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Abstract

Background

Rift Valley fever virus (RVFV) is an arbovirus of the order Bunyavirales that causes severe

disease in ruminants and humans. Outbreaks in sheep herds are characterised by newborn

fatalities and abortion storms. The association of RVFV infections with abortions of ovines

and other ruminants is well recognized, whereas the pathology resulting in abortion has

remained undescribed. Accumulating evidence suggests that RVFV is abortogenic in

humans as well, warranting more research on the interaction of RVFV with the ruminant and

human placenta.

Methodology/Principal findings

Pregnant ewes were inoculated with a highly virulent strain of RVFV and necropsied at dif-

ferent days post infection. Tissues were collected and analysed by PCR, virus isolation, and

immunohistochemistry. The results show that RVFV replicates efficiently in maternal pla-

cental epithelial cells before the virus infects foetal trophoblasts. Moreover, the virus was

shown to bypass the maternal epithelial cell layer by directly targeting foetal trophoblasts in

the haemophagous zone, a region of the ovine placenta where maternal blood is in direct

contact with foetal cells. Abortion was associated with widespread necrosis of placental tis-

sues accompanied with severe haemorrhages. Experiments with human placental explants

revealed that the same virus strain replicates efficiently in both cyto- and

syncytiotrophoblasts.

Conclusions/Significance

This study demonstrates that RVFV targets the foetal-maternal interface in both ovine and

human placentas. The virus was shown to cross the ovine placental barrier via two distinct

routes, ultimately resulting in placental and foetal demise followed by abortion. Our finding

that RVFV replicates efficiently in human trophoblasts underscores the risk of RVFV infec-

tion for human pregnancy.
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Author summary

Rift Valley fever virus (RVFV) is a mosquito-borne RNA virus that causes severe disease

in ruminants, wildlife and humans in Africa and the Arabian Peninsula. Outbreaks are

characterised by high mortality rates among newborn lambs and abortion storms in sheep

herds. The severe outcome of RVFV infection during pregnancy in livestock is well docu-

mented, whereas the pathological changes that result in abortion have not yet been

described. To investigate how RVFV crosses the placenta and how infection results in

abortion, pregnant ewes were infected with RVFV and target cells in maternal and foetal

tissues were identified at different time points after inoculation. We show that epithelial

cells of the ovine placenta and foetal trophoblasts are primary target cells of RVFV and

that placental demise is the primary cause of abortion. The same RVFV strain was shown

to replicate efficiently in human placental explants, targeting both cyto- and

syncytiotrophoblasts.

Introduction

Rift Valley fever virus (RVFV) is a negative-strand RNA virus of the family Phenuiviridae (for-

mer family Bunyaviridae), genus Phlebovirus. RVFV is transmitted by mosquitoes, predomi-

nantly by species of the genera Aedes and Culex [1]. The virus is pathogenic to domesticated

and wild ruminants, of which sheep are the most susceptible. Newborn lambs may succumb

within hours after onset of symptoms and seldom survive the infection [2,3]. The most typical

pathological feature in lambs is severe necrosis of the liver. Specifically, necropsy of fatal cases

reveals a swollen, pale liver with focal to widespread necrosis of hepatocytes. Direct and indi-

rect consequences of liver necrosis include icterus, oedema, and hydrops ascites. Other organs,

such as the spleen, heart, kidney and intestines may reveal haemorrhages and congested veins.

Fatal cases are generally associated with haemorrhages and signs of shock. Susceptibility

decreases with age, although mortality rates in adult sheep may be as high as 60% [4]. The

most characteristic feature of RVF outbreaks in sheep herds are abortion storms, in which all

pregnant ewes in a herd may abort [5].

Humans can be infected via mosquito bite, although most human cases are attributed to

contact with contaminated animal tissues, particularly during the slaughtering of diseased ani-

mals [6]. The disease in humans generally follows a transient, febrile course with severe head-

ache and muscle pains. Infection of the eye may induce temporal or permanent loss of vision

resulting from retinal damage [7]. In a minority of patients, the infection progresses to enceph-

alitis or haemorrhagic fever, of which the latter is often fatal [4,8,9]. A cross-sectional study of

Sudanese women correlated RVFV infection with an elevated miscarriage rate [10]. Notably,

experiments with second-trimester human foetal tissue explants recently revealed that human

syncytiotrophoblasts are susceptible and permissive to RVFV replication [11]. These reports

warrant further studies to determine if RVFV infections pose a perhaps underestimated risk

for human pregnancy.

