were removed either 2 weeks (bone histomorphometry) or 6 weeks (bone 

histomorphometry or immunohistochemical analysis of Ki67, ER, or cytokeratin) post­

tumor cell inoculation, fixed, decalcified, and paraffin-embedded for histologic analyses 

of midsagittal (approximate depth of 400–500 μM) 5–6 μM sections as previously 

described[48]. For measuring histologic breast cancer tumor size (tumor burden), epithelial 

MCF-7 breast cancer tumors were identified using a pan-cytokeratin primary antibody 

(#Z0622, Agilent Dako, Santa Clara, CA) and continued expression of ERα was verified 

using a human ERα primary antibody (#ab108398, Abcam, Cambridge, United Kingdom) 

using previously described immunohistochemical (IHC) methods[48]. Cytokeratin-positive 

breast cancer tumor area in hind limbs bones was determined in a blinded fashion (expressed 

per leg as % of tumor area/bone area). Proliferating breast cancer cells in bone were 

identified using a primary antibody directed against a human Ki67 proliferation marker 

(#D2H10, Cell Signaling, Danvers, MA). Breast cancer tumor cell proliferation in each hind 

limb was assessed in a blinded fashion by calculating the average number of Ki67-positive 

tumor cells in four high power fields per bone (expressed per hind limb as % of total 

tumor cells), with the mean for each treatment group determined by averaging values for 

each limb. In addition, osteoblasts-identified as hematoxylin-stained mononuclear cuboidal 

cells lining the bone surface-or multinucleated tartrate-resistant acid phosphatase (TRAP)­

positive osteoclasts were quantified in the tibial metaphyses of tumor-naive mice or at 

the bone tumor interface of tumor-bearing mice, as per ASBMR nomenclature Committee 

Guidelines and using standard methods, as previously described[34,41,49–53]. Osteoclasts or 

osteoblasts in tumor-naive mice are reported as cell number per mm of bone surface (BS) 

or per tissue area (mm2), and osteoclasts in tumor-bearing hind limbs of mice are reported 

as cell number per mm of bone at the tumor-bone interface[34,41,49,54,55]. All images for 

immunohistology and bone histomorphometry were analyzed using ImageJ software (NIH).

Serum markers of bone turnover or estradiol

Serum markers of bone formation [rat/mouse P1NP EIA; Immunodiagnostic Systems (IDS), 

United Kingdom] or bone resorption (mouse CTX-1; IDS) were measured in fasting serum 

collected 2 weeks after the start of E2 supplementation (vs. age-matched controls) using 

commercially available ELISA kits[18,28] as previously described[34]. E2 levels in serum 

collected 2 weeks post pellet placement were assayed by the University of Virginia Center 

for Research in Reproduction Ligand Assay and Analysis Core using a commercially 
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available 17β-estradiol ELISA developed for use in mice (Calbiotech, El Cajon, CA)[56]. 

All sera were stored at −80 °C prior to assay.

PTHrP assay

To analyze PTHrP secretion from ER+ tumor cells and its E2 dependency, ER+ MCF-7 cells 

or ER+ tumor cells isolated from MCF-7 BMET were plated in 24-well plates at a density 

of 1.3 × 105 cells/well in E2-depleted media [phenol red-free DMEM (Invitrogen), 10% 

charcoal-stripped FBS (Valley Biomedical, Winchester, VA), 1% penicillin/streptomycin 

(Thermo Fisher), and 200 mM L-Glutamine (Sigma Aldrich, St. Louis, MO)] for 4 days, 

during which time cell number did not change for any cell line (data not shown), prior to 

treatment with E2 (10−11-10−6 M, as indicated; Sigma Aldrich), an ERα specific agonist 

propyl pyrazole triol (PPT; 10−8 M; Tocris, Minneapolis, MN), an ERα specific antagonist 

methyl-piperidinopyrazole hydrate (MPP; 10−6 M, Tocris), or vehicle control for 48 or 52 

h, as indicated. Conditioned media, stored at −80 °C after addition of protease inhibitors 

(Sigma Aldrich), were assayed for secreted PTHrP using a commercial immunoradiometric 

assay (Beckman Coulter, Brea, CA). A lack of treatment effect on cell number during the 48 

or 52-h incubation was verified using a commercial MTT assay (ATCC).

Statistical analyses

Unless otherwise noted, data are reported as mean ± SEM, with statistical significance of 

2-sided P-values defined as P ≤ 0.05. Statistical differences were determined using Prism 8.0 

software (Graphpad, San Diego, CA) for 1- or 2-way analyses of variance (ANOVA) with 

post-hoc testing as well as tests for log-rank, mixed-effects, and t-test, as indicated. Analyses 

of skeletal parameters in tumor naive mice were not corrected for multiple comparisons, 

using Fisher’s LSD test, to maximize the possibility of detecting dose-dependent E2 effects 

(although none were found)[57].

