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Human walking behaviour adaptation strategies have previously been exam-

ined using split-belt treadmills, which have two parallel independently

controlled belts. In such human split-belt treadmill walking, two types of

adaptations have been identified: early and late. Early-type adaptations

appear as rapid changes in interlimb and intralimb coordination activities

when the belt speeds of the treadmill change between tied (same speed for

both belts) and split-belt (different speeds for each belt) configurations. By

contrast, late-type adaptations occur after the early-type adaptations as a grad-

ual change and only involve interlimb coordination. Furthermore, interlimb

coordination shows after-effects that are related to these adaptations. It has

been suggested that these adaptations are governed primarily by the spinal

cord and cerebellum, but the underlying mechanism remains unclear. Because

various physiological findings suggest that foot contact timing is crucial to

adaptive locomotion, this paper reports on the development of a two-layered

control model for walking composed of spinal and cerebellar models, and on

its use as the focus of our control model. The spinal model generates rhythmic

motor commands using an oscillator network based on a central pattern gen-

erator and modulates the commands formulated in immediate response to

foot contact, while the cerebellar model modifies motor commands through

learning based on error information related to differences between the pre-

dicted and actual foot contact timings of each leg. We investigated adaptive

behaviour and its mechanism by split-belt treadmill walking experiments

using both computer simulations and an experimental bipedal robot. Our

results showed that the robot exhibited rapid changes in interlimb and intra-

limb coordination that were similar to the early-type adaptations observed in

humans. In addition, despite the lack of direct interlimb coordination control,

gradual changes and after-effects in the interlimb coordination appeared in a

manner that was similar to the late-type adaptations and after-effects

observed in humans. The adaptation results of the robot were then evaluated

in comparison with human split-belt treadmill walking, and the adaptation

mechanism was clarified from a dynamic viewpoint.
1. Introduction
Human beings walk adaptively in various environments by generating

appropriate motor commands in their neural systems. However, because the
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Figure 1. (a) Changes in relative phase between legs and (b) duty factor in
human split-belt treadmill walking (adapted from [8]). When belt speed con-
ditions change from tied to split-belt configuration, these values rapidly change
(early adaptation). More specifically, relative phase shifts from anti-phase and
the duty factor of the fast leg decreases as that of the slow leg increases. After
a period of continuous walking in that condition, the relative phase gradually
returns to anti-phase (late adaptation), even though the duty factors remain
steady. When belt speed conditions return to the tied configuration, the relative
phase rapidly shifts from anti-phase in the opposite direction to the early adap-
tation, and the duty factors return to the baseline state (early post-adaptation).
After a period of continuous walking, the relative phase gradually returns to
anti-phase (late post-adaptation).
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walking behaviour of humans also involves coordinating the

movements of numerous joints, motor commands must

create proper movement relationships between legs (inter-

limb coordination) and between the joints of each leg

(intralimb coordination) in order to deal with the various

environmental situations that they face. Since it remains

unclear how humans control such interlimb and intralimb

coordination during walking, the process has attracted the

attention of numerous researchers.

To investigate the underlying mechanism of the interlimb

and intralimb coordination in human and animal locomotion,

split-belt treadmills have often been used [1–11]. Such tread-

mills have two parallel belts, whose speeds are controlled

independently and are thus capable of artificially creating

left–right symmetric and asymmetric environments for

examining walking under tied configuration (both belts at

same speed) and split-belt configuration (belts travel at differ-

ent speed) conditions. Under tied configuration (baseline)

conditions, the left and right legs move in anti-phase and

have similar motions, much as is commonly observed during

over-ground walking. However, soon after changing to the

split-belt configuration, characteristic locomotion parameters,

such as the relative phase between the legs, the duty factor

and the centre of pressure (COP) profile, change rapidly.

This rapid change is called early adaptation. Moreover, as

walking continues using this two-speed belt condition, loco-

motion parameters related to interlimb coordination, such as

the relative phase and COP profile, gradually change and

show a behaviour trend towards that coinciding with the base-

line state, whereas locomotion parameters related to the

intralimb coordination, such as the duty factor, do not show

further adaptation. This gradual change in the interlimb

coordination is called late adaptation. After late adaptation,

the belt speed condition is returned to the tied configuration.

This induces a series of rapid changes in the locomotion

parameters, including after-effects, which is called early post-

adaptation. Then, the varying locomotion parameters related

to interlimb coordination gradually return to the baseline

state. This process is called late post-adaptation.

More specifically, the relative phase rapidly changes from

anti-phase during early adaptation and gradually returns to

anti-phase again during late adaptation (figure 1a) [8].

During early post-adaptation, the relative phase rapidly

shifts in the opposite direction from anti-phase, even when

during the tied configuration, which shows after-effects.

However, it gradually returns to anti-phase during late

post-adaptation. The duty factor of the fast (slow) leg rapidly

decreases (increases) during early adaptation, but does not

show further change during split-belt configuration walking

(figure 1b). During early post-adaptation, it rapidly returns

to match the baseline state and does not show further

change. The COP profile shows a butterfly pattern for one

gait cycle, the wings of which are almost symmetrical

during the first tied configuration (baseline) walking

(figure 2a) [5]. As can be seen in the figure, during early

adaptation, the wing of the fast (slow) side rapidly moves

backward (forward) (figure 2b). By contrast, during late

adaptation, the wings gradually move so that their centre

positions return to their original locations (figure 2c).