The high abortion rates in sheep herds suggest that RVFV crosses the ovine placenta

extremely efficiently. The placenta of sheep, and that of other RVFV susceptible ruminant spe-

cies, is very different from the human placenta. The human placenta has the shape of a single

disque whereas the ovine placenta consists of placentomes, varying in number among the dif-

ferent ruminant species [12]. Placentomes are discrete areas of extensive villous interactions

between the maternal epithelial cells of the uterus, the caruncle, and the foetal trophoblasts of
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the allantochorion, the cotelydon, enabling efficient exchange of gases and nutrients between

mother and foetus. In sheep and goats, pools of maternal blood are located in the crypts of the

foetal villi, directly bordering the foetal trophoblast layer. At these so-called haemophagous

zones, maternal erythrocytes are phagocytosed by trophoblasts as a principle source of iron for

the developing foetus. Notably, this part of the ovine placenta resembles the haemochorial pla-

centa of humans, in that maternal blood is in direct contact with foetal trophoblasts. However,

the blood pools at the haemophagous zones in sheep and goats are filled with stagnant blood

and therefore do not contribute significantly to the maternal-foetal exchange of nutrients,

whereas in the human haemochorial placenta maternal blood flows along the foetal tropho-

blasts enabling efficient nutrient exchange.

The detrimental consequences of RVFV infection during ovine pregnancy were already

reported after the first outbreak of RVF in 1930 and abortion storms have since then become a

hallmark of RVF epidemics [2,3,13–15]. Nevertheless, the pathogenesis of RVFV-induced

abortion in pregnant ewes was not yet described in literature. In the present study, we experi-

mentally infected pregnant ewes at one third- or at mid-gestation and describe the pathogenic

events that result in abortion of the ovine foetus. We furthermore investigated the susceptibil-

ity of human placental explants for the same RVFV strain.

Materials and methods

Cells and viruses

Culture media and supplements were obtained from Gibco unless indicated otherwise. Baby

Hamster Kidney (BHK-21) cells were maintained in Glasgow minimum essential medium

(GMEM) supplemented with 4% tryptose phosphate broth, 1% minimum essential medium

nonessential amino acids (MEM NEAA), 1% antibiotic/antimycotic (a/a) and 5% foetal bovine

serum (FBS), at 37˚C with 5% CO2. Vero-E6 cells were maintained in minimum essential

medium (MEM) supplemented with 1% a/a, 5% FBS, 1% glutamine and 1% MEM NEAA, at

37˚C with 5% CO2. BHK-21 and Vero-E6 cells were purchased from ATCC.

A recombinant version of RVFV strain 35/74, originally isolated from the liver of a sheep

during a RVFV outbreak in 1974 in the Free State province of South Africa, was used in the

present work as described [16]. The titre was determined on BHK-21 cells as 50% Tissue Cul-

ture Infective Dose (TCID50) according to the Spearman-Kärber algorithm [16].

Ethics statements

Animal experiments were conducted in accordance with the Dutch Law on Animal Experi-

ments (Wet op de Dierproeven, ID number BWBR0003081) and the European regulations

(EU directive 2010/63/EU) on the protection of animals used for scientific purposes. The pro-

cedures were approved by the animal ethics committee of Wageningen Bioveterinary Research

(WBVR) and the Dutch Central Authority for Scientific Procedures on Animals (permit num-

ber AVD401002017894).

Human placentas were obtained after caesarean section of healthy women. This material is

regarded as medical waste and therefore does not fall under the scientific medical research law of

the Netherlands and does not need approval from an institutional review board. All donors have

given written consent and consent forms are stored in accordance with the Dutch privacy law.

Experimental design pregnant ewe trial

At a conventional Dutch sheep farm, 30 Texel-Swifter mix breed ewes that had delivered

healthy lambs before, were treated with progesterone sponges to synchronise pregnancies.
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After removal of the sponges, ewes were naturally mated. Ultrasounds were performed at 6–7

weeks after mating to confirm gestation. Pregnant animals to be enrolled in the studies were

subsequently transported to WBVR and allowed to acclimatize for one week before the start of

the experimental period under biosafety level 3 (BSL-3) conditions.