RESULTS

E2-dependent osteolytic ER+ MCF-7 BMET progression in young vs. skeletally mature E2 

(0.72 mg)-supplemented mice

Osteolytic BMETs were not detected in the absence of E2 supplementation when young 

(5-week-old) mice inoculated with MCF-7 cells were followed for up to 8 months (data 

not shown). When supplemented with an E2 dose (0.72 mg) supporting in vivo MCF-7 

orthotopic tumor growth[17,58], radiographic osteolytic breast cancer lesions were evident as 

early as 2 weeks post-MCF-7 tumor cell inoculation of young (5-week old) mice (Figure 

1A and inset), reaching a maximal incidence of 69% within 4 weeks with continuous 

size increases over the 6-week course of the experiment [Figure 1B], without evidence 

of metastases at non-bone sites. BMET formation in E2 (0.72 mg)-supplemented MCF-7­

inoculated mice contrasted with results in 5-week-old mice inoculated with T47D or 

ZR-75-1 cells, where no osteolytic BMETs were noted (data not shown). When skeletally 

mature (16-week-old) mice supplemented with the same 0.72 mg E2 dose were inoculated 

with MCF-7 cells, the progression time course and incidence of osteolytic BMET lesion 

formation were the same as those in 5-week mice [Figure 1A]; however, osteolytic lesion 

size was significantly smaller [Figure 1B]. Radiographs documenting proximal tibial and 
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distal femoral osteolytic lesions, also common sites for ER− BMETs[59], were also notable 

for clear evidence of E2-driven, albeit possibly differential, increases in bone density in mice 

of both ages [Figure 1C]. This observation raised questions about possible contributions of 

E2 effects on the bone microenvironment (vs. direct effects on ER+ tumors) in supporting 

ER+ MCF-7 BMET progression, a postulate further supported by findings in 5-week-old 

mice inoculated instead with osteotropic ER− MDA-MB-231 cells, where treatment with the 

same 0.72 mg E2 dose led to an increase in osteolytic lesion size (3.5 ± 0.8-fold increased 

lesion size in E2-supplemented (n = 12) vs. control mice (n = 10), P < 0.01), but unchanged 

incidence (91.6% vs. 80.0%, P > 0.05), consistent with prior reports of pro-metastatic, 

anabolic E2 bone effects in ER− BMET models[35,36].

Differential effects of E2 (0.72 mg) on bone turnover in tumor-naive young vs. skeletally 
mature mice

Because radiographs suggested that anabolic effects of E2 (0.72 mg) on bones in tumor­

bearing mice could be age-dependent, direct bone effects of this E2 dose (0.72 mg) 

were quantified in tumor-naive mice of both ages to assess the postulate that E2 (0.72 

mg)-driven ER+ BMET osteolytic lesion size was greater in mice whose bones yielded a 

greater anabolic E2 response (i.e., young mice). Total tibial aBMD increased significantly 

in response to E2 (0.72) over 6 weeks of supplementation in tumor-naive mice of both 

ages [Figure 2A], but with a larger increase in younger mice (68% vs. 23%), whose BMD 

was lower at baseline and still increasing in untreated age-matched controls. Cross-sectional 

microCT images [Figure 2B] confirmed dramatic, but differential, effects of E2 on both 

cortical and trabecular bone in the tibiae of skeletally young vs. mature mice after 6 weeks 

of treatment. In the proximal tibial, a frequent osteolytic BMET site, aBMD and trabecular 

BV/TV increased significantly in response to E2 in mice of both ages [Table 1]; however, the 

increase was significantly greater in young mice [e.g., BV/TV of 91% vs. 60% (P < 0.0001) 

in young vs. mature, respectively].

In skeletally mature mice, P1NP, a serum marker of bone formation, was significantly lower 

(vs. young mice) and unchanged by 0.72 mg E2-supplementation, contrasting with a 0.72 

mg E2-induced increase in already significantly higher P1NP levels in young mice, such that 

P1NP levels were 3.1-fold higher (P < 0.0001) in E2-treated young vs. skeletally mature 

mice [Table 1]. Osteoblast number (N.Ob) per bone surface tended to increase in response 

to E2 treatment in mice of both ages; however, these trends were not statistically significant. 

Given the large increase in bone surface, N.Ob per area was also calculated and was only 

significantly increased in response to E2 in young mice, resulting in Ob counts that were 

1.6-fold higher in young (vs. mature) E2-treated mice (P < 0.05), consistent with higher 

circulating P1NP levels [Table 1].