During early post-adaptation, the wings rapidly move in

the opposite direction from the early adaptation (figure 2d ),

which shows after-effects, and then gradually return to the

baseline state during late post-adaptation (figure 2e).
Rapid changes in the locomotion parameters have been

observed during split-belt treadmill walking of spinal cats

[3,12], which suggests that the early-type adaptations are

induced by sensorimotor integration in the spinal cord. On

the other hand, since humans with cerebellar damage do

not show late adaptation or after-effects during split-belt

treadmill walking, it appears that the cerebellum contributes

to late-type adaptations and after-effects [6], even though it

remains unclear how information processing in these nervous

systems induces such adaptations.

When used to identify the contributions of neural informa-

tion processing to walking adaptation, analytical approaches

using measured data and human observation face limita-

tions. To overcome these limitations, attention is being paid

to constructive approaches using physical models and

robots. In particular, neuro-mechanical models that integrate

neural control and mechanical body models have been

used to examine physiological hypotheses related to motor

control during walking [13–19]. In our previous work [20],

we developed a simple spinal cord locomotion control

model for use as a walking neural control model based on

the physiological concept of a central pattern generator

(CPG) and sensory reflexes related to foot contact. We also

performed body mechanical model experiments using a

bipedal robot walking on a split-belt treadmill. The results

obtained via the previous model showed that the robot

established stable walking during both the tied and split-belt

configurations without requiring changes of the control

strategy and parameters. Instead, the relative phase bet-

ween the legs shifted from anti-phase, and the duty factors

changed depending on the speed discrepancy between the

belts, which is similar to early adaptation observed in

humans. These adaptive behaviours were not the result of

specifically designed features in our control model, but
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Figure 3. Experimental set-up. (a) Bipedal robot and split-belt treadmill and (b) schematic model.
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occurred because leg motion phases were automatically modu-

lated by immediate responses to the foot contact timing

changes necessitated by the speed discrepancy between the

left and right treadmill belts. However, because the previous

control model did not include a function to regulate motor

commands by the cerebellum, gradual locomotion parameter

changes, such as late adaptation, and after-effects were not

observed, and our model could not fully explain the

adaptations observed in human split-belt treadmill walking.

It has been suggested that the cerebellum predicts the sen-

sory consequences of movement based on the efference copy

and modifies motor commands through learning based on

error information discerned between predicted and actual sen-

sory information [21,22]. In experiments involving encounters

with an unexpected hole while walking on a surface, it was

shown that the absence of a sensory foot contact afferent at

the appropriate time triggers a behaviour-like reflexive reac-

tion [23,24], which suggests that foot contact events are

predicted during walking. Furthermore, during split-belt

treadmill walking experiments, it was shown that left and

right foot contact timings actually change depending on the

speed conditions of the treadmill belts [25]. In this paper, we

incorporate a cerebellar model to our spinal locomotion con-

trol model, which modulates the foot contact timing of each
leg via learning, using only the local sensory foot contact infor-

mation of each leg. We also conducted computer simulations

and experiments involving a bipedal robot walking on a

split-belt treadmill. Our results show that even though there

is no direct control of interlimb coordination, gradual interlimb

coordination changes and after-effects appear that are similar

to the late adaptation and late post-adaptation changes and

after-effects observed in humans. These robot-related adap-

tation results were then evaluated by comparing them to

human split-belt treadmill walking, and the adaptation

mechanism was clarified from a dynamic viewpoint.
2. Material and methods
2.1. Robot experiment mechanical set-up
2.1.1. Biped robot
In this paper, we used a biped robot (figure 3) developed in our pre-

vious work [26]. This robot consists of a trunk composed of two

parts, a pair of arms composed of two links, and a pair of legs com-

posed of five links. Each link is connected to the others through a

rotational joint with a single degree of freedom. The robot’s hip

has pitch and roll joints, the knee has a pitch joint, and each ankle

has pitch and roll joints. An encoder-equipped motor manipulates
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each joint. Four touch sensors are attached to the corners of the sole

of each foot. The left and right legs are denoted as Legs 1 and 2,

respectively. The robot is controlled by an external host computer

(Intel Core i5, real-time embedded Linux Xenomai) with 0.2 ms

intervals and both computercontrol and electric powerare provided

via external cables. During the experiments, the computer control

and electric power cables were kept slack and suspended above

the walking surface in order to avoid influencing the robot’s

locomotor behaviour.

The physical model used in our computer simulations

was based on the configuration and physical parameters of

our robot. To simulate the locomotor behaviour of the robot

model, we derived the equations of motion using Lagrangian

equations, as in [26,27], and performed forward dynamic simu-

lations by solving the equations of motion using a fourth-order

Runge–Kutta method with a step size of 0.1 ms.
2.1.2. Split-belt treadmill for the robot
For the robot experiment, we used the split-belt treadmill

(figure 3) developed in our previous work [20], which is

equipped with two parallel belts, each of which is equipped

with a motor and an encoder to control individual belt speed.

The width of each belt is 15 cm and the distance between their

rotation axes is 64 cm.