At 55 days of pregnancy (experiment 1) or 78 days of pregnancy (experiment 2), animals

were inoculated via intravenous (IV) route with 105 TCID50 of RVFV in 1 ml medium, or with

1 ml medium (negative control animals). Following challenge, animals were closely monitored

for clinical signs, body temperatures were recorded, and EDTA blood samples were collected

(Fig 1A). The ewes of experiment 1 were euthanized and necropsied at 6 days post infection

and the ewes of experiment 2 were euthanized on day 4 or at abortion (day 7). Ewes and their

foetuses were euthanized by intravenous administration of 50 mg/kg sodium pentobarbital

(Euthasol, ASTfarma) and subsequent exsanguination. Foetuses were exsanguinated by sever-

ing of the umbilical cord after which foetal blood was collected in EDTA tubes. From the ewes,

samples were taken from the liver and spleen. From the foetuses, samples were taken from the

brain, spleen, leg muscle tissue and liver. Samples were also taken from the amniotic fluid,

umbilical cord and the placentomes (3 per foetus). Samples were placed on dry ice and subse-

quently stored at -80˚C. Samples for histology and immunohistochemistry were fixed in 10%

phosphate-buffered formalin for at least 48 h followed by routine processing into paraffin

blocks.

Infection of human placental explants

Full term placentas were obtained by caesarean section from healthy donors at the Isala hospi-

tal in Zwolle, the Netherlands. The placentas were transported on ice and placed in large pet-

ridishes with complete medium (40% Dulbecco’s Modified Eagle Medium [DMEM], 40% F12

nutrient mixture, 10% FCS supplemented with 1% a/a). Chorionic villi were separated from

the placenta and cut in 4x4 mm pieces, after which the samples were washed 3x with PBS + a/

a. Placental explants were incubated with 2,5x105 TCID50 of RVFV in 1 ml complete medium,

or in 1 ml complete medium (negative controls) in a 24-wells plate. Medium was removed 16

hpi, after which explants were washed 3x with PBS + a/a. Samples were collected at 1, 2 or 4

days post inoculation (dpi). Samples for quantitative reverse-transcription PCR (RT-qPCR)

were stored at -80˚C. For virus isolation, 200 μl supernatant samples from each timepoint were

pooled. For IHC, explants were fixed in 10% phosphate-buffered formalin for 48 h followed by

routine processing in paraffin blocks. Each sample was analysed in quadruplicate. The 1 dpi

timepoint was taken at 16 hpi after washing the explants. At 3 dpi, 1 ml of fresh medium was

added to the 4 dpi samples.

Detection of viral RNA

RNA was extracted from ovine plasma and organ samples. Briefly, organ suspensions were

prepared by homogenising 0,3–1 g of tissue in an IKA Ultra Turrax Tube DT-20 containing 7

ml CO2-Independent Medium (CIM) supplemented with 1% a/a. The suspensions were trans-

ferred to 15 ml Falcon tubes and cell debris was removed by centrifugation for 15 min at 4952

x g. Fifty μl Proteinase K (5 μg/ml, Sigma) was added to 200 μl of the plasma samples or organ

suspensions. Next, 200 μl AL buffer (Qiagen), supplemented with 2 μl polyadenylic acid A (5

mg/ml, Sigma) was added, the samples were thoroughly mixed and incubated at 56˚C for 15

min. Subsequently, 250 μl 99% ethanol was added and RNA was isolated using the Qiagen

RNeasy kit according to the manufacturer’s protocol.

RNA was extracted from human placental explants by first homogenising the explants in 1

ml TRIzol Reagent (Invitrogen) in Lysing Matrix D tubes (MP Biomedicals) using the TeSeE™
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Fig 1. Experimental design and primary outcome parameters ewes. Ewes were inoculated intravenously with RVFV or mock inoculated at

gestation day (gd) 55 (A) or day 78 (E) and euthanized at 4 (blue cross), 6 (green and purple crosses) or 7 (orange cross) days post inoculation

(dpi). Purple numbers represent ewes that were mock-inoculated. Rectal temperatures (B, F), viremia by RT-qPCR (solid line, left y-axis), virus

isolations (dotted line, right y-axis) (C, G) and the presence of RVFV in spleen and liver samples of the ewes (D, H) are depicted. Bars represent

averages with SDs.

https://doi.org/10.1371/journal.pntd.0007898.g001
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Precess 24 bead beater for 2x23 s at 6500 RPM. Supernatant (350 μl) was used for RNA isola-

tion using the Direct-zol RNA miniprep kit (Zymo Research) according the manufacturer’s

protocol.