Age-related differences in bone resorption in E2-treated mice were less evident in these 

ovary-intact mice. While osteoclast number (N.Oc) per bone surface was not changed by 

E2 treatment in mice of either age, N.Oc per bone area increased significantly and similarly 

in age of both ages, such that there was no difference in Oc counts in young vs. mature 

E2 treated mice [Table 1]. Similarly, CTX-1 levels in 0.72 mg E2-treated mice of both ages 

were the same [Table 1]. In toto, these data demonstrate that the greater net increases in 

Cheng et al. Page 7

J Cancer Metastasis Treat. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bone in young (vs. mature) mice treated with same E2 dose were attributable to higher 

rates of bone formation, which were positively associated with osteolytic lesion size, but 

not incidence, in tumor-inoculated young (vs. mature) mice supplemented with the same E2 

(0.72 mg) dose.

Assessing dose-dependency of E2 effects on bone turnover in tumor-naive vs. 
progression of osteolytic ER+ BMET lesions in ER+ tumor cell-inoculated 5-week-old mice

Because significant E2 effects on bone occurred in mice of both ages, bone effects of a 

range of lower E2 doses previously reported to support dose-dependent growth of orthotopic 

MCF-7 tumors in vivo[17] were next assessed in mice of a single age to determine whether 

an E2 dose could be identified that did not significantly alter bone. Remarkably, E2-induced 

increases in total tibial aBMD were identical for all doses, plateauing 3 weeks after E2-pellet 

placement in 5-week-old mice [Figure 3A]. Other bone parameters including proximal tibial 

aBMD or BV/TV, bone turnover markers, and N.Ob or N.Oc were also similarly increased 

in response to the lowest E2 dose (0.05 mg) vs. the highest E2 dose (0.72 mg) tested, 

without any dose-dependence [Table 1]. Having documented essentially identical bone 

microenvironment effects over this entire range of E2 doses known to support in vivo MCF-7 

proliferation at orthotopic sites, with evidence of dose-dependent increases in circulating 

E2 levels across the range of doses [Supplementary Figure 1], the effects of this E2 dosing 

regimen on ER+ BMET progression in MCF-7 cell-inoculated mice of the same age were 

assessed. In mice treated with increasing doses of E2, osteolytic ER+ BMET lesions formed 

in a dose-dependent fashion with respect to both incidence and size (Figure 3B–C, P ≤ 

0.05), with the highest dose of E2 tested (0.72 mg) forming osteolytic lesions with a 

similar size and incidence 6 weeks post-tumor inoculation as occurs in a commonly used 

non-E2-supplemented ER− MDA-MB-231 BMET model at week 3 [41]. The 7-fold larger 

size and higher incidence of osteolytic lesions in MCF-7-inoculated mice treated with the 

highest (0.72 mg) vs. lowest (0.05 mg) E2 dose contrasts with dose-dependent effects of E2 

in mice inoculated instead with ER− MDA-MB-231 cells; ER− osteolytic lesion size, while 

increased by E2 treatment, as described above, was not statistically different in mice treated 

with the highest (0.72 mg) vs. lowest (0.05 mg) E2 doses (P = 0.11, n = 9–12) and osteolytic 

lesion incidence was unchanged by any E2 dose (vs. non-supplemented controls, data not 

shown). Thus, while bone anabolism and osteolytic ER− BMET lesion progression were 

each induced by E2 in 5-week-old mice, neither exhibited E2-dose dependence; in contrast, 

the size and incidence of osteolytic ER+ BMET lesion progression were E2 inducible and 

E2-dose dependent.

Assessing possible E2 dose-dependency of ER+ tumor cell dissemination to bone

Because E2 pellets were placed 3 days prior to tumor cell inoculation to allow for 

stabilization, studies were undertaken to assess possible dose-dependent E2 effects on 

ER+ tumor cell dissemination to bone. Following inoculation of DiD-labelled MCF-7 

cells, DiD+ tumor cells detected in the proximal tibia - while trending slightly higher in 

E2-treated vs. control mice 24 h post-inoculation [Supplementary Figure 2] - were not 

statistically different. Most importantly, there was no evidence of a dose-dependent E2 

effect in mice treated with the lowest (0.05 mg) vs. highest (0.72 mg) E2 doses tested 

[Supplementary Figure 2]. There was also no evidence of an age effect, when comparing 

Cheng et al. Page 8

J Cancer Metastasis Treat. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bone disseminated DiD+ MCF-7 cells in young vs. skeletally mature mice treated with 0.72 

mg E2 [Supplementary Figure 2].