To simulate the robot model walking on a split-belt treadmill,

we used two separate floors that move parallel and indepen-

dently. The foot contact was modelled with the floor using

vertical viscoelastic elements and horizontal viscous elements.
2.2. Biologically inspired spinal and cerebellar
locomotion control models

We developed a locomotion control model composed of two

layers (figure 4); a spinal model that produces motor com-

mands to manipulate the robot based on CPG and sensory

reflex, and a cerebellum model that modulates motor commands

through learning.
2.2.1. Spinal central pattern generator model
The spinal CPG model developed in our previous works

[20,26,28,29] is designed to emulate the sensorimotor properties

in the spinal CPG in order to produce adaptive legged robot

locomotion. To show the relationship between our spinal CPG

and cerebellar learning models, we will briefly explain the

spinal CPG model (for details, see [20,26,28,29]).

The spinal CPG model can be visualized as a two-layered

hierarchical network composed of the rhythm generator (RG)

and the pattern formation (PF) networks [30,31]. The RG net-

work first creates the basic rhythm, and then alters it by

producing phase shifts and by performing rhythm resetting in

response to sensory afferents (phase resetting). The PF network

shapes the rhythm into spatio-temporal motor command pat-

terns. Based on this physiological finding, we developed the

spinal CPG model using the following RG and PF models.

For the RG model, we used four simple phase oscillators (Leg 1,

Leg 2, trunk and inter oscillators), whose phases are denoted by f1,

f2, fT and fI. The oscillator phases follow the dynamics

_fi ¼ v� KI sinðfi � fI � ð�1Þip=2Þ

þ ðf̂contact
i � fcontact

i Þdðt� tcontact
i Þ i ¼ 1, 2

_fT ¼ v� KT sinðfT � fIÞ

and _fI ¼ v�
X2

i¼1

KI sinðfI � fi þ ð�1Þip=2Þ,

9>>>>>>>>>=
>>>>>>>>>;

ð2:1Þ

where v is the basic oscillator frequency, dð�Þ is the Dirac delta

function, and KI and KT are gain parameters. The second terms

of the right-hand side of each equation represent the interactions

among oscillators necessary to move the relative phase between

the leg oscillators into anti-phase. Note that we used a small

value for KI so that the relative phase can be shifted from anti-

phase by phase resetting and learning through locomotion

dynamics. The third term of the right-hand side of the equation

for the leg oscillators represents phase resetting. Taking inspi-

ration from spinal cats walking on a treadmill, which show

how foot contact information influences the locomotion phase
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and rhythm generated by the CPG [32], we modulated the oscil-

lator phase so that it responds to touch sensor signals based on

phase resetting. More specifically, when the foot contact of Leg i
(i ¼ 1, 2) occurs at time tcontact

i ðfi ¼ fcontact
i at tcontact

i Þ, the phase

of the Leg i oscillator fi is reset from fcontact
i to f̂ contact

i . This

f̂ contact
i corresponds to the desired (predicted) foot contact

timing, as explained in §2.2.2.

For the PF model, taking inspiration from the physiological

finding that spinocerebellar neurons encode the global infor-

mation of limb kinematics, such as the length and orientation

of the limb axis [33–35], we produced the motor commands

needed to achieve the desired leg kinematics of the robot based

on the oscillator phases obtained from the RG model. We used

simple leg kinematics in reference to the length and orientation

of the limb axis in the pitch plane, which consists of the swing

and stance phases (figure 5). The swing phase is a simple

closed curve of the ankle pitch joint that includes an anterior

extreme position (AEP) and a posterior extreme position (PEP).

It starts from the PEP and continues until the foot makes contact.

The AEP corresponds to the desired position at foot contact. The

stance phase is a straight line from the contact position (CP) to

the PEP. The trajectories for the swing and stance phases are

given as functions of the corresponding oscillator phase, where

fi ¼ 0 at the PEP and fi ¼ f̂contact
i at the AEP (detailed formu-

lation is given in [29]). We denote D as the distance between

the AEP and PEP, and T as the gait cycle (v ¼ 2p/T ). The

desired duty factor b̂ , stride length Ŝ and locomotion speed v̂
are then given by

b̂ ¼ 1� f̂contact
i

2p
, Ŝ ¼ D

b̂
and v̂ ¼ D

b̂T
: ð2:2Þ

To increase the locomotion stability in three-dimensional space,

we also used the hip and ankle roll joints to produce the robot

motion in the frontal plane using simple sinusoidal functions

based on the trunk oscillator. Because this study focused on

the adaptive behaviour of the leg motions on a split-belt tread-

mill walking, we did not use waist and arm movements. To

generate the desired kinematics, each joint is controlled by joint

torque based on PD feedback control.

2.2.2. Cerebellar learning model
The cerebellum, which plays an important role in motor

control, receives efference copies of motor commands and

sensory afferents and then modifies motor commands based

on this information [21,22]. It then predicts the sensory conse-

quences of the movement based on the efference copy and

determines whether the motor commands are appropriate based

on error information differences between the predicted and

actual sensory information. The cerebellum continuously modifies

motor commands through learning in order to reduce errors.
It has been suggested that the cerebellum predicts the timing

of sensory events [36,37] and contributes to achieving tasks

that require accurate temporal control [38–40]. Moreover, it has

been reported that cerebellum damage impairs motor learning

temporal accuracy, although not spatial accuracy [41]. The results

of experiments involving walking on a surface with an unex-

pected hole have shown that the absence of a foot contact

sensory afferent at its appropriate (prediction based) timing

triggers reflexive-like reaction behaviour [23,24], which suggests

that the prediction of foot contact timing is important for

motor learning in walking. Furthermore, during split-belt tread-

mill walking, it was found that foot contact timing actually

changes depending on treadmill speed conditions [25]. This, in

turn, suggests the importance of foot contact timing prediction

and modulation.