Five μl of the RNA was used in a RT-qPCR using the The LightCycler RNA Amplification

Kit HybProbe (Roche, Almere, the Netherlands). Primers and probes were purchased from

IDT. Forward primer: 5’-AAAGGAACAATGGACTCTGGTCA-3’, reverse primer: 5’-

CACTTCTTACTACCATGTCCTCCAAT-3’; Probe: 5’-6FAM-AAAGCTTTGATATCTCT

CAGTGCCCCAA-TMR-3’. Cycling conditions were as follows: 45˚C for 30 min, 95˚C for 5

min, 45 cycles of 5 s at 95˚C and 35 s at 57˚C, followed by cooling down to 30˚C.

Virus isolation

Virus isolations from ovine samples were performed by serial dilution of either plasma in com-

plete CIM supplemented with 3,5 IU/ml heparin, or organ suspension in CIM, followed by

incubation with BHK-21 cells. After 1.5 h incubation at RT, the inoculum was replaced by

fresh medium and after 5 days of culturing the cells at 37˚C cytopathic effects were scored.

Virus isolations from the supernatant of the human placenta explants were performed by a

10x serial dilution series of the supernatant in complete medium on Vero cells. At 24 hpi,

infection was visualized with an immunoperoxidase monolayer assay (IPMA). Briefly, cells

were fixed and permeabilized 24 hpi with 4% paraformaldehyde (10 min) and ice-cold metha-

nol (5 min). After permeabilization the plates were incubated with RVFV specific monoclonal

antibody 4-D4, which recognizes the Gn protein [17]. A polyclonal rabbit-α-mouse immuno-

globin/HRP antibody (Dako, Denmark) was used as a secondary antibody and 3-Amino-

9-ethylcarbazole (AEC; Sigma-Aldrich) was used as a substrate. The titre was expressed as

TCID50/ml according to the Spearman-Kärber algorithm [18,19].

Histology and immunohistochemistry

Paraffin embedded tissue was cut into 4 μm sections, collected on silane-coated glass slides

and dried for at least 48 h in a 37˚C incubator. After deparaffinization and rehydration in

graded alcohols, sections were stained routinely with haematoxylin and eosin (H&E) or immu-

nostained for RVFV antigen. For immunostaining, endogenous peroxidase was blocked for 30

min in methanol/H2O2 followed by antigen retrieval through 15 min autoclaving at 121˚C in

pH 6 citrate buffer (Antigen unmasking solution, Vector Laboratories ). As RVFV Gn-specific

primary antibody, monoclonal antibody 4-D4 was used. Specificity of the immunostaining

was confirmed with 2 other mAbs directed against different proteins of RVFV. Mouse envision

peroxidase (Dako, Denmark) was used as secondary antibody and diaminobenzidine (DAB;

Dako, Denmark) as the substrate, according to the manufacturer’s instructions. Immunostain-

ing for cytokeratin was performed using a rabbit mAb to cytokeratin 19 (Abcam 52625, USA)

followed by α-rabbit-ImmPRESS-AP and Vector Red as substrate (Vector Laboratories, USA).

Hematoxylin was used to counterstain the slides.

Results

RVFV infection of pregnant ewes results in abortion within one week

To study the pathogenesis of RVF in pregnant ewes, two experiments were performed. Ewes

were infected at either one third of gestation (experiment 1) or at mid gestation (experiment

2). In both experiments, ewes were inoculated via intravenous route with a dose of 105 TCID50

of RVFV, an exposure route and dose that was used in previous studies with sheep [20–22]. In

the first experiment, a group of ten ewes was distributed randomly over two groups of five
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animals of which the first group was inoculated with virus and the second group with medium

only (mock) (Fig 1A). As expected, and similar as observed in lambs, all RVFV-inoculated

ewes developed fever (Fig 1B), which correlated with viremia as determined by RT-qPCR and

virus isolation on plasma samples (Fig 1C). At 4 days post infection (dpi), one of the RVFV

inoculated ewes (animal number 1764) acutely succumbed to the infection. Necropsy revealed

a swollen, discoloured liver and signs of shock. Analysis of liver and spleen samples by RT-

qPCR revealed high levels of viral RNA in both organs (Fig 1D). Extensive haemorrhages were

found in the placentas of the two foetuses carried by this ewe and in the uterine wall. The

remaining ewes were euthanized and necropsied as scheduled at 6 dpi. All ewes showed a mul-

tifocal necrotizing hepatitis which was most severe in the animal that died at 4 dpi. Although

no abortions had occurred, all placentas revealed extensive haemorrhages in the placentomes

and all foetuses had already died (S1 Fig, S3 Fig and Table 1).