Assessing possible E2 dose-dependency of ER+ tumor burden and proliferation in bone

Because proliferative effects of E2 on ER+ MCF-7 cells are well described in vitro and in 
vivo at orthotopic sites[17,58], a possible E2 dose-dependency for histologic tumor burden 

(size) and tumor cell proliferation in bone were assessed 6 weeks post-inoculation, when 

osteolytic lesion size was still increasing. While the mean area for cytokeratin+ ER+ breast 

cancer tumors in bone tended to be smaller for lower E2 doses, the range of tumor sizes 

was similar across doses without a statistical difference in mean values [Figure 4A]; nor was 

there a significant linear trend for increasing doses. Tumor burden in 0.72 mg E2-pelleted 

young vs. skeletally mature mice was also not statistically different [Figure 4A]. Tumor cell 

proliferation, assessed by Ki67-positivity, was notable in E2-supplemented mice (> 60%), 

but again was without E2-dose or age-dependency [Figure 4B].

Assessing E2 dose-dependency of ER+ tumor-associated osteolysis

Having eliminated differential tumor cell dissemination or proliferative effects of E2 as 

being responsible for the E2 dose-dependence of ER+ osteolytic BMET lesion progression, 

dose-dependent effects of E2 on tumor-associated osteolysis-specific mechanisms were next 

assessed. While E2 suppresses osteoclast numbers in estrogen-deficient bone[60], in ovary­

intact tumor-naive mice, neither the highest (0.72 mg) nor the lowest (0.05 mg) E2 dose 

altered osteoclast numbers per bone surface at 2 weeks [Table 1] or 6 weeks (data not 

shown). However, consistent with E2 dose-dependent increases in ER+ BMETs osteolytic 

lesion size and incidence [Figure 3B–C], the number of bone-resorbing osteoclasts at the 

tumor-bone interface of ER+ tumor cell-inoculated mice treated with the highest (0.72 mg) 

E2 dose was significantly greater than that in mice treated with the lowest (0.05 mg) E2 

dose, where osteoclast numbers on bone surfaces interfacing with tumors [Figure 5A] were 

not different from those in age-matched, tumor-naive control mice [N.Oc/BS, 10.9 ± 1.8 (n 
= 6), P > 0.05]. The osteolytic factor, parathyroid hormone-related protein (PTHrP), which 

is expressed in most clinical breast cancer BMET[8,11,59,61–63], was secreted constitutively 

from ER+ MCF-7 tumor cells used for inoculation, while constitutive PTHrP secretion from 

ER+ tumor cells isolated from MCF-7 BMET lesions was 2- to 3-fold higher (P ≤ 0.05) 

[Figure 5B]. In both inoculated and BMET-derived cells, tumoral PTHrP secretion was 

further increased (P ≤ 0.05) in response to E2 treatment, resulting in 2-fold higher levels of 

E2-induced PTHrP secretion from BMET-derived (vs. inoculated) ER+ tumor cells. As with 

in vivo BMET-associated osteolysis, E2-inducible PTHrP secretion in vitro was also dose­

dependent [Figure 5C]. Moreover, E2 induction of PTHrP secretion was ERα-mediated; 

MPP, an ERα-specific antagonist[64] that did not alter tumoral PTHrP secretion (data not 

shown), blocked E2-induced PTHrP in BMET-derived tumor cells (Figure 5D; P ≤ 0.01). 

Furthermore, PPT, an ERα specific agonist with an affinity for ERα similar to that of E2 

(and 410-fold higher for ERα vs. ERβ)[65], significantly induced PTHrP to identical levels 

as compared to an equimolar concentration of E2 [Figure 5D].
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DISCUSSION

Anti-estrogen hormone therapies and bisphosphonates each have a proven benefit in 

reducing the development and progression of osteolytic ER+ BMETs; however, BMETs still 

occur in ~80% of women with ER+ metastatic breast cancer and remain incurable[4,66–71]. 

The recent addition of agents acting downstream of ERα to decrease proliferation (CDK4/6 

inhibitors), while not curative, has yielded significant benefits[72], likely due in part to 

the high prevalence of ligand-independent, activating ERα mutations in ER+ metastatic 

breast cancer[12]. Similarly, if separate osteolytic effects of tumoral ERα signaling are 

also demonstrated to drive ER+ BMET progression, novel molecular approaches targeting 

specific tumoral osteolytic pathways downstream of ERα could provide new avenues for 

skeletal therapeutics to block BMET progression for ER+ tumors, which comprise the 

majority of breast cancer BMET.