In this study, we focus on foot contact timing for the cerebel-

lar learning model. In particular, we modulate desired

(predicted) foot contact timing f̂contact
i via learning based on

the error between the predicted and actual foot contact timings.

To accomplish this, we define an evaluation function Vi,n for the

nth step of Leg i using the error between the desired (predicted)

foot contact phase f̂contact
i,n and actual foot contact phase fcontact

i,n
for the nth step of Leg i, which is given by

Vi,n ¼
1

2
ðf̂contact

i,n � fcontact
i,n Þ2: ð2:3Þ

Based on this evaluation function, we then predict the next

foot contact time. More specifically, from the gradient direction

of the evaluation function, f̂contact
i is modulated by

f̂contact
i,nþ1 ¼ f̂contact

i,n � a
@Vi,n

@f̂contact
i,n

, ð2:4Þ

where a is the learning rate. Because f̂contact
i corresponds to

the desired timing of the corresponding leg to switch from the

swing to the stance phase, this temporal modulation changes

the desired duty factor of the corresponding leg (2). Therefore,

if a foot contact arrives earlier than predicted, the robot

increases the swing leg speed during the next step. In addition,

the CP gravitates to alignment with the AEP (figure 5) through

this learning.
2.3. Robot experiment
For the robot and simulation experiments, we used the following

control parameters: D ¼ 2.5 cm, T ¼ 0.6 s, KI ¼ 1.0, KT ¼ 10 and

a ¼ 0.35. For the initial value of f̂contact
i , we used p, which gives

b̂ ¼ 0:5, Ŝ ¼ 5:0 cm and v̂ ¼ 8:3 cm s21. The same control par-

ameters were used irrespective of the treadmill speed condition.

For the split-belt treadmill, we denote the speed of the left

belt by v1 and that of the right belt by v2. At the beginning, the

robot walked with the treadmill in the tied configuration using

v1 ¼ v2 ¼ 7.9 cm s21 (v̂ was set to be slightly larger than v1 and

v2 so that the robot remained centre of the treadmill, because v̂
is the desired locomotion speed defined by the desired duty

factor and gait cycle in (2.2) and is not necessarily achieved).

After the robot established a steady gait, we suddenly changed

the speed condition from tied to split-belt configuration using

v1 ¼ 9.7 and v2 ¼ 6.1 cm s21. After the robot walked in the

split-belt configuration for a sufficient amount of time, we sud-

denly returned the speed condition to the tied configuration.

We performed this robot trial experiment six times and investi-

gated the robot’s behaviour from the averages of the results

obtained before and after the belt condition changed from the

tied to split-belt configuration and the results before and after

the belt condition changed from the split-belt back to the tied

configuration. This was necessary because different trials have

different numbers of steps for each period.
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2.4. Measurement of human split-belt treadmill
walking

To evaluate the biological relevance of our findings from the

robot and simulation experiments, we measured human walking

behaviour on a split-belt treadmill (ITR3017, Bertec Corporation)

that was equipped with two separate belts and an embedded

force plate underneath each belt. The participants, who were

five healthy men (ages: 22–24, weights: 51–74 kg, and heights:

163–170 cm), were instructed to hold onto the bar installed at

the front of the treadmill and wore a safety harness with cords

that were slack and suspended above the treadmill during

the experiment to ensure that they did not affect the walker’s

locomotor behaviour.

Each trial consists of five sessions based on the previous work

[8] (figure 6) and each participant conducted one trial. In Session 1,

the participants walked with the tied configuration using v1 ¼ v2

¼ 0.5 m s21 for 2 min. In Sessions 2 and 3, they again walked for 2

min with the tied configuration using v1 ¼ v2 ¼ 2.0 m s21 and v1 ¼

v2 ¼ 0.5 m s21, respectively. In Session 4, they walked for 10 min

with the split-belt configuration using v1 ¼ 0.5 and v2 ¼ 2.0 m

s21. In Session 5, they walked for 6 min with the tied configuration,

again using v1 ¼ v2 ¼ 0.5 m s21. The time interval between ses-

sions was, at most, 1 min, which was just long enough to change

the treadmill speed condition.

Kinematics were measured with a motion capture system

(Mac 3D Digital RealTime System, Motion Analysis Corpor-

ation). The motion capture and force plate sampling rates were

set at 500 Hz. Reflective markers were attached to the partici-

pants at the following locations: the head and both hemibodies

of upper limit of the acromion, elbow, wrist, greater trochanter,

lateral condyle of the knee, lateral malleolus, second metatarsal

head, and heel. The measured kinematic and force data were

low-pass filtered at 6 Hz (with a second-order Butterworth

filter). The centre of mass (COM) was computed using the kin-

ematic data, while the COP was calculated using the force and

kinematic data. To see the COP relative to the body, we projected

the COM on the ground and computed COP–COM.

