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Abstract: Aging is a fundamental biological process accompanied by a general decline in tissue
function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment
or dementia, will become a growing public health issue. Aging is also a great risk factor for many
age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore,
there is a critical need in understanding the underlying cellular and molecular mechanisms regulating
aging that will allow us to modify the aging process for healthy aging and alleviate age-related
disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological
aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and
mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for
aging. We also discussed how these proteins and pathways may potentially interact with each other
to regulate aging. We further described how the knowledge of these pathways may lead to new
interventions for antiaging and against age-related disease.
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1. Introduction

Nowadays, the population and life expectancy of humans are significantly increasing,
due in large part to improvements in nutrients, medicine and environments, etc., which
results in a decrease in mortality from age-related diseases, such as heart disease, cancer
and stroke [1]. The world’s total population was about 6.76 billion in 2008, and the number
increased to 7.59 billion in 2018. Sixteen percent will be over the age of 65 by 2050, up
from 9% in 2019 in the world, suggesting that the age group of 65 and over is growing the
fastest. Aging is a fundamental biological process accompanied by a general decline in
tissue function and increased risk for many age-related diseases. According to the National
Council on Aging, about 92 percent of the elderly have at least one age-related disease
and 77% have at least two. Heart disease, ischemic stroke, cancer and diabetes are among
the most common disorders. For example, as the lifespan increases, cognitive impairment
or dementia will become a growing public health issue. According to current estimates,
almost 36 million people have dementia worldwide, and this number is expected to reach
66 million by 2030 and 115 million by 2050 [2]. The population with dementia is expected
to increase to a total of over 13 million in the United States alone. The most well-known
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form of dementia is Alzheimer’s disease (AD), but a large percentage of aged cognitively
impaired persons are not due to AD but, rather, the normal aging process. The vast
majority of older adults suffer declines in cognitive functions, interfering with their ability
to participate and engage in meaningful activities [3]. In addition to AD, deterioration
in fine motor control, gait and balance are among the most important health problems in
the elderly. Now, falls are the leading cause of injury-related death and the third-leading
cause of poor health among persons aged 65 years and older [4]. In 2013, the cost of these
injuries caused by falls was US $34 billion. Thus, there is a critical need in understanding
underlying cellular and molecular mechanisms regulating aging, which will allow us to
modify the aging process for healthy aging and alleviate age-related disease.

This review focused on the molecular mechanisms involved in biological aging—
specifically, the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and
mammalian target of rapamycin (mTOR) pathways; these are currently considered the
critical signaling pathways for the aging process. We also discussed how the knowledge of
these pathways may lead to new interventions for antiaging and against age-related disease.

2. AMPK Signaling

AMPK (a serine/threonine protein kinase) is an essential energy sensor engaged in
modulating our whole-body level of metabolic energy balance [5,6]. In mammals, AMPK
comprises of two isoforms of the α and β subunits each and three isoforms of the γ subunits
to form a combination of 12 different αβγ isoforms. The α subunit encodes an N-terminal
protein kinase domain, which interacts with a C-terminal regulatory domain via its well-
known activation segment threonine 172 (T172) to mediate AMPK’s catalytic activity. The
β subunit has a carbohydrate-binding module (CBM), and its C-terminal domain connects
the γ subunit and the C-terminal domain of the α subunit. The γ subunit holds four
cystathionine-β-synthase (CBS) regions referring to adenine nucleotide binding, which
ensures the monitoring and regulation for AMP/ATP ratio [7–9]. Both the β (β1 and β2)
and γ (γ1, γ2 and γ3) subunits regulate AMPK’s phosphorylation and activity. Traditionally,
AMPK signaling is one of the central regulators of cellular and organismal metabolism in
eukaryotes, playing important roles in regulating growth and reprogramming metabolism.
Recently, AMPK signaling has been connected to aging and the lifespan, as AMPK can
control the regulation of cellular homeostasis, resistance to stress, cell survival and growth,
cell death and autophagy. Supportively, specific AMPK activation protects against aging
and extends the lifespan in Caenorhabditis elegans (C. elegans) and rodents.

2.1. AMPK Signaling and Aging

AMPK signaling is predominantly activated by three main upstream kinases, includ-
ing liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), Ca2+/calmod
ulin-dependent protein kinase kinase β (CaMKKβ) and transforming growth factor β-
activated kinase 1 (TAK1). Other upstream molecules such as protein phosphatase 2Cα

(PP2Cα) have relatively weaker function on activating AMPK [8,9]. Both LKB1 and
CaMKKβ can activate AMPK by phosphorylating T172. LKB1’s expression increases in
tandem with an increase in the AMP/ATP ratio, while CaMKKβ’s activity increases via the
production of reactive oxygen species (ROS) and increased intracellular Ca2+ level induced
by inflammatory stimuli [7–9]. Downstream mediators of AMPK signaling include mTOR,
aminocyclopropane-1-carboxylic acid (ACC1), glucose transporter 1 (GLUT1)/GLUT4, p53,
autophagy activating kinase 1/2 (ULK1/2), peroxisome proliferator-activated receptor
gamma coactivator-1α (PGC1-α) and forkhead box transcription factors (FOXOs), which
are components of the central metabolic activities in the aging process [8] (Figure 1). On the
cellular level, the LKB1/AMPK signaling pathway plays a critical role in cell proliferation,
migration and apoptosis by inhibiting myosin light chain kinase (MLCK) and the phospho-
rylated myosin light chain (p-MLC) induced by quercetin, a common flavonoid in many
fruits and red wine [10]. In 3T3-L1 adipocytes, testosterone (100 mM) increased GLUT4-
dependent glucose uptake through the LKB1/AMPK signaling pathway [11]. Estradiol (E2)
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is an important sex hormone protecting females from aging, especially in cardiovascular
diseases. In C2C12 myotubes, E2 can activate AMPK by interacting with estrogen receptors
(ERs) through its metabolite 2-hydroxyestradiol (2-HE2) [12]. Another study found that E2
and its mimetic nordihydroguaiaretic (NDGA) inhibited angiotensin II-induced vascular
smooth muscle cell (VSMC) proliferation by increasing the expression of ERα, AMPK and
LKB1 [13]. On the organismal level, the double-knockdown of protein kinase B 2 (Akt2)
and AMPK contributed to heart aging without influencing the lifespan, suggesting that
AMPK may protect against impaired autophagy and mitophagy in aging [14]. Strawberries
significantly improved the antioxidant activity and mitochondrial biomass and function in
aged rats through the AMPK pathway [15]. In mice lacking the growth hormone recep-
tor gene, males had higher expression levels of AMPK, PGC1-α and SIRT1 than females
in the brain and kidneys, indicating their key roles in mitochondrial biogenesis [16]. A
methionine-restricted diet could restore young metabolic phenotype in adult mice by
improving serum fibroblast growth factor 21 (FGF-21) levels to increase the expression
of mitochondrial enzymes and further increase AMP/ATP level, which, in turn, activate
AMPK [17]. β-adrenergics could accelerate myocardial fibrosis by downregulating AMPK
activity and upregulating β-arrestin 1 in aged mice [18]. AMPK signaling also participates
in the age-related decline of hippocampal neurogenesis [6], which has been shown to
contribute to cognitive impairment. Taken together, these findings suggest that age-related
alterations are associated with the AMPK pathway. However, whether AMPK activity is
altered with age remains a hot topic of debate. Several studies suggest that AMPK activity
is increased, whereas other data suggest that it is decreased with aging [6,19,20].