BMETs are uniquely increased (2-fold) in metastatic ER+ breast cancers as compared to 

metastases at other sites, where metastatic prevalence is either the same or reduced as 

compared to ER− tumors, and osteolysis is a bone- and tumor-specific event (e.g., primarily 

osteolytic in breast cancer vs. osteosclerotic in prostate cancer) known to be dependent on 

tumor-derived factors, such as PTHrP[8–11]. Thus, we posited that the apparent proclivity of 

bone-disseminated ER+ (vs. ER−) breast cancer cells to form clinically-evident osteolytic 

BMET could be attributable, at least in part, to pro-osteolytic effects of tumoral ERα 
signaling. The studies described here, which to our knowledge are the first to examine the E2 

dose dependence of in vivo osteolytic ER+ BMET progression, support this postulate; over 

the range of E2 doses tested, while E2 effects on bone turnover or tumor cell seeding and 

proliferation in bone were constant, tumor-associated osteolysis and osteoclast formation 

at the bone/tumor interface in ER+ tumor-bearing mice increased in an E2 dose-dependent 

fashion, contrasting with well-described inhibitory effects of E2 on osteoclast formation in 

normal bone[32,60]. The additional finding of enhanced, E2 dose-dependent, ERα-regulated 

secretion of PTHrP, an osteolytic factor expressed in most clinical BMETs[62,63], from 

BMET-derived ER+ breast cancer cells further supports this postulate and provides possible 

mechanistic insights for specific pathways downstream of tumoral ERα activation that may 

contribute to ER+ BMET-associated osteolysis. The enhanced secretion of PTHrP regulated 

by ERα from BMET-derived tumor cells, in particular, suggests: (1) ERα expression in 

ER+ cells metastatic to bone - rather than being just a biomarker for BMETs - may also 

be a potential molecular driver of osteolysis and metastatic progression in bone; and/or 

(2) either a subpopulation of highly PTHrP-expressing cells preferentially formed BMETs 

and/or the bone microenvironment altered the phenotype of bone-disseminated tumor cells 

to favor PTHrP-mediated osteolysis. Either of these possibilities is consistent with clinical 

observations that PTHrP-positivity in breast cancer is greater in BMET than in other 

metastatic sites or in primary tumors[62], a finding also verified in pre-clinical murine 

studies documenting greater PTHrP expression in human breast cancer cells spontaneously 

forming metastases in bone vs. other sites[73]. The possible mechanistic importance of 

tumoral PTHrP secretion in promoting tumor-associated osteolysis and, in turn, osteolytic 

BMET progression, has already been established in one commonly studied pre-clinical ER− 

human BMET model, where osteolytic BMET progression does not occur in the absence 
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of tumoral PTHrP bioactivity[8,42]. Also of particular relevance to the current studies, 

while E2-regulation of PTHrP expression in ER+ MCF7 cells has not, to our knowledge, 

been examined by laboratories other than our own[74], overexpression of PTHrP by stable 

transfection in MCF-7 cells has been demonstrated to increase osteolysis specifically, in 

concert with a significant increase in osteolytic BMET progression (as compared to wild­

type cells)[26]. Thus, existing evidence supports the postulate that enhanced secretion of 

PTHrP mediated by ERα in ER+ tumor cells disseminated to bone, as documented here, 

may be one specific pathway driving E2 dose-dependent tumor osteolysis and osteolytic 

ER+ BMET progression documented in vivo.

Clearly, though, these studies have limitations. Indeed, while a bone-specific hypothesis 

for tumoral ERα signaling driving BMET progression via mediation of tumor-associated 

osteolysis is straightforward, testing in pre-clinical models, where E2 supplementation is 

necessary to support robust progression of osteolytic BMET and a syngeneic mouse model 

is not available, is difficult since E2 has anabolic effects on the bone microenvironment and 

also clearly drives ER+ breast cancer cell proliferation, which is not unique to the bone 

microenvironment. Thus, while prior experiments utilizing E2-driven ER+ human breast 

cancer xenograft models and a single dose of E2 have demonstrated tamoxifen-inhibition 

of ER+ BMET following intracardiac tumor cell inoculation, or a role of zoledronic acid 

or tumor cell PREX1 expression in regulating dissemination of ER+ cells from primary 

orthotopic tumors ultimately home to bone[18,21,27], none have been able to elucidate the 

relative importance of bone vs. tumor effects of E2, or other agents with dual bone vs. tumor 

effects, such as zoledronic acid. In the experiments described here, which are the first, to 

our knowledge, to test E2 dose dependency in an ER+ BMET model, the constancy across 

doses of E2-driven bone anabolism - an anticipated effect given E2’s known direct and/or 

indirect (via T and B lymphocytes, with only the latter being present in the model used 

here) stimulatory effects on osteoblasts and inhibition of myeloid-derived osteoclasts[32,60] - 

could not account for the E2 dose-dependency of tumor-associated osteolysis. The osteolytic 

capacity of the ER+ tumors to overcome the marked increase in bone occurring in E2-treated 

mice, yielding osteolytic lesions similar in size and incidence to those reported in ER− 

models where anabolic increases in bone do not occur[41], was also notable. However, the 

possibility that bone anabolism may have played a permissive, albeit constant, role in BMET 

progression in this ER+ model cannot be ruled out.