As shown by Mawase et al. [5], the COP profile changes

during human split-belt treadmill walking (figure 2). This

change reflects the stride and step length changes shown by Reis-

man et al. [8], because the stride length is related to the vertical

length of the COP butterfly wing, while the step length is related

to the relative position of both wings. The remarkable point here

is the way in which the centre positions of the butterfly wings

change. More specifically, while the centre positions of both

legs are almost the same during tied configuration (baseline)

walking, soon after the split-belt configuration starts, the wing

on the slow side moves forward, whereas the wing on the fast

side moves backward (early adaptation). This induces differences
between their centre positions. However, after a while, the wings

return to their original positions and their centre positions nearly

coincide again (late adaptation). Furthermore, when the speed

condition is returned to the tied configuration, the wing on

the slow side moves backward, the wing on the fast side

moves forward and their centre positions differ again (early

post-adaptation). However, their moving directions are opposite

to those in the early adaptation, which shows after-effects. After

a while, their centre positions gradually return to the baseline

state and the difference disappears (late post-adaptation). That

is, the relative positions of their centres change depending on

the configuration and stage of the treadmill speed condition.

In this paper, to clearly show this change, we investigated the

left–right difference of the centres of the butterfly wings of the

COP pattern. For statistical analysis, we used averages of the

first five steps in Session 1 for the baseline state, the first and

last five steps in Session 4 for the early and late adaptation

stages, and the first and last five steps in Session 5 for the early

and late post-adaptation stages. In this process, the measured

COP data of each participant were obtained by normalizing

using the mean stride length in the tied configuration. We used

one-way repeated-measures analysis of variance (ANOVA) to

compare the differences between the five testing intervals (base-

line period, early and late stages of adaptation periods, and early

and late stages of post-adaptation periods). When the ANOVA

showed a significant difference, we conducted post hoc analysis

using Tukey’s honestly significant different test.
3. Results
3.1. Relative phase between legs
Figure 7a,b shows the relative phase between the leg oscillators,

which corresponds to the relative phase between the legs,

for the computer simulation and robot experiment using the

average value for one gait cycle by 1=T
Ð

T ðf1 � f2Þdt for

the adaptation and post-adaptation periods, respectively.

For the robot experiment, the data points and error bars are

the means and standard error results of six experiments. As

can be seen in figure 7a, the relative phase shows anti-phase

during the first tied configuration. However, it rapidly shifts

downward from anti-phase soon after the switchover to the

split-belt configuration, and then gradually returns to anti-

phase. As shown in figure 7b, it rapidly shifts upward from

anti-phase soon after the return to the tied configuration, and

then gradually returns to anti-phase.

Figure 8a,b shows the amount of phase resetting

ðf̂contact
i,n � fcontact

i,n Þ at a foot contact whose square value corre-

sponds to the evaluation function Vi,n for learning, and the

desired foot contact phase f̂contact
i,n for the adaptation and

post-adaptation periods, respectively. When the amount of

phase resetting is positive (negative), the foot contact occurs

earlier (later) than the predicted timing. As can be seen in

figure 8a, this amount is almost zero at the first tied configur-

ation, but appears soon after the split-belt configuration

starts, which induces the modulation of the desired foot con-

tact phase of each leg. After a while, the resetting amount

returns to zero and the desired foot contact phases converge,

thus indicating that learning is complete. However, when the

belt condition returns to the tied configuration, the amount of

phase resetting appears again, which changes the desired

foot contact phases, as shown in figure 8b. After a while,

the resetting amount vanishes, the desired foot contact

phases return to the original values, and the learning is

again complete. Although the robot experiments show
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variations for the phase resetting amount, the moving aver-

age (five-period linear weighted moving average (LWMA))

clearly shows these properties.

It can be seen that the results of the robot and simulation

experiments are qualitatively and quantitatively similar.

Moreover, the relative phase has a qualitatively similar

trend to the early and late stages of adaptation and post-

adaptation periods observed during human split-belt

treadmill walking (figure 1a).

3.2. Duty factors
Figure 9a,b shows the adaptation and post-adaptation period

duty factors of the legs for the computer simulation and robot

experiment. As can be seen in figure 9a, during the first tied

configuration, the duty factors are identical between legs.

However, soon after changing to the split-belt configuration,

the duty factor of the fast leg rapidly decreases, while that of

the slow leg increases. These new duty factors remain in place

after the rapid changes, unlike the relative phase between the

legs (figure 7). As shown in figure 9b, duty factors rapidly

return to the baseline state soon after changing back to the

tied configuration, and then stabilize.

Although the robot experiment duty factors were slightly

larger than those for the computer simulation, the results of

the robot and simulation experiments show similar qualitative

and quantitative trends. Furthermore, much like the relative

phase of the legs, the duty factor results have a qualitatively

similar trend to human split-belt treadmill walking (figure 1b).

3.3. Centre of pressure
Figure 10a–e shows the COP profile of one participant

using the first 20 s of data during the tied configuration of
Session 1, the first 20 s of data during the split-belt configur-

ation of Session 4, the last 20 s of data of Session 4, the first

20 s of data during the tied configuration of Session 5 and

the last 20 s of data of Session 5, respectively. The dotted

lines show average centre position of each butterfly wing of

the COP pattern. During the first tied configuration, the but-

terfly wings were almost identical between legs, so their

centre positions coincided (figure 10a). Soon after the start

of the split-belt configuration, the wing of the slow side

moved forward, while the wing of the fast side moved back-

ward, which induced differences between their centre

positions (figure 10b). After a while, they moved so that

their centre positions almost coincided again (figure 10c).