Figure 1. AMPK signaling in the cell. AMPK is composed of three subunits: the catalytic α subunit and regulatory β

and γ subunits. The upstream of AMPK includes LKB1, CaMKKβ, TAK1 and PP2Cα, while the downstream pathways
controlled by AMPK include ULK1/2, SIRT1, TSC1/2, SREBP1c, ACC1, HuR, p53 and GLUT1/GLUT4. Abbreviations:
AMPK: adenosine onophosphate-activated kinase; LKB1: liver kinase B1; CaMKKβ: Ca2+/calmodulin-dependent protein
kinase kinase β; TAK1: transforming growth factor β-activated kinase 1; PP2Cα: protein phosphatase 2Cα; ACC1:
aminocyclopropane-1-carboxylic acid; GLUT1: glucose transporter 1; GLUT4: glucose transporter 4; ULK1/2: autophagy
activating kinase 1/2; PGC1-α: peroxisome proliferator-activated receptor gamma coactivator-1α; ROS: reactive oxygen
species; SIRT1: Sirtuin 1; AMP: adenosine monophosphate; ATP: adenosine triphosphate; TSC1/2: tuberous sclerosis
complex 1/2 protein; mTOR: the mammalian target of rapamycin; SREBP1c: sterol regulatory element binding protein 1c;
HuR: human antigen R.
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2.2. Metformin and AMPK Signaling

Metformin, a known AMPK activator, is a United States Food and Drug Adminis-
tration (FDA)-approved first-line oral blood glucose-lowering prescribed drug for the
treatment of type 2 diabetes, which was first isolated from the French lilac, an ancient
herbal remedy in the 17th century [21,22]. In the early 2000s, reports from the National
Institutes of Health (NIH) found that metformin could extend the lifespan and health
span in mice and decrease the risk of cancer and other age-related diseases. Consistently,
metformin also extended the health span and median lifespan, as well as improved the
youthful mobility in C. elegans, which was first reported in 2010 [23,24]. In humans, the first
randomized controlled clinical study named the Targeting Aging with Metformin (TAME)
evaluated metformin’s antiaging capacity, such as delaying the occurrence and progression
of age-related diseases [25,26]. Currently, there are 16 clinical trials focused on metformin
and aging and longevity (http://clinicaltrials.gov/ct2/home). To date, metformin is re-
garded as a caloric restriction mimetic (CRM), which is defined as a series of nontoxic
compounds that can reduce the level of protein acetylation and induce autophagy [27].
Metformin can directly or indirectly activate AMPK by decreasing the ADP/ATP and
AMP/ATP levels through the partial inhibition of Complex I of the mitochondrial election
transport chain (ETC) [28,29]. In Hutchinson-Gilford progeria syndrome (HGPS), met-
formin can ameliorate accelerated aging defects through cellular stress-induced AMPK
activation [30]. In aged skin, the local application of metformin promoted wound healing
and cutaneous integrity by improving vascularization through the AMPK pathway [31].
Metformin also activates AMPK signaling to reduce age-related hepatic lipid accumulation,
remodel extracellular matrix in adipose tissue and decrease insulin resistance in obesity by
inhibiting the downstream transforming growth factor-β1 (TGFβ1)/Smad3 signaling and
the upstream Rho-kinase 1 (ROCK1), which has been shown to accelerate obesity-induced
steatosis in mice [32,33]. Further, metformin improves the age-related changes in liver
sinusoidal endothelial cells via the AMPK and endothelial nitric oxide (NO) pathways to
increase ATP, cyclic guanosine monophosphate (cGMP) and mitochondrial activity [34].
Metformin also attenuates age-related hearing loss, cell apoptosis and neurodegeneration
in D-galactose-induced aging rats through the unfolded protein response (UPR) via the
AMPK/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways [35]. No-
tably, clinically relevant concentrations of metformin were able to protect PC12 cells and
hippocampal neurons from oxidative injury via the activation of AMPK [36]. In Parkinson’s
disease (PD) and normal aging, metformin controlled the astrocyte activity by inducing
the activation of AMPK and brain-derived neurotrophic factor (BDNF) signaling [37]. Met-
formin also inhibits the phosphorylation and accumulation of α-synuclein, to protect from
mitochondrial dysfunction and oxidative stress, regulate autophagy and attenuate neu-
rodegeneration and neuroinflammation via the activation of AMPK signaling [38] (Table 1).
Although metformin has many benefits on aging via AMPK signaling, its application for
antiaging remains restricted. For instance, there are no evidence supporting these effects
on normal animals and humans up until now, and its lactic acidosis side effect is worth
paying attention to.

http://clinicaltrials.gov/ct2/home
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Table 1. Age-related diseases and their currently identified signaling pathways.

Disease Signaling Pathways Cell Type/Model Reference

Hutchinson-Gilford progeria
syndrome (HGPS) AMPK HGPS cells [30]

Muscle atrophy protein kinase A
(PKA)/LKB1/AMPK

High-fat diet-induced muscle atrophy
in aged animal model [39]

Parkinson’s disease (PD) AMPK, brain-derived
neurotrophic factor (BDNF)

6-OHDA-induced PD animal model;
MPTP-treated and haloperidol-induced

catalepsy animal models
[37,38]

Alzheimer’s disease (AD) SIRT1, mTOR

5xFAD-ApoE4 (E4FAD) AD mouse
model; Htau mice; adeno-associated
viral vector-based mouse model of

early-stage AD-type tauopathy;
APP/PS1 mice

[40–43]

Diabetic encephalopathy (DE)
phosphoinositide 3-kinase

(PI3K)/protein kinase B
(Akt)/mTOR

Streptozotocin (STZ)-induced rat model [44]

Osteoarthritis (OA) PI3K/Akt/mTOR Human OA chondrocytes [45]
Machado-Joseph disease (MJD) SIRT1 Machado-Joseph disease mouse model [46]

Diabetes SIRT1/LKB1/AMPK Type-2 diabetic KKA mice [47]
Sarcopenia SIRT1/PGC1-α Aged rats [48]