While the E2 dose-dependency of ER+ osteolytic BMET progression was not attributable 

to anabolic E2 bone effects given the constancy of this tumor microenvironment effect 

across doses, E2-driven bone anabolism clearly had independent pro-metastatic effects as 

well. Larger osteolytic lesion sizes in young (vs. mature) mice treated with the same E2 

dose appeared attributable to greater E2-mediated anabolism in young mice since tumor 

cell dissemination and proliferation were otherwise the same. Increased osteolytic BMET 

lesion size in E2-treated (vs. control) mice inoculated with ER− breast cancer cells further 

confirmed a role of anabolic bone microenvironmental effects of E2 in driving osteolytic 

breast cancer BMET progression, independent of tumoral ER signaling, consistent with 

previous similar reports in ER− BMET models[35,36]. Because these experiments provide 

the first evidence, to our knowledge, that bone anabolic effects of E2 promote ER+ BMET 

progression subsequent to tumor cell dissemination to bone (as bone seeding was E2- 
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and age-independent), this finding may have clinical implications when estrogens and/or 

other anabolic agents are used to treat osteoporosis in post-menopausal women[75], an 

age where breast cancer incidence is the highest[76] and silent bone micrometastases may 

already be present prior to a ER+ breast cancer diagnosis[77–80]. However, additional studies 

are required to explore this more specifically for both ER+ and ER− BMET, as, for 

example, studies evaluating anabolic effects of parathyroid hormone (PTH) on ER− BMET 

progression have yielded mixed results to date[28,81,82]. Additionally, it should be noted that 

the absence of an E2 effect on ER+ tumor cell dissemination to bone confirms previous 

reports[20,27] and is consistent with the clinical observation of similar incidences of bone 

micrometastases in clinical series of patients with ER+ or ER− breast cancers[77–80].

Lastly, the study of only a single ER+ breast cancer cell line in these pre-clinical 

experiments is a limitation. However, it should be noted that studies using breast cancer 

cells derived from a single ER− cell line (MDAMB-231), which shares fewer attributes with 

clinical breast tumors than the MCF-7 cells used here[83], account for a large portion of 

pre-clinical breast cancer BMET research, but have still yielded important clinical insights, 

including the now standard therapeutic use of bisphosphonates for BMET[84]. Because 

of the reported low take-rates and rare formation of BMETs by ER+ patient derived 

xenografts (PDX)[85–88], ER+ MCF-7 cells were initially chosen for these studies given 

their well-described ability to form osteolytic BMETs in E2-supplemented mice[20–26]. In 

addition, inoculation of other commonly used ER+ cell lines known to disseminate to 

bone (T47D and ZR-75-1)[18,89] did not result in osteolytic BMET formation, with or 

without E2 supplementation (data not shown). However, this difference in osteolytic BMET 

potential between ER+ tumor cells provides evidence that the pro-osteolytic effects of E2 

signaling in bone-disseminated ER+ breast cancer cells are likely also interdependent on 

other cellular transformations and signaling pathways present in ER+ tumor cells within the 

bone microenvironment - a postulate that awaits further testing.

In conclusion, while the study of ER+ breast cancer BMETs is complicated by the duality 

of ERα signaling effects in bone vs. bone-disseminated ER+ tumor cells, the experiments 

reported here, by taking advantage of differential dose-dependent effects of E2 on bone 

vs. ER+ tumor-associated osteolysis, suggest that ER+ osteolytic BMET progression may 

be specifically promoted by tumoral ERα signaling via the induction of osteolysis. Thus, 

additional bone-specific molecular targets downstream of ERα, in addition to those that 

drive proliferation, may complement existing therapeutics for the treatment of osteolytic 

ER+ BMETs, particularly for HT-resistant metastatic ER+ breast cancer, while potentially 

providing a mechanistic basis for the long-standing clinical observation of the association of 

tumoral ERα expression with breast cancer metastatic risk specific to bone.
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Figure 1. 
Comparison of osteolytic ER+ BMET progression in young vs. skeletally mature mice 

supplemented with 0.72 mg E2. (A) Osteolytic lesion incidence and (B) osteolytic lesion 

area in young (5-week-old) and skeletally mature (16-week-old) mice supplemented with 

0.72 mg E2 and inoculated with ER+ tumor cells (n = 8–13/group). Inset, representative 

immunohistochemical (IHC) images demonstrating cytokeratin+ (left panel; brown), ERα+ 