Soon after the return to the tied configuration, the wing of

the slow side moved backward, while the wing of the fast

side moved forward (figure 10d ). The directions were oppo-

site to those in figure 10b and their centre positions differed

again. After a while, their centre positions once again

approached the baseline state (figure 10e). These features

are consistent with the report by Mawase et al. [5] (figure 2).

To clearly show these changes for all participants, we then

investigated the left–right butterfly wing centre differences.

Figure 11 shows the means and the standard error results

of the five participants for the baseline period of the tied con-

figuration, the early and late adaptation periods of the split-

belt configuration, and the early and late post-adaptation

periods of the tied configuration. When this difference is posi-

tive, the slow side is further forward than the fast side. In the

first tied configuration, the difference was almost zero, indi-

cating that the centre positions between the legs nearly

coincided. The positive difference occurred during the early

stage of the split-belt configuration, but declined to nearly

zero again during the late stage of the split-belt configuration.
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During the early stage of post-adaptation, the negative differ-

ence appeared, but almost vanished again during the late

stage of post-adaptation. ANOVA identified a significant

main effect for periods ( p , 0.05), and post hoc testing

revealed significant changes in the butterfly wing centre

differences between the first tied configuration and the

early stage of the split-belt configuration ( p , 0.05), bet-

ween the early and late stages of the split-belt configuration

( p , 0.05), and between the first tied configuration and the

early stage of the post-adaptation ( p , 0.05). However, the

differences between the first tied configuration and the late

stage of the split-belt configuration and between the first
tied configuration and the late stage of the post-adaptation

were negligible and no significant differences could be

found ( p ¼ 0.87 and 0.90).

Figure 12 shows the computer simulation results for the

difference centre of the COP pattern butterfly wings. Note

that due to the lack of a force plate in the split-belt treadmill

that would allow the COP to be calculated for the robot,

there are no data for the robot experiments. However, the

robot experiments are expected to have similar properties for

the COP results recorded in the simulation, as shown in

figures 7–9. As can be seen in the figures, there were no differ-

ences between the legs during the first tied configuration, but

positive differences appeared at the early stage of the split-belt
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configuration that decreased to almost zero by the late stage of

the split-belt configuration. Although the return to the tied

configuration induced a negative difference, it declined to

zero again in the late stage of post-adaptation. These trends

are qualitatively similar to those observed in the human

split-belt treadmill walking experiments (figure 11).
4. Discussion
In this paper, we report on the development of spinal cord

and cerebellum control walking models based on physiologi-

cal findings. For the spinal model, we determined motor

commands using an oscillator network based on the CPG

while incorporating sensory reflexes based on foot contact

information. For the cerebellar model, we modified the

motor commands based on error information differences

between the predicted and actual foot contact timings

obtained through learning. We then performed robot

and simulation experiments involving a bipedal robot walk-

ing on a split-belt treadmill to investigate what forms of

adaptation appear and what mechanisms explain such

adaptations. Our results show that characteristic locomotion

parameters, such as the relative phase between the legs and

their duty factors, exhibit early and late adaptation and

early and late post-adaptation trends that are similar to

those observed in human split-belt treadmill walking.
4.1. Adaptation mechanism from a dynamic viewpoint
As Reisman et al. [8] pointed out, only the locomotion par-

ameters involved in the interlimb pattern change gradually in

the late adaptation and late post-adaptation periods and show

after-effects during human split-belt treadmill walking. Our

adaptation results were induced by sensory reflexes and learning

based solely on local foot contact information for each leg.

Despite our model’s lack of direct interlimb coordination control,

the early- and late-type adaptations and after-effects that were

observed in interlimb coordination showed strong similarities

to those observed in humans. We will discuss this adaptation

mechanism from a dynamic viewpoint below.

As reported by MacLellan et al. [25], foot contact timing of

the slow (fast) leg becomes earlier (later) when the speed con-

dition changes from the tied to the split-belt configuration.

This change is induced by the pitching moment changes of

the body in the sagittal plane that results from the speed dis-

crepancy between the belts. More specifically, during the tied

configuration, the pitching moments between the legs are

identical (figure 13a). However, soon after the split-belt con-

figuration starts, the fast leg pitching moment increases

during the single support phase due to the belt speed

increase, which pulls the fast leg (figure 13b). This, in turn,

induces early foot contact of the contralateral (slow) leg.

A similar mechanism is applied to the other side, resulting

in delayed fast leg foot contact. These foot contact timing

changes could be verified from the amount of phase resetting
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in our model (figure 8) and were found to have induced the

relative phase shifts between the legs from anti-phase in the

early adaptation stage (figure 7).