Chronic obstructive pulmonary
disease (COPD) mTOR Lung tissue and derived cultured cells

from patients with COPD [49]

Ovarian cancer Akt/mTOR Human ovarian cancer cells [50]
Breast cancer mTOR Xenograft mouse model [51]

2.3. Resveratrol and AMPK Signaling

Resveratrol (also named as 3, 5, 4′-trihydroxy-transstilbene) is a polyphenol found
in some plants like berries, nuts and grapes [52]. It was first reported to increase the
yeast lifespan in 2003 [53]. Resveratrol can activate AMPK when the intracellular calcium
level increases [54]. AMPK activation can prevent the production of endogenous ROS to
improve osteogenic differentiation in aged bone mesenchymal stem cells [39,55]. Huang
et al. reported that resveratrol can reverse mitochondrial dysfunction and oxidative stress
through the protein kinase A (PKA)/LKB1/AMPK pathway in high-fat diet-induced
muscle atrophy in aged rats [39]. Moreover, resveratrol was reported to decrease the
expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte adhesiveness to
tumor necrosis factor α (TNFα)-treated endothelial cells through an anti-inflammatory
cascade triggered by miR-221/222/AMPK/p38/NF-kappa B (NF-κB) pathway [56]. In
cultured primary human keratinocytes, resveratrol activated AMPK/FOXO3 signaling to
guard against oxidative stress-induced senescence and proliferative impairment [57]. In
addition, resveratrol could activate AMPK via LKB1 to stimulate mitochondrial biogenesis
in neurons, resulting in neuroprotective effects and the inhibition of protein synthesis and
genetic transcription by inactivating Akt and, thus, prevent cardiac hypertrophy [58,59].
However, the antiaging mechanisms of resveratrol are not only mediated by AMPK but
also SIRT1 and mTOR, which will be discussed later.

2.4. Physical Exercise, a Link between AMPK Signaling and Aging

For many years, it has been well-known that regular physical exercise can attenuate
the major hallmarks of aging and promote health span by slowing down age-related
degenerative processes [60–62]. Indeed, as we age, the loss of muscle mass and the risks
of heart disease and dementia increases, and immune function becomes increasingly
impaired [63]. For example, human aging is associated with skeletal muscle atrophy and
functional impairment (sarcopenia), which can be partially reversed following six months of
resistance exercise training [64]. Interestingly, a recent study showed that consistent aerobic
exercise may not only slow down the effects of aging but results in rejuvenation; aged mice
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with voluntary exercise improved muscle stem cell function, which is inefficient in aged
organisms and accelerated muscles tissue repair [65]. Although the precise mechanism
remains largely unexplored, AMPK signaling plays an important role in exercise-mediated
reversal aging effects.

Liu et al. reported that regular aerobic physical activity induced autophagy in the
hippocampus of middle-aged rats by regulating calmodulin-dependent protein kinase
(CAMK)/AMP/AMPK/Beclin 1 pathways [66]. Following a ten-week regular moderate
intensity aerobic exercise, the AMPK activation was increased in parallel with the decreased
age-related autophagy and cell apoptosis [67]. Long-term high-intensity interval training
(HIIT), on the other hand, upregulates adiponectin/AMPK signaling to improve autophagy,
oxidative stress, mitochondrial function and apoptosis in the skeletal muscles of aged fe-
male rats [68]. Yoon et al. found that AMPK activation induced by exercise protected
the skeletal muscle from senescence including muscle size, mass and strength [69]. In
D-galactose-induced aged rats, exercise coupled with a spermidine supplement mitigated
skeletal muscle atrophy by enhancing autophagy and reducing apoptosis through the
AMPK/FOXO3 pathway [70]. Dehydroepiandrosterone (DHEA) would increase with
caloric restriction or exercise and can further increase the activities of AMPK, PGC1-α
and GLUT4 [71]. In a clinical study involving ten young volunteers, AMPK activation in-
duced by cycling endurance exercise increased telomeric repeat-containing RNA (TERRA),
suggesting that exercise might counteract the decline of telomere integrity resulting in
antiaging [72].

2.5. Autophagy and AMPK Signaling in Aging

Autophagy plays a critical role in the resistance of senescence by removing metabolic
products as well as injured cells or organelles [73]. AMPK protects cells from oxidative
stress-induced senescence by restoring the autophagic flux and NAD+ level in aged cells
through the NAD+ synthetic rescue method [74]. The AMPK signaling activation ame-
liorated autophagy and the level of coactivator-associated arginine methyltransferase 1
(CARM1), which involves several cellular processes, including autophagy in the aging
heart [75]. Metformin can stimulate autophagy via activating AMPK signaling to pro-
tect human retinal pigment epithelial cells from hydrogen peroxide induced-oxidative
stress [76]. In a D-galactose-induced renal aging model, hyperoxide attenuated a renal
injury by augmenting autophagy through AMPK/ULK1 signaling [77,78]. Oxidative
stress-induced senescence could result in the abnormal aging of skin cells, and caffeine
protected against ultraviolet irradiation-induced senescence in mouse skin tissues by acti-
vating autophagy, which accelerated the elimination of ROS through the adenosine A2a
receptor (A2AR)/SIRT3/AMPK pathways [79]. Kim et al. reported that poria cocus wolf
extract activated autophagy, regulated lipid metabolism and inhibited endoplasmic retic-
ulum (ER) stress by AMPK activation and thereby prevented liver hepatic steatosis [80].
Natural triterpene saponins complex aescin increased the intracellular ROS levels and
activated the ataxia–telangiectasia-mutated kinase (ATM)/AMPK/ULK1 pathway to reg-
ulate autophagy [81]. A creatine analog, β-guanidinopropionic acid (β-GPA), prolonged
the lifespan of Drosophila melanogaster by increasing autophagy via the elevation of
AMPK activation levels [82]. AMPK/p27 signaling balanced the autophagy and apoptosis,
the two main components of programmed cell death, by inhibiting the decline of aged
skeletal muscle stem cell function [83,84]. The NF-E2-related factor 2 (NRF2) transcription
factor, one of the central regulators of oxidative stress and electrophilic stress responses,
suppressed autophagy by reducing the expression of AMPK during chronic oxidative
stress [85]. In all, these data demonstrate the effects of AMPK signaling on autophagy in
antiaging.