To study the pathology at an earlier and later stage than 6 dpi, another group of 6 ewes

from the same herd was inoculated with RVFV (experiment 2). Of this group, three ewes were

euthanized and necropsied at 4 dpi and the remaining three ewes when abortion was immi-

nent (Fig 1E). Of note, these ewes were at the moment of inoculation at mid gestation. As

expected, all ewes of this experiment developed similar rises in rectal temperatures and viremia

levels as those of experiment 1 (Fig 1F and 1G). Necropsy at 4 dpi revealed multifocal necrotiz-

ing hepatitis in all ewes but no macroscopic abnormalities in placentas and unaffected, live foe-

tuses. In the morning of day 7 post infection, one ewe had aborted 2 foetuses and a second one

was is the process of aborting (2 foetuses already expelled, 1 foetus still in the uterus). Necropsy

of the third ewe (#1846) revealed three foetuses that were still inside the uterus but with pla-

centomes showing extensive haemorrhages. One of these foetuses was alive, whereas the

remaining two foetuses were found dead (Table 1). Analysis of liver and spleen samples

revealed very high viral RNA levels in the organs of ewes necropsied at 4 dpi and lower levels

in ewes necropsied at 6 dpi or at abortion (Fig 1D and 1H). Viral RNA and viable virus were

detected in all placentomes from both experiments (Fig 2). It was striking to observe that viral

RNA levels increased in placentomes between days 4 and 7 (Fig 2), whereas viremia and viral

RNA levels in spleens and livers declined in the same period (Fig 1D and 1H).

RVFV infects maternal epithelial cells and foetal trophoblasts

The ovine placenta consists of multiple placentomes, in which foetal blood is separated from

maternal blood by several cell layers (Fig 3A and 3B). In accordance with literature, we

observed an increase in mass of the foetal and maternal villi with concomitant decrease in mes-

enchyme and expansion of haemophagous zones with progressing pregnancy (Fig 3C and 3D)

[23].

Necropsy of the ewe of experiment 1 that died at 4 dpi (#1764) revealed macroscopic abnor-

malities: extensive haemorrhages in the uterine wall, at the base of the placentomes and within

the placentomes. Necropsy of ewes that were euthanized at 4 dpi in experiment 2 revealed pla-

centomes that did not show any macroscopic abnormalities.

Immunohistochemistry showed the presence of RVFV antigen as small foci spread

throughout the placentomes collected at 4 dpi in experiments 1 and 2 (Fig 4A). These foci con-

sisted of a cluster of strongly stained epithelial/syncytial cells of the maternal villus with occa-

sionally a single positive trophoblast in the epithelial lining of the opposite foetal villus (Fig

4B). Clusters of RVFV-positive cells were also found in the trophoblast epithelium lining the

haemophagous zone (Fig 4C).

At 6 dpi, extensive haemorrhages were observed in the placentomes of the RVFV infected

ewes (S1 Fig). In addition, in some placentomes maternal and foetal villi were starting to
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separate. Both maternal epithelial cells (viable and necrotic) and foetal trophoblasts were

strongly positive for RVFV antigen throughout the entire placentome (Fig 4F). Compared to

the placentomes at 4 dpi, the area of RVFV positive maternal epithelial cells and foetal

Table 1. Analysis of foetuses collected from RVFV-infected ewes. Pathological findings in foetuses of necropsied ewes experimentally infected with RVFV at one third

(1/3 gestation) or at mid-gestation (1/2 gestation). Ewes were necropsied at 4, 6 or 7 dpi. Viral RNA and proteins were detected by RT-qPCR and IHC, respectively. NT;

not tested as foetuses were too autolytic.