(right panel; brown) human breast cancer tumors in tibiae. ***P ≤ 0.001, ****P ≤ 0.0001 

young vs. skeletally mature mice, by 2-way ANOVA with Sidak’s post-test. There was 

no significant difference (n.s.) in osteolytic lesion incidence by Log-rank (Mantel-Cox) 

test. (C) Representative hind limb radiographs in young (top) vs. mature (bottom) age­

matched control (left panels), naive E2 (0.72 mg)-supplemented (middle panels), or tumor 

cell-inoculated and E2 (0.72 mg)-supplemented mice (right panels) 6 weeks post-inoculation 

and E2 supplementation. Osteolytic lesions are marked by arrows.
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Figure 2. 
Effects of 0.72 mg E2 on bone mineral density and structure in tumor-naive young vs. 
skeletally mature mice. (A) Tibial areal bone mineral density (BMD) in young (4-week-old) 

vs. skeletally mature (15-week-old) mice supplemented with 0.72 mg E2 (vs. control), as 

measured by DXA (n = 6–8/group). Arrows indicate time of E2 pellet placement. *P ≤ 

0.01, **P ≤ 0.0001 vs. age-matched control, by 2-way ANOVA with Sidak post-test. (B) 

Representative microCT images of tibial cortical (top) and trabecular (bottom) bone of 

young vs. skeletally mature E2 (0.72 mg)-supplemented mice (vs. age-matched controls), 6 

weeks after E2 pellet placement.

Cheng et al. Page 19

J Cancer Metastasis Treat. Author manuscript; available in PMC 2021 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of dose effects of E2 on bone mineral density in tumor-naive vs. osteolytic 

ER+ BMET progression in tumor-inoculated mice. (A) Areal bone mineral density (BMD) 

of tibiae in tumor-naive 4-week-old mice treated with the indicated doses of E2 (vs. age­

matched controls), as measured by DXA (n = 6–8/group). *P ≤ 0.01 0.72 mg E2 vs. control; 

**P ≤ 0.01 for each E2 dose vs. control, with no statistical differences between E2 doses, 

by mixed-effects analysis with Tukey post-test. (B) Osteolytic lesion incidence and (C) 

osteolytic lesion area in age-matched mice inoculated at 5 weeks of age with ER+ tumor 

cells (n = 10–13/group) 3 days post-supplementation with the same E2 doses (vs. no E2 

controls; open circles). P-values for E2 dosing trends were calculated using Kaplan Meier 

analysis with log-rank test for incidence, or 1-way ANOVA of AUC data with post-test for 

linear trend for lesion area. ^P ≤ 0.05 0.72 mg E2 vs. 0.05 mg E2 by log-rank (Mantel-Cox) 

test. *P ≤ 0.05 vs. controls or 0.05 mg E2; **P ≤ 0.05 vs. control, 0.05, 0.10, or 0.72 mg E2; 

***P ≤ 0.05 vs. every dose, by 2-way ANOVA with Holm-Sidak post-test.
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Figure 4. 
E2 effects on histologic tumor burden and tumor cell proliferation in bone. (A) Cytokeratin­

positive breast cancer tumor area in hind limbs, normalized to bone area in mid-sagittal 

sections, 6 weeks post-ER+ tumor cell inoculation of 5- or 16-week old mice. There was no 

linear trend in tumor burden with increasing E2 doses, and no significant differences (n.s.) 

between E2 doses, or between young and mature mice treated with 0.72 mg E2, as tested by 

1-way ANOVA with Sidak post-test (n = 3–9/group). (B) Proliferating, Ki67-positive cells 

in hind limb breast cancer tumors (% of total) 6 weeks post tumor-inoculation. There were 

no significant differences (n.s) in the proportion of Ki67-positive tumor cells between E2 

doses [including the lowest (0.05 mg) and highest (0.72 mg)], or between young (5-week) 

and mature (16-week) mice treated with 0.72 mg E2, as calculated by 1-way ANOVA with 

Sidak post-test (n = 8–18/group).
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Figure 5. 
E2 effects on tumoral osteolysis and secretion of osteolytic PTHrP. (A) Osteoclast number 

at tumor-bone interface (N.Oc/mm) in tibiae from tumor cell-inoculated mice supplemented 

with the lowest (0.05 mg) and highest (0.72 mg) E2 doses (n = 8–11 tibiae/group), with 

representative images of TRAP-positive multinucleated osteoclasts (see arrow for example 

of red-stained multinucleated osteoclast). *P < 0.01 by t-test. (B) Osteolytic PTHrP secretion 

from inoculated tumor cells vs. ER+ tumor cells isolated from BMETs of 2 different mice. 