3. Sirtuin Signaling

Sirtuin (SIRT) was first discovered in the 1970s in nature and is an essential factor in
delaying cellular senescence and extending organismal lifespan [86]. SIRT1 is the most
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well-studied among the seven SIRT isoforms in humans [87]. SIRT1 is an NAD+-dependent
deacetylase and, thus, can deacetylate tumor suppressor p53 protein [88,89], the DNA
repair factor Ku70 [90], NF-κB [91], the signal transducer and activator of transcription
3 (STAT3) [92] and the FOXO family of forkhead transcription factors (Figure 2). The
roles of Sirtuin on the suppression of cellular senescence is primarily mediated through
delaying age-related telomere attrition, sustaining genome integrity and promoting DNA
damage repair. SIRT1 can improve the ability to induce cell cycle arrest and oxidative stress
resistance and inhibits cell death [93] and apoptotic pathways [94]. It has been verified that
Ku70 blocks the death of stress-induced apoptotic cells by sequestering the proapoptotic
factor Bax away from the mitochondria. NF-κB is involved in upregulating gene products
controlling cell survival. SIRT1 participates in many age-related processes and disorders,
such as neurodegenerative diseases and cardiovascular diseases, etc. [95].

Figure 2. SIRT1 signaling in the cell. SIRT1 is a well-known NAD+-dependent deacetylase that impacts several molecules
to promote health. Abbreviations: STAT3: signal transducer and activator of transcription 3; NF-κB: NF-kappa B; Bax:
bcl-2-associated X protein; FOXOs: forkhead box transcription factors; PPARγ: peroxisome proliferator-activated receptors;
NAD+: oxidized nicotine adenine dinucleotide; NADH: reduced nicotine adenine dinucleotide.

3.1. SIRT1 Signaling and Aging

Sirtuins are reported to exert a prolongevity effect of budding yeast S. cerevisiae,
nematode C. elegans, fruit flies D. melanogaster and mice when the expression levels of
Sirtuin, especially SIRT2 and SIRT6, are increased [96–99]. Similarly, brain-specific Sirt1-
overexpressing (BRASTO) transgenic mice increased their median lifespan by 16% in
females and 9% in males [100]. Sirtuin extends the organismal lifespan through the regula-
tion of diverse cellular processes. SIRT1 activation can increase the sensitivity of insulin and
reduce insulin resistance [87]. SIRT1 activators like resveratrol, SRT1720 and MHY2233 can
improve insulin resistance and have beneficial effects on diabetes- or obesity-induced fatty
liver [101]. Alkylresorcinols, a member belonging to the family of phenolic lipids, activated
SIRT1-dependent deacetylation to reduce acetylated histone in human monocyte cells and
prolong the lifespan of D. melanogaster [102]. Ursolic acid can directly stimulate SIRT1 by
binding to the outer surface of SIRT1, further changing its structure from the inactive form
to its active form, be it in silico, in vitro or in vivo, and plays a significant role in the aging
process [103]. Dehydroabietic acid, a natural diterpene resin acid of confers, can directly
activate SIRT1 to prevent lipofuscin accumulation and collagen secretion in humans and
extend the lifespan in C. elegans, as reported by Kim et al. [104]. Pyridoxamine, an advanced
glycation end product (AGE) inhibitor, could inhibit the accumulation of AGE and upregu-
late the expression of SIRT1 and ERα, as well as decrease the level of TGFβ in mesangial
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cells of 19-month-old ovariectomized female mice [105]. A03, an ApoE4-targeted SIRT1
enhancer, can elevate the expression level of SIRT1 in the hippocampus in 5xFAD-ApoE4
(E4FAD) AD mice to improve cognitive function [40]. 17β-estradiol activated ERα/SIRT1 to
reduce oxidative stress, neuroinflammation and neuronal apoptosis in D-galactose-induced
male mice and increased the SIRT1 level by enhancing the degradation of PPARγ via E3
ubiquitin ligase NEDD4-1 to delay cellular aging [106,107]. Although SIRT1 has many
beneficial effects on aging and widely exists in our body, their mechanisms underlying
antiaging remain unclear.

3.2. NAD+ and SIRT1 Signaling

Nicotinamide adenine dinucleotide (NAD+) was first discovered by Harden and
Young in 1906 as a “cozymase” factor in fermentation, which could improve the rate of fer-
mentation in yeast extracts [108]. Studies have demonstrated that high NAD+ levels could
improve mitochondrial function, modulate DNA repair, reduce metabolic stress symptoms
and improve other biological processes [109,110]. In 2012, Canto et al. first showed that
nicotinamide riboside (NR), a NAD+ precursor, supplementation in mammalian cells and
mice tissues increased the NAD+ level and activated SIRT1 and SIRT3 and eventually
improved the oxidative metabolism and protected from high-fat diet-induced metabolic
abnormalities [111]. In addition, NR could prevent and reverse nonalcoholic fatty liver
disease (NAFLD) by inducing a SIRT1- and SIRT3-dependent mitochondrial unfolded
protein response [112]. The NAD+ precursor nicotinamide mononucleotide (NMN) can
suppress acute renal injury in a SIRT1-dependent manner and inhibit heart failure and
DNA damage induced by radiation [108,113,114]. NMN also improved NO-mediated
endothelium-dependent dilation (EDD) and reduced arterial oxidative stress by stimulat-
ing SIRT1 in the arteries [115]. Similarly, NMN can promote osteogenesis and decrease
adipogenesis in aged mice and keep the telomere length from shortening to protect against
telomere-dependent disorders via SIRT1 activation [116–118]. A transcriptome analysis
suggested that NMN administration can reverse most of SIRT1-regulated genes expression
induced by aging, e.g., through the increase in NAD+ levels to enhance the expression level
of SIRT1 in the neurovascular unit by rejuvenating the mitochondria [119]. Mendelsohn
et al. found that NMN or NR supplementation increased the lifespan in aged mice via the
NAD+/poly-ADP-ribose polymerase 1 (PARP1)/SIRT1 axis [120]. Moreover, α7 nicotinic
acetylcholine receptor can stimulate the NAD+/SIRT1 pathway to improve angiotensin II-
induced senescence in VSMCs [121]. Certainly, SIRT1 can extend the lifespan by increasing
the level of nicotinamide phosphoribosyl transferase (NAMPT), which is a critical enzyme
needed for the production of NAD+ [122]. As we age, the levels of NAD+ will dramatically
reduce, leading to the loss of Sirtuin and PARP activities. Although the mechanisms are
unclear, it is not far-fetched to hypothesize that the synthesis of NAD+ does decline with
age. However, a very recent study suggests that there is an increased degradation of NAD+
with age [123]. CD38 is known as a membrane-bound NADase that hydrolyzes NAD+ to
nicotinamide and (cyclic-)ADP-ribose, and mice lacking CD38 or treated with the CD38
inhibitor experience an increase in the level of NAD+ [124]. Interestingly, the CD38 protein
level increases in multiple tissues during aging, with a corresponding increase in CD38
enzymatic activity and declining NAD+ levels [123]. Importantly, CD38 not only degrades
NAD+ but, also, NMN. In consideration of the origin of NAD+, the favored approach
in humans is to supplement with NAD+ precursors to increase NAD+ and, thus, fight
aging. These findings suggest that the efficacy of NAD+ precursors may be enhanced by
co-supplementations with CD38 inhibitors such as thiazoloquin(az)olinones [125,126].