One third gestation DPI Foetuses Alive or dead at

time of dissection

Placentome non-

cotyledonary

allantochorion

Liver Brain Amniotic

fluid

Umbilical cord Umbilical

blood

PCR IHC PCR IHC PCR IHC PCR IHC PCR PCR IHC PCR

4 17641-F1 Dead + + + + + - - - + + - NT

17641-F2 Dead + + + + + - + - + + - NT

6 1760-F1 Dead + + + + + + + + 2 + + + 2 NT

1761-F1 Dead + + + + + - - - + + - NT

1761-F2 Dead + + + - + - - - + + - NT

1762-F1 Dead + + + - + - - - + + - NT

1762-F2 Dead + + + + + - + NT + + - NT

1762-F3 Dead + + + + + + + NT + + + 2 NT

1763-F1 Dead + + + + + + + + 2 + + + 2 NT

1763-F2 Dead + + + + + + + + 2 + + + 2 NT

Mid-gestation 4 1841-F1 Alive + + + - - - - - - + - +

1841-F2 Alive + + + - - - - - - + - +

1842-F1 Alive + + + - + - - - - + - +

1842–F2 Alive + + + - + - - - + - - +

1843-F1 Alive + + + - + - - - + + - +

7 1844-F1 Dead + + + + NT NT NT NT NT NT NT NT

1844-F2 Dead + + + + NT NT NT NT NT NT NT NT

1844-F3 Dead + + + + + + NT + 2 NT + + 2 NT

1845-F1 Dead + + + + NT NT NT NT NT NT NT NT

1845-F2 Dead + + + + NT NT NT NT NT NT NT NT

1846-F1 Alive + + + + + + + + 2 + + + 2 +

1846-F2 Dead + + + + + + + + 2 + + + 2 NT

1846-F3 Dead + + + + + + + + 2 + + + 2 NT

1Ewe died at 4 dpi
2Blood vessels (blood and endothelium).

https://doi.org/10.1371/journal.pntd.0007898.t001

Fig 2. Detection of viral RNA and infectious virus in placentomes. Viral RNA copies in placentomes as determined

by RT-qPCR (black columns; left y-axis) and virus titres in placentomes as determined by virus isolation (grey

columns; right y-axis). Results of experiment 1 (A) and 2 (B) represent means and SDs of 3 placentomes per foetus.

https://doi.org/10.1371/journal.pntd.0007898.g002
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Fig 3. The ovine placenta at different stages of gestation. (A) Schematic presentation of an ovine foetus, the cotyledons and their blood supply. Only the foetal parts of

the placenta (cotyledons) are displayed, the uterus wall and maternal part of the placenta (caruncles) are not depicted. At the right, a cross section of a placentome is
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depicted, showing the maternal tissues in shades of pink, and the foetal villi in orange. Haemophagous zones at the base of the foetal villi are depicted in red. (B) A

schematic overview of the cotyledon (center) with the different cell layers of the synepitheliochorial placenta at the left and the haemophagous zone at the right. In the

synepitheliochorial placenta, the foetal blood is separated from maternal blood by several maternal and foetal cell layers. In the haemophagous zone maternal blood is in

direct contact with the foetal trophoblasts. (C, D) HE staining of placentomes, the haemophagous zones and synepitheliochorial placenta at 1/3 gestation (C) and 1/2

gestation (D). Red interrupted lines indicate the boundaries between maternal and foetal tissues. F = foetal villus, M = maternal villus, MB = maternal blood. Notice the

increase in the foetal/maternal villous interface in the synepitheliochorial placenta and the increase in size and erythrophagous activity of the trophoblasts of the

haemophagous zone between 1/3 and 1/2 of the gestation period.

https://doi.org/10.1371/journal.pntd.0007898.g003

Fig 4. RVFV antigen in placentomes. Immunohistochemical (IHC) detection of RVFV antigen in cross sections of the placentomes at 4 dpi

(experiment 2) and 6 dpi (experiment 1). At 4 dpi (A) only small foci of antigen positive cells are visible throughout the placentome while at 6 dpi (F)

almost the entire placentome stains positive for RVFV antigen. Higher magnification of the synepitheliochorial placenta (SP) at 4 dpi (B) shows

strong labelling of the maternal epithelial cells with only an individual positively stained foetal trophoblast (black arrowhead). At 6 dpi both maternal

and foetal cell layers are strongly stained (G). In the haemophagous zone (HZ) at 4 dpi (C) only small clusters of foetal trophoblasts stain positive for