Cells were treated with 10−7 M E2 or media control for 48 h after 4 days in E2-free 

media (n = 4/group). Cell number, as assessed by MTT assay, was not different between 

cell lines or altered by E2 treatment (data not shown). *P ≤ 0.05, **P ≤ 0.001 E2 vs. 
control; ^P ≤ 0.05, ^^P ≤ 0.0001 inoculated vs. BMET-derived control cells; ***P ≤ 0.001 

inoculated vs. BMET-derived E2-treated cells, by 2-way ANOVA with Tukey post-test. (C) 

E2 dose-dependency of PTHrP secretion in MCF-7 maintained in E2-deplete media for 4 

days prior to treatment with various concentrations of E2 (M), as indicated, for 72 h (n 
= 3–4/group). (D) PTHrP secretion from ER+ BMET-derived cells treated with E2 (10−8 

M), E2 and MPP (10−6 M, ERα antagonist), PPT (10−8 M, ERα agonist), or media control 

for 52 h after 4 days in E2-deplete media (n = 3–4/group). Cell numbers (by MTT assay) 

were not altered by treatments (data not shown). *P ≤ 0.05 vs. control; **P ≤ 0.01 E2 vs. 
MPP + E2; not significant (n.s.) vs. control or as shown, by 1-way ANOVA with Sidak 

post-test. MPP: Methyl-piperidino-pyrazole; PPT: propyl pyrazole triol; PTHrP: parathyroid 

hormone-related protein.
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Table 1.

E2 effects on bone parameters in young and mature tumor-naive mice(mean ± SEM)
a

Young (4-week-old) Mature (15-week-old) Young vs. Mature

Mean (SEM) P-values Mean (SEM) P-values P-values

Control
E2, 
0.05 
mg

E2, 0.72 
mg

Control 
vs. E2 
0.05 mg

Control 
vs. E2 
0.72 mg

E2 
0.05 
mg 
vs. 
0.72 
mg

Control
E2, 
0.72 
mg

Control 
vs. E2 
0.72 mg

Control, 
Young vs. 
Mature

E2 0.72 
mg, 
Young 
vs. 
Mature

Proximal tibiae bone density and volume (6 weeks post-pellet)

aBMD 
(mg/
cm2)

89.3 
(2.2)

151.1 
(2.9)

143.9 
(6.4)

< 0.0001 < 0.0001 n.s. 99.4 (4.8) 134.3 
(4.5)

< 0.0001 n.s. n.s.

BV/TV 
(%)

12.5 
(2.0)

82.7 
(2.7)

91.1 
(2.4)

< 0.0001 < 0.0001 n.s. 10.1 (0.9) 59.5 
(3.4)

< 0.0001 n.s. <0.0001

Bone turnover markers (2 weeks post-pellet; relative to mature control)

P1NP 1.8 (0.2) 2.4 
(0.2)

2.5 (0.3) 0.0401 0.0197 n.s. 1.0 (0.1) 0.8 
(0.1)

n.s. 0.0064 < 0.0001

CTX-1 1.43 
(0.1)

1.9 
(0.1)

1.5 (0.1) 0.0142 n.s. n.s. 1.0 (0.2) 1.5 
(0.2)

0.0066 0.0166 n.s.

Bone cells (2 weeks post-pellet)

N.Ob/B
S (mm)

33.1 
(0.7)

36.1 
(2.1)

39.18 
(4.3)

n.s. n.s. n.s. 27.1 (6.6) 31.4 
(4.2)

n.s. n.s. n.s.

N.Ob/m
m2

393.4 
(63.0)

765.8 
(86.3)

849.2 
(116.1)

0.0051 0.0011 n.s. 240.0 
(70.61)

528.3 
(5.8)

n.s. n.s. 0.0278

N.Oc/B
S (mm)

8.8 (1.1) 9.5 
(0.6)

9.3 (0.4) n.s. n.s. n.s. 7.6 (2.4) 8.3 
(1.5)

n.s. n.s. n.s.

N.Oc/m
m2

112.9 
(22.7)

202.0 
(22.9)

217.4 
(14.6)

0.0237 0.0097 n.s. 64.7 
(22.0)

170.1 
(47.2)

0.0263 n.s. n.s.

a
P-values determined by1-way ANOVA with Fisher’s LSD test. N.Ob/BS (mm): Osteoblast number per bone surface; N.Ob/mm2: number of 

osteoblasts lining trabecular bone per tissue area; N.Oc/BS (mm): osteoclast number per bone surface; N.Oc/mm2: number of osteoclasts lining 
trabecular bone per tissue area; aBMD: areal bone mineral density; BV/TV: bone volume/total volume; n.s.: not significant.
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