3.3. Resveratrol and SIRT1 Signaling

Early studies documented that resveratrol can extend the lifespan of budding yeast [53]
and the honey bee [127]. However, further studies have shown that rats or mice treated
with red wine or equivalent pharmacological doses of resveratrol do not extend the lifes-
pan but do display an improvement of aging phenotypes [128,129]. Therefore, there is a
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hypothesis that resveratrol affects lifespan through SIRT signaling, as resveratrol is the first
and representative Sirtuin activator [87], which depends on the dietary nutrient compo-
sition [130]. For instance, resveratrol activates SIRT1 to adjust the deacetylation status of
core autophagy protein ATG9A so that the death of hair cells is reduced and age-related
hearing loss is delayed [131]. The long-term treatment of resveratrol improves the exercise
ability and voluntary motor behavior and reduces the negative changes in insulin and
apoptotic signaling through the SIRT1/FOXO1 pathway in senescence-accelerated mouse
prone 8 (SAMP8) mice [132]. Furthermore, resveratrol can influence bone homeostasis
through SIRT1/eNOS/bone morphogenic protein 2 (BMP2) signaling [133]. The long-term
supplementation of resveratrol can also delay senescence by the regulating senescence-
associated secretory phenotype (SASP) through the SIRT1/nuclear-factor kappa B (NF-κB)
signaling pathway [134]. Increased SIRT1 mRNA expression and decreased NF-κB ex-
pression were also found to modulate the aging-related status, inflammation, oxidative
stress and apoptosis in the pancreas of old SAMP8 mice [135]. The short-term injection
of resveratrol attenuated the oocyte degeneration in middle-aged mice by significantly
ameliorating oxidative stress through the increased expression of SIRT1 to reduce ROS
and promote mitochondrial function [136]. Ham et al. found that resveratrol reduced
ROS generation in the nematode via the SIRT1/FOXO3a axis [137]. By enhancing SIRT1
level and antioxidant production, resveratrol protected myoblasts from high ROS-induced
apoptosis [41]. By stimulating the Akt/eNOS/NO and SIRT1/ER pathways, resveratrol
was protected from diabetes-caused vascular disorders in C57BL/6 male mice fed with
a 17-week high-fat diet [138]. In Machado-Joseph disease (MJD), a neurodegenerative
disease with an abnormal expansion of the CAG triplet in the ATXN3 gene, resveratrol
elevated the SIRT1 expression to improve motor deficits [46]. Resveratrol also improved
learning and spatial memory in Htau mice (a model of AD) by activating SIRT1, leading to
increase tau exon 10 inclusion and further expressing 4R-tau [41]. Enhancing p-CREB and
SIRT1 protein by resveratrol markedly increased the number of newly generated cells in
the hippocampus in aged rats [139]. Resveratrol-loaded nano-emulsion can also protect
aged rats with abdominal surgery from cognitive dysfunction by SIRT1 signaling [140].

3.4. Exercise and SIRT1 Signaling

Exercise has positive impacts on the heart, bone, muscle and other systems; therefore,
exercise is always recommended by both the government and society when considering
a healthy lifestyle. In aged rats, sedentariness led to a lower SIRT1 level, while tread-
mill running significantly increased it [141]. The direct effect of exercise might be on the
muscles—not only the skeletal muscles but, also, the myocardium. Treadmill running for
eight weeks could enhance SIRT1/PGC-1α mRNA expression to improve sarcopenia in
aged rats [48]. In addition, exercise also has a role in anti-inflammation. For example, swim-
ming decreased age-related brain apoptosis and inflammatory signaling pathways and
increased survival pathway IGF1/PI3K/Akt in the hippocampus [142]. Physical activity
augmented SIRT1 pathways to attenuate inflammation in the hearts of D-galactose-induced
aged rats by decreasing the FOXO3a level and had benefits on the cell cycle in the heart
by decreasing cyclin D and increasing GADD45a mRNA expression in aged rats [143–145].
Exercise could also modulate autophagy and lysosome activity. Lysosome function in the
brain of wheel running mice were stimulated through AMPK/SIRT1/TFEB by injecting
a SIRT1 inhibitor EX527 [146]. Long-term exercise could improve the cardiomyocyte of
aged rats histologically and upregulate energy balance-associated proteins such as SIRT1,
PGC-1α and AMPK [145]. Furthermore, interval running training has been reported to be
a better choice, as it can alleviate age-associated skeletal muscle wasting and bone loss in
ovariectomized rats by upregulating the SIRT1 and SIRT6 expression levels to modulate
BMPs-induced osteogenesis and osteogenic differentiation [147].
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3.5. Caloric Restriction and SIRT1 Signaling

Caloric restriction (CR) means a long-term reduction of total caloric intake, usually
60–90% of a normal balanced diet, without being malnourished. CR has positive effects on
the body, such as a lower metabolic rate, anti-inflammation and neurovascular protection.
Therefore, CR has become one of the recommendations against aging and age-related
diseases. Currently, many caloric restriction mimetics (CRMs) have been discovered or
invented, including metformin and resveratrol [148,149]. Cohen et al. reported that CR
increased the expression of SIRT1, which inhibited stress-induced apoptotic cell death and,
thus, improved mammalian cell survival [90]. CR could extend the lifespan by accelerating
the elimination of NAD+, leading to the activation of Sir2/SIRT1 [150]. However, other
studies showed that the antiaging effect of Sir2 and CR might be parallel, because longer
lifespans occur in CR cells without Sir2 [151]. CR alleviated neuropathy and motor deficits
through the SIRT1 pathway in MJD mice [46]. In ovariectomized female mice and aged male
mice, CR increased the mRNA expression of SIRT1 in bones, which protected them from
osteoporosis [152]. Furthermore, a moderate degree of CR at 25% of a normal diet could
upregulate the expression of SIRT1 and SIRT3 in the myocardium so that the age-related
cardiac degeneration in rats was improved [153].

4. MTOR Signaling

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which is a
part of the phosphoinositide 3-kinase (PI3K)-related kinase family. mTOR functions as an
intracellular energy sensor and a central regulator of growth, proliferation, metabolism
and aging [154–156]. mTOR exists as two distinct protein complexes, mTOR complex
1 (mTORC1) and 2 (mTORC2) [154]. mTORC1 consists of five parts, including mTOR,
the regulatory-associated protein of mTOR (Raptor), mammalian lethal with Sec13 pro-
tein 8 (mLST8), proline-rich Akt substrate 40 kDa (PRAS40) and DEP-domain-containing
mTOR-interacting protein (DEPTOR). mTORC2 contains six elements, including mTOR,
rapamycin-insensitive companion of mTOR (Rictor), mammalian stress-activated protein
(mSIN1), protein observed with Rictor-1 (Protor-1), mLST8 and DEPTOR. DEPTOR is
negatively regulated by both mTORC1 and mTORC2. Inhibiting DEPTOR will activate
ribosomal protein S6 kinase (S6K), Akt and SGK1, resulting in cell growth and proliferation
(Figure 3) [157].