During late adaptation, the pitching moment difference

between the legs declines due to the gradual modulation of

foot contact timing achieved through learning, which permits

the relative phase to return to anti-phase. This occurs because

the position of the support leg relative to the COM changes to

reduce the difference. More specifically, the position of the

support leg on the fast side moves forward relative to the

COM, which decreases the pitching moment induced by

gravity, while the position of the support leg of the slow

side moves backward, which increases the gravity-induced

pitching moment (figure 13c). In the next paragraph, we

will explain the reason why the positions of the support leg

move relative to the COM due to the modification of the

foot contact timing. Because the vertical lines of the butterfly

wings in the COP profile show the support position of the

legs during the single support phase, these changes in the

support position can be verified from figure 11 for humans

and from figure 12 for our model.
Next, we will explain the reason why the positions of the

support leg move relative to the COM due to the foot contact

timing modification. Figure 14a,b shows the temporal and

spatial relationships, respectively, between the stance phase

and single support phase durations of each leg for each con-

figuration and stage of the speed condition. During the first

tied configuration, the timing and position of the stance

phase centre (white circles) are identical to those of the

single support phase (black circles) in each leg. In the early

stage of the split-belt configuration, the stance and single sup-

port phase centres for both the timing and position become

different due to the changes in the relative phase between

the legs and duty factors. More specifically, in the fast

(slow) leg, the timing of the single support phase centre

comes later (earlier) than that of the stance phase. Similarly,

in the fast (slow) leg, the position of the single support

phase centre moves further backward (forward) than that

of the stance phase. During the late stage of the split-belt con-

figuration, learning modulates the movement in order to

reduce the difference between the predicted and actual foot

contact timings. In the slow leg, because the actual foot
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contact timing was earlier than predicted at the early stage of

the split-belt configuration, the predicted timing becomes ear-

lier through learning, which then increases the swing

movement speed. As a result, actual foot contact timing at

the late stage of the split-belt configuration comes earlier

than that in the early stage, just as is observed in humans

[8,25]. This reduces the timing difference between the

stance phase and single support phase centres in each leg.

This timing modulation shows that, in the fast (slow) leg,

the single support phase position moves forward (backward)

relative to that of the stance phase, and that their centre pos-

itions in each leg once again coincide.

This mechanism is also applied to the post-adaptation

period. Adaptive behaviours and after-effects appear

during this period because the belt speed condition returns

to the tied configuration after learning the foot contact

timing in each leg in order to adapt to the split-belt configur-

ation. However, because the acceleration and deceleration in

the belt speed change are different, the changing trends of

locomotion parameters and learning occur in the opposite

direction to that of the adaptation period, as illustrated in

figures 13d and 14a,b. After a period of continuous walking,

physical conditions return to the baseline state, as illustrated

in figures 13e and 14a,b.

It has been suggested that controlling the COM position

contributes to improving locomotion stability during the late-

type adaptations of human split-belt treadmill walking [4,5,8],

which supports the adaptation mechanism discussed above.

However, note that the early- and late-type adaptation results

of our robot experiments were not characteristics that we

specifically designed into our control model. Instead, they

emerged through the dynamic interactions occurring between

the robot mechanical system, the spinal- and cerebellar-based

locomotion control system, and the environment.

4.2. Contributions of spinal cord and cerebellum to
locomotor adaptation

Adaptation in human split-belt treadmill walking can be

classified using two different timescales. These are early-

and late-type adaptations, and they are primarily produced

by the contributions of different layers in the neural system:

the spinal cord and the cerebellum. The spinal cord produces

motor commands through the RG and PF networks [30,31]

and modulates them immediately in response to sensory

input [42]. In fact, spinal cats walking on a split-belt treadmill

showed rapid adaptive behaviour much like early adapta-

tion [3,12]. Our spinal CPG model [20] (without cerebellar

learning) also showed rapid adaptive behaviour much like

early adaptation. The cerebellum receives efference copy

information from the spinal cord through the ventral spino-

cerebellar tract and sensory information through the dorsal

spinocerebellar tract [43,44]. Purkinje cells produce the

output of the cerebellar cortex in order to modulate motor

commands based on error information between the sensory

information predicted via the efference copy and the actual

sensory information. This modification contributes to late-

type adaptations, as suggested from the fact that humans

with cerebellar damage do not show late adaptation beha-

viours and after-effects [6]. The reflexive response in the

spinal cord and learning modulation in the cerebellum

induce these two different adaptation timescales. The reflex-

ive response in the spinal cord secures the ability to
continue walking against environmental changes, and the

cerebellum modulates the movements under those conditions

to make walking smoother and more energy efficient [45].

Our two-layered model, which consists of the spinal CPG

model (with reflexive modulation of motor commands

based on phase resetting) and the cerebellar model (with gra-

dual modulation of the commands through learning),

produced two such different adaptation timescales.

4.3. Prediction and learning through evaluation in the
cerebellum

In this paper, we modelled a cerebellum function that contrib-

utes to coordinated movements through predictions in order to

investigate late-type adaptations and after-effects in human

split-belt treadmill walking. For example, when moving an

arm while standing, humans modulate their posture before

the arm movement in order to maintain the stability against

the COM perturbation caused by the arm movement itself

[46]. The cerebellum contributes to this anticipatory regulation.

During locomotion, phase modulation responding to the

stimulation of nerves in the legs [47–50] and reflexive reaction

in the absence of foot contact sensory information [23,24]

suggest that sensory information related to foot contact

timing plays an important role in modulating locomotor be-

haviour. This is especially notable in split-belt treadmill

walking, where, soon after the split-belt configuration starts,

the vertical ground reaction forces at the foot contact timing

(early stance phase) increase rapidly, and then gradually

decline [5]. By contrast, no changes are observed during

middle and late stance phases in the split-belt configuration.