RVFV antigen while at 6 dpi (H) the entire foetal trophoblast lining of the haemophagous zone stains positive. Panels D, E, I and J represent cross

sections of uninfected placentomes corresponding to B, C, G and H, respectively, showing absence of background IHC staining. Red interrupted lines

indicate the boundaries between maternal and foetal tissues. F; foetal villus, M; maternal villus, MB; maternal blood. Bar = 5000 μm (A, F) or 100 μm

(B-J).

https://doi.org/10.1371/journal.pntd.0007898.g004
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trophoblasts was greatly increased covering almost the entire maternal and foetal epithelial lin-

ing of the placentome including the haemophagous zone (Fig 4G and 4H). H&E staining

revealed haemorrhages in the maternal villi with extensive necrosis of the maternal epithelium

but only limited areas of necrosis of foetal trophoblasts (Fig 5A). In addition, a heavy influx of

neutrophils was present mainly in the stratum compactum of the lamina propria and at the

base of the maternal villi (Fig 5B).

At imminent abortion at 7 dpi, placentomes showed extensive haemorrhages with varying

degrees of separation of maternal and foetal parts. Histology and immunohistochemistry

revealed similar results as those obtained from analysis of the 6 dpi group with haemorrhages

and a neutrophilic inflammatory response in maternal villi, necrosis of maternal epithelium

and strong positive staining for RVFV in maternal epithelial cells and foetal trophoblasts. In

placentomes where foetal villi had already separated from the maternal caruncle, large areas of

denuded maternal villi were seen. In addition in some maternal villi, blood vessels were found

that stained positively for RVFV in the endothelium and/or smooth muscle cells in the blood

vessel wall (S2 Fig). Notably, endothelial cells did not reveal signs of apoptosis or necrosis.

Detection of RVFV in foetal tissues

Ewe 1764 that acutely succumbed to the infection in experiment 1 carried two foetuses. RVFV

RT-qPCR revealed viral RNA in the livers of both foetuses (Table 1 and Fig 6A). The foetuses

of the ewes necropsied at 4 dpi in experiment 2 were all alive and appeared to be normal at the

moment of necropsy (S3 Fig). However, RT-qPCR showed the presence of viral RNA in the

blood of all foetuses and in the livers of 3 out of 5 foetuses (Fig 6B). These results show that

RVFV is able to reach the foetus within 4 days.

All 8 foetuses of the ewes necropsied at 6 dpi were found dead within the uterus (Table 1).

The livers of these foetuses were also positive for viral RNA and in 4 out of 8 foetuses viral anti-

gen was detected by immunohistochemistry. In these 4 foetuses, the liver showed massive

necrosis with only a few viable hepatocytes left (Fig 6C). Brain samples collected from 5 of the

8 foetuses were also found to contain viral RNA. Immunohistochemical staining of brain

Fig 5. Histopathology of the placentomes at imminent abortion. HE staining of placentomes at 6 dpi. (A) Haemorrhages (black asterisk) and necrosis of

maternal epithelial cells (arrowheads). Notice the relatively intact foetal epithelium. (B) Influx of neutrophils (red asterisk) and necrosis of maternal epithelium

(arrowheads). F = foetal villus, M = maternal villus, Bar = 100 μm.

https://doi.org/10.1371/journal.pntd.0007898.g005
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Fig 6. Detection of viral RNA and viral antigen in foetal organs. Detection of RVFV RNA by RT-qPCR in of organ suspensions of foetal

organs collected in experiment 1 (A) and experiment 2 (B). Bars represent averages with SDs. Staining of RVFV antigen in samples collected

from liver (C), brain (D) umbilical cord (E) and leg muscle (F). Notice the strong staining of endothelial cells in the blood vessels within the

various organs. Bar = 500 μm (D, E, F), 100 μm (C) or 20 μm (inset D).

https://doi.org/10.1371/journal.pntd.0007898.g006
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tissues from these foetuses revealed viral antigen in the blood and the endothelium of the

blood vessels throughout the brain and arachnoidea (Fig 6D). No viral antigen was detected in

neurons or glial cells. RVFV antigen was also detected in endothelial cells of blood vessels of

the umbilical cord (Fig 6E) and muscle tissues (Fig 6F).

Most of the aborted foetuses in experiment 2 were severely autolytic and unsuited for fur-

ther analysis (S3 Fig). The foetuses that were suitable for further analysis presented with

severely necrotic livers