4.1. MTOR Signaling and Aging

The role of mTOR as a central regulator of the lifespan and aging has been studied
extensively in the last decade, since mTOR has been linked to many processes that are
associated with aging [158–160]. Although the underlying mechanisms are still not fully
elucidated, the relationship between mTOR signaling and aging has been shown to be
conserved from worms to mammals [161–164]. mTORC1 can be controlled by the tuberous
sclerosis complex (TSC)-Rheb pathway and Ras-related GTP-binding protein (Rag) that me-
diates amino acid signaling [23]. Several studies have indicated that mTORC1 is sensitive
to environmental factors such as oxygen, amino acids, growth factors and glucose, regulat-
ing many cell processes such as protein translation, autophagy and cell growth [156,165].
On the other hand, mTORC2 is an effector of insulin/insulin-like growth factor-1 (IGF-1)
signaling (IIS) downstream of PI3K and is essential for the activation of many kinases. For
instance, mTORC2 phosphorylates and activates Akt/PKB, which is a key regulator of cell
survival [156,166]. According to the negative effects of mTOR on aging, it was plausible to
hypothesize that the expression of mTOR would be increased in the elderly. However, the
activity of mTOR and its upstream brain-derived neurotrophic factor (BDNF)/PI3K/Akt
signaling was decreased with aging [167]. The disruption of mTORC2 leads to glucose
intolerance, diabetes, lower activity level and immunosuppression [156,168]. Therefore,
mTORC2 inhibition has negative effects on health and longevity, whereas mTORC1 in-
hibition extends the lifespan and delays aging. The chronic inhibition of mTOR reduces
age-related impairments in spatial learning and memory, but the relationship between
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mTOR activity and cognitive function follows an inverted U-shaped dose-effect curve [168].
Intestinal flora metabolite trimethylamine-N-oxide (TMAO) inhibits mTOR signaling and,
thus, has a negative effect on age-related cognitive dysfunction in SAMP8 and SAMR1 mice
through aggravated synaptic damage and the decreased expression of synaptic plasticity-
related proteins [169]. A high expression level of DEPTOR was shown to be necessary PI3K
and Akt activation in multiple myeloma [157].

Figure 3. Constituents of mTORC and mTOR signaling in the cell. mTORC1 includes mTOR, Raptor,
mLST8, PRAS40 and DEPTOR, while mTORC2 contains mTOR, Rictor, mSIN1, Protor-1, mLST8
and DEPTOR. Abbreviations: RHEB: ras homolog enriched in brain; GDP: guanosine diphosphate;
GTP: guanosine triphosphate; PRAS40: proline-rich Akt substrate 40 kDa; mLST8: mammalian lethal
with Sec13 protein 8; Raptor: the regulatory-associated protein of mTOR; DEPTOR: DEP-domain-
containing mTOR-interacting protein; TFEB: transcription factor EB; HIF1α: hypoxia inducible factor
1α; ATF4: activating transcription factors 4; 4EBP: 4E binding protein; eIF4F: eukaryotic initiation
factor 4F; eIF4B: eukaryotic initiation factor 4B; CAD: carbamoyl-phosphate synthetase; S6K: S6
kinase; SGK1: glucocorticoid induced protein kinase 1; MDM2: murine double minute 2; Akt: protein
kinase B; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; BDNF: brain-
derived neurotrophic factor; mSIN1: mammalian stress-activated protein; Protor-1: protein observed
with Rictor-1; Rictor: rapamycin-insensitive companion of mTOR; PKCα: protein kinase Cα.

4.2. Rapamycin and mTOR Signaling

Rapamycin is a natural product secreted by a soil bacterium, Streptomyces hygroscop-
icus, first found as an antifungal antibiotic in 1975 on Easter Island (Rapa Nui), from
where it gained its name [170]. Studies have documented that Rapamycin can function as
an immunosuppressant, which blocks helper T-cell activation by interfering with signal
transduction and can be used for preventing the rejection of organ transplants [171]. In
2009, rapamycin was first shown to extend the lifespan of wild-type mice by the National
Institution on Aging Interventions Testing Program [156]. Rapamycin can inhibit mTORC1
by directly blocking substrate recruitment and restricting active-site access through binding
the FRB domain of the TOR-associated immunophilin FKBP12 [171]. Rictor and mSIN1 can
inhibit the binding of FKBP12-rapamycin to mTOR with Rictor, indicating the rapamycin
insensitivity of mTORC2 [172]. Therefore, mTORC1 is acutely sensitive to rapamycin, while
mTORC2 is chronically sensitive to rapamycin in vivo and in vitro [166]. Rapamycin was
shown to reduce aging markers in human skin [173]. The inhibition of mTOR by dietary
rapamycin administration could reverse aging-associated arterial dysfunction [174]. In
the early-stage of AD, rapamycin protected the entorhinal cortex and perforate pathway
projection from tau-induced neuronal loss, synaptotoxicity, reactive gliosis and neuroin-
flammation [42]. Houssaini et al. found that rapamycin could rescue cell senescence
in chronic obstructive pulmonary disease by inhibiting the mTOR pathway [49]. More-
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over, rapamycin restored the senescence phenotype and enhanced the immunoregulatory
ability of mesenchymal stem cells of MRL/lpr mice and systemic lupus erythematosus
patients [175]. Although rapamycin is an FDA-approved drug, its side effects caused by
immunosuppression and the inhibition of mTORC2 may limit its widespread application.
For example, the chronic administration of rapamycin induced spermatogenic arrest in
adult male mice testis through impairing sex body formation and meiotic sex chromosome
inactivation [176]. To overcome these negative effects, other mTOR inhibitors and the
adjustment of the dose and administration schedule may be essential. The first generation
of mTOR inhibitors like Sirolimus, Temsirolimus and Everolimus, approved by the US
FDA, can target mTORC1 through binding to FKBP1. The second generation of mTOR
inhibitors, such as NVP-BEZ235, PF-04691502 and OSI-027, act on mTORC1, mTORC2
and PI3K by binding to the kinase domain. The third generation of mTOR inhibitors like
RapaLink-1 are bivalent molecules targeting mTORC1 and mTORC2 by binding to the FRB
and kinase domains. These third and fourth generations still need to undergo clinical trials
to verify their applicability in humans [52,171].