It has been reported that ankle stiffness was predictively

modulated at foot contact, which changes the ground reaction

forces [51]. Furthermore, climbing fibre responses of cerebellar

Purkinje cells, which represent error information for motor

control, increased around foot contact [11]. These observations

suggest that the environmental change at the early stage of the

split-belt configuration induced the difference between the

predicted and actual foot contact timings, and thus only

increased the ground reaction forces in the early stance

phase. Modification of the predicted timing performed in

order to adapt to the environmental change was found to

reduce the ground reaction forces. We incorporated a learning

model to regulate foot contact timing based on error infor-

mation between predicted and actual foot contact timings,

which changed characteristic locomotion parameters, such as

the relative phase between the legs, duty factors and COP pat-

terns, much as those observed in human split-belt treadmill

walking. Therefore, our modelling and results are consistent

with observations in humans and clarify the importance of

foot contact timing modification for adaptive locomotion

from a dynamic viewpoint.

Humans predict something through the evaluation of var-

ious parameters and enhance their movements through

learning in motor control. The cerebellum contributes to this

prediction and learning. However, since the underlying mech-

anism remains unclear, modelling studies have been attracting

attention. For example, for human arm movements, learning

models that aim to minimize jerk or torque-change have

been proposed [52,53]. However, for human locomotion, it

remains unclear what parameters are predicted and how to

facilitate the learning. This is partly because locomotion is a

whole-body movement through the limb-movement and
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posture controls and is governed by complicated dynamics

including foot contact and lift off, which change the physical

constraints. During human split-belt treadmill walking, var-

ious parameters, such as the relative phase between legs,

COP patterns, muscle activities and ground reaction forces,

gradually change. These are expected to be attributed to the

prediction and learning processes. However, the prediction

and learning processes of other parameters might also cause

these changes. Our relative phase and COP pattern results,

which are the results of the prediction and learning of foot con-

tact timing of each leg, provide an example of such a case.

Modelling studies are also useful for examining the possibility

of potential parameters through the comparison of the results

obtained from human measured data and the clarification of

dynamical mechanisms.

4.4. Controlling the global pattern through local
information

In this study, sensory reflexes and learning about foot contact

timing for each leg resulted in appropriate modifications to

interlimb coordination. This means that the global walking

pattern (interlimb coordination) was manipulated through

the modification of local information of each leg (foot contact

timing) because the left and right legs are connected through

the trunk, which means that a foot contact timing modifi-

cation of one leg affects, and is affected by, the other leg.

Therefore, even if modifications are performed separately in

each leg, they influence the whole-body movement. In other

words, solving a low-order problem using local information

can produce appropriate whole-body movement without

making it necessary to solve a high-order problem that will

determine the whole-body movement using whole-body

information. This idea is expected to be useful for control

design of legged robots because it will allow adaptive

locomotion using a small number of sensors.

4.5. Modification of spatio-temporal movement
patterns

Humans modulate the spatio-temporal patterns of their

movements in order to adapt to environmental changes.

Walking on a split-belt treadmill is useful for visualizing

the adaptation mechanism in the spatial and temporal pat-

terns. In our model, we focused solely on the temporal

pattern, that is, foot contact timing for the learning model.

We found that the temporal modification induced not only

changes in the locomotion temporal patterns, such as the rela-

tive phase between legs, but also changes in the spatial

pattern, such as the COP pattern. This means that the tem-

poral modification of the robot movement induced the
spatial modification through locomotion dynamics, as

explained in §4.1. However, from the human measurements,

it is difficult to identify which pattern is manipulated and

which induces the modification of the other pattern. Our

modelling approach can be used to demonstrate the human

gait strategy, which is difficult to clarify from measurements.
4.6. Limitations of our approach and future work
In this study, we used a robotic platform to investigate human

bipedal walking. The robot mechanical system is much simpler

than the human musculoskeletal system. In addition, the robot

body is rigid and motors strictly control its joints, whereas

humans are more flexible because muscles manipulate their

joints. Moreover, we used a much simpler locomotion control

model than the human neural locomotion control system.

Even though these differences caused quantitative differences

in locomotion parameters, it is clear that our robot showed

trends in adaptive behaviour that were similar to those of

humans in split-belt treadmill walking, as was confirmed by

the comparisons with humans. This suggests that our simple

robot mechanical and locomotion control systems are capable

of capturing the essential aspects needed to generate the

adaptive locomotor behaviour observed in humans.

While cerebellar damage causes gait ataxia, the cerebel-

lum has numerous other functions related to adaptive

locomotion, in addition to the interlimb and intralimb coordi-

nation observed in split-belt treadmill walking. For example,

the cerebellum plays a crucial role in the dynamic regulation

of balance that is necessary to stabilize walking behaviour

[54]. Additionally, it contributes to motor control of volun-

tary and intentional leg movements, such as stepping over

obstacles [55]. To further clarify the cerebellar underlying

mechanisms in walking, we intend to develop a more soph-

isticated model and a biologically plausible robot for use in

our future studies.
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