4.3. Resveratrol and mTOR Signaling

As described above, resveratrol is a kind of medicine interacting with many molecules
involved in aging. In aged mice treated with lipopolysaccharide (LPS), resveratrol inhibited
mTOR to increase the expression of proinflammatory genes such as eEIF2α, BIP and ATF4
in response to acute inflammatory stress [177]. Through the Akt/mTOR signaling pathway,
resveratrol inhibited glycolysis in human ovarian cancer cells and ameliorated age-related
retinal neuropathy in zebrafish [50,178]. Resveratrol induced apoptosis in human U251
glioma cells through the activation of the PI3K/Akt/mTOR signaling pathways [179].
Narasimman et al. reported that resveratrol had a dose-dependent effect on mTOR—
namely, a low dose inhibited the phosphorylation of mTOR at serine 2448, while a high dose
facilitated the phosphorylation of mTOR at 2481. They also found that resveratrol could
upregulate the expression of Rictor in mTORC2 and activate its downstream pathways
while weakening mTORC1 activation [180]. Additionally, other phytochemicals have
similar effects, such as ginsenoside Rg1, one of the main active ingredients of Panax ginseng,
which has been found to decrease Akt/mTOR signaling and protect from oxidative stress
in a D-galactose-induced subacute aging mouse model [181].

4.4. Exercise and mTOR Signaling

Exercise is an activity more complex than what is currently known, as it works
on multiple molecules and pathways to result in aging healthily. Aerobic exercise was
demonstrated to augment the number of cortical and hippocampal neuronal cells and
increase the expression of mTOR in young rat brains [182]. Endurance training regulated
the PI3K/Akt/mTOR signaling pathways to prevent renal vascular sclerosis caused by
aging [183]. The mechanisms underlying exercise-mediated healthy aging often involve a
combination of the AMPK, SIRT1 and mTOR signaling pathways.

4.5. Caloric Restriction and mTOR Signaling

CR is a relatively well-known intervention for antiaging up until now, involving
several signaling pathways. 4E-BP, a downstream target of mTORC1, was found to be
increased and participates in mitochondrial activity and lifespan elongation in the context
of CR [184]. mTOR inhibition was involved in BDNF/PI3K/Akt pathway inhibition and
further repressed autophagic degradation in the aging hippocampus in the CR group [167].
CR also increased the median telomere length in somatic cells through mTOR signal-
ing [185]. Tulsian et al. reported that CR had a time-dependent effect on mTOR signaling.
BMAL1 and CRY are two circadian transcriptional regulators. CR inhibited mTORC1
expression in the liver of BMAL1- or CRY-deficient mice but enhanced mTORC2 capability
only in the liver of CRY-deficient mice [186]. CR also protected the skeletal muscle mass
in middle-aged rats by regulating mTOR signaling and the ubiquitin-proteasome path-
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way [187]. Ten months of CR protected against neuronal loss caused by aging and injury
and improved learning and memory via the mTOR pathway [188]. Protein restriction (PR)
and intermittent fasting (IF), two kinds of CR, inhibited mTORC1 activation and tumor
growth in a xenograft mouse model of breast cancer [51]. Moreover, a low protein diet
slowed down the nonspecific inflammatory alterations of intestinal and liver cells in aged
mice through the mTOR pathway [189]. As for the question about whether CR and TOR
inhibition have combined effects, Malene Hansen’s group showed that, under conditions
of TOR scarcity, eat-2 C. elegans, a type of CR model, did not extend the lifespan, suggesting
that their effects were not overlapping [190].

4.6. Autophagy and mTOR Signaling

Autophagy is an essential program for maintaining cellular homeostasis [191]. Au-
tophagy induction is a common downstream effect of mTOR, which recycles organelles
and is necessary for cells to survive in nutrient deficiency in the context of longevity. The
inhibition of mTOR signaling improved autophagy and attenuated the myogenic differenti-
ation in ERCC1 muscle-derived stem/progenitor cells, as well as prevented the cardiac and
skeletal muscle function decline in lamin A/C-deficient mice [192,193]. mTORC1 inhibition
stimulated transcription factor EB (TFEB) and further activated the coordinated lysosomal
expression and regulation (CLEAR) gene network and the transcription of autophagy-
related genes (Atgs) [194]. Activation of the mTOR pathway induced VSMCs senescence,
which further inhibited autophagy. Autophagy inhibition also enhanced the activation
of the mTOR pathway that was induced by adriamycin and increased the number of
senescence-associated β-galactosidase-stained cells [195]. Homocysteine, an amino acid
metabolite, regulates the connection between mTOR and lysosomal membranes and can in-
hibit autophagy through activating mTORC1 in vitro and in vivo [196]. PI3K/Akt/mTOR
signaling regulated autophagy in macrophages in the development of diabetic encephalopa-
thy and, in particular, chondrocytes by inhibiting miR-20 in osteoarthritis [44,45]. Cur-
cumin, used in Indian and Chinese medicine as a wound-healing agent, among other uses,
can also have a beneficial effect on osteoarthritis by possibly enhancing autophagy and
reducing cell death and cartilage loss via Akt/mTOR signaling [197]. Trilliun tschonoskii
maxin saponin, another natural herb used in Chinese medicine, regulated autophagy by
increasing Rheb and decreasing mTOR to improve the learning and memory abilities of
D-galactose-induced aged rats [198]. The administration of Geniposide improved cognitive
function and reduced amyloid-β plaque deposition in APP/PS1 mice by modulating au-
tophagy via mTOR inhibition [43]. Akt/mTOR signaling inhibition and ERK1/2 activation
prevented cancer cell proliferation from glycyrrhizin-induced autophagy and cytotoxicity
in HepG2 and MHCC97-H hepatocellular carcinoma cells [199]. Therefore, mTOR has been
used as an autophagy inducer in many studies, while autophagy plays a significant role
in antiaging.

5. Interplay between the AMPK, SIRT1 and mTOR Signaling Pathways

AMPK, SIRT1 and mTOR can also interact with each other, forming an intertwined
web. For example, AMPK and SIRT1 increase the expression of Atgs by upregulating
FOXOs and PGC-1α and downregulating mTORC1 [194]. Wang et al. showed that the
antiaging effects of resveratrol in zebrafish retina involved the activation of the AMPK,
SIRT1 and mTOR signaling pathways [178].

5.1. Crosstalk between AMPK and SIRT1 Signaling

SIRT1 activates AMPK by stimulating LKB1 via deacetylation, while AMPK activates
SIRT1 by enhancing the NAD+ level [200]. Kim et al. found that resveratrol ameliorated
oxidative stress and mitochondrial dysfunction by activating the SIRT1/AMPK/PGC-1α
axis in an age-related renal injury [201]. Six weeks of exercise, resveratrol and the combi-
nation of both significantly improved the expression of p-AMPK and SIRT1 in the brains
of aged rats to exert protective effects [202]. Swimming modulated the expression levels
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of SIRT1/PGC1α, AMPK and FOXO3a in the gastrocnemius muscles of 3-, 12- and 18-
month-old rats and inhibited aged hippocampus cell apoptosis and inflammation through
IGF1/PI3K/Akt signaling and AMPK/SIRT1/PGC1α signaling [142,143]. Regular aerobic
exercise can balance apoptosis and autophagy within the corpus striatum in aged rats
through the AMPK/SIRT1 pathway [67]. Wheel running can also activate lysosomal and
autophagic functions in the mouse brain via AMPK/SIRT1/TFEB [146]. In SAMP8 mice,
a model for aging, wheel running influenced the mitochondrial function via modulating
the SIRT1/AMPK pathways [203]. E6155 reduced the fasting glucose and improved the
tolerance to oral glucose and insulin through the SIRT1/LKB1/AMPK axis [47]. A mod-
erate dose of resveratrol improved the mitochondrial biogenesis and function via AMPK
stimulation induced by SIRT1 [200]. The AMPK/SIRT1/FOXO1 axis also participated in
modulating apoptosis in bovine intracellular adipocytes [204]. Glucose restriction regulated
nicotinamide phosphoribosyltransferase (NAMPT), an important rate-limiting enzyme in
the synthesis of NMN, to stimulate SIRT1 with the help of AMPK to have a negative effect
on skeletal myoblast differentiation [205].

5.2. Interaction between AMPK and mTOR Signaling

AMPK interacts with mTOR in two main ways, by directly phosphorylating Raptor
and indirectly phosphorylating TSC2, resulting in the activation of the GTPase-activating
protein and the combination of Rheb on lysosomal membranes [206,207]. A moderate
dose of bilberry anthocyanin (MBA) upregulated the expression of OCLN, ZO-1 and au-
tophagy associated-proteins ATP6 V0C, ATG4D and CTSB to induce autophagy through
the AMPK/mTOR pathway and then improved the intestinal epithelial barrier function
and oxidative stress resistance effects in aging female rats [208]. Genistein dose- and time-
dependently activated LKB1/AMPK/mTOR signaling to induce autophagy, which pro-
tected VSMCs from aging [209]. Acarbose competitively and reversibly inhibited salivary
and pancreatic α-amylases and small intestine brush border α-glucosidases, which then
decreased postprandial glucose and subsequently modulated the AMPK- and mTORC1-
regulated metabolism pathways, leading to the improved survival of Apc mice, a mimic of
familial adenomatous polyposis in humans [210]. Metformin improves cartilage degenera-
tion in osteoarthritic mice through the AMPK/mTOR pathway [211]. Qing et al. found
that metformin regulated the AMPK/mTOR/NACHT, LRR and PYD domains-containing
protein 3 (NLRP3) inflammasome signaling pathways to induce M2 macrophage polar-
ization, leading to the promotion of wound healing [212]. In osteoarthritic mice, a local
intra-articular injection of resveratrol induced autophagy through AMPK/mTOR sig-
naling and attenuated cartilage degeneration [213]. Exogenous hydrogen sulfide (H2S)
rescued cardioprotection from ischemic postconditioning by stimulating autophagy via
the AMPK/mTOR pathway in isolated aged rat hearts and aged cardiomyocytes [214].
Oleuropein aglycone (OLE), the main polyphenol in extra virgin olive oil, exerted beneficial
health effects by activating autophagy through the AMPK/mTOR pathways in cultured
neuroblastoma cells and OLE-fed mice [215]. CRMs ameliorated hyperglycemia-induced
senescence and epithelial–mesenchymal transition (EMT) by activating AMPK/mTOR
signaling [216]. In ApoE-deficient mice, CR upregulated Fgf21 to stimulate AMPK/mTOR
signaling, leading to a decrease in the formation of neurofibrillary tangles by inhibiting tau
phosphorylation [217].

5.3. Interplay between SIRT1 and mTOR Signaling

The relationship between SIRT1 and mTOR remains largely unexplored. It was found
that SIRT1 inhibits mTOR signaling by interacting with TSC2 [218]. SIRT1 was needed for
rapamycin to have an effect on high-glucose-induced mesangial cells senescence [219]. The
mTORC1 inhibitor rapamycin could enhance the expression levels of SIRT1 and AMPK and
improve the deacetylase ability of SIRT1 in AML12 hepatocytes [220]. mTOR and SIRT1
cooperated to promote the proliferation of intestinal stem cells in CR [221]. SIRT1 decreased
the autophagy and mitochondrial function in embryonic stem cells by downregulating the
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mTOR pathways in response to oxidative stress [222]. Similarly, in alcoholic liver disease
mice and patients, the lack of DEPTOR and SIRT1 induced the abnormal activation of
mTORC1, resulting in an increased phosphorylation level of mTOR and S6K1 to aggravate
inflammation and acute-on-chronic liver injuries [223].

6. Summary

Aging may be an irreversible process with complex mechanisms. Therefore, the real
target of antiaging may not be to rejuvenate but to accomplish healthy aging, which means
ameliorating the physiological decline and dysfunction in late life. Heathy aging may be
attained when we have a better understanding of the mechanisms underlying aging. Since
Harmen first interpreted the free radical theory for aging in 1956, many aging theories have
been proposed, such as the mitochondrial theory, where mitochondria-related oxidative
damage can be involved in the aging process. Thus, up to now, the known hallmarks of
aging included genomic instability, the loss of proteostasis, epigenetic alteration, telomere
attrition, deregulated nutrient sensing, mitochondrial dysfunction, cell senescence and stem
cell exhaustion [224,225]. Recently, we proposed a microcirculatory theory of aging [226].
Indeed, aging is regulated by specific signaling pathways, and among them, the AMPK,
SIRT1 and mTOR pathways play critical roles. They can function individually or in
combination to affect the aging process. More specifically, metformin, resveratrol and
exercise can activate AMPK, while AMPK can inhibit autophagy. Resveratrol, NAD+,
exercise and CR increase the SIRT1 expression. Rapamycin, resveratrol, exercise and CR
perturb the mTOR and impact autophagy. Additionally, AMPK can be promoted by SIRT1
and mTOR, SIRT1 can be activated by AMPK and mTOR and mTOR can be inhibited by
AMPK and SIRT1 (Figure 4). The identification of these aging signaling pathways opens a
new avenue to develop promising targets for heathy aging by stimulating the longevity
pathways or inhibiting the aging pathways.

Figure 4. Illustration of the roles of the AMPK, SIRT1 and mTOR signaling pathways in aging. The blue arrows indicate a
positive effect, and the orange arrows indicate a negative effect. Abbreviations: CR: caloric restriction; NF-κB: NF-kappa B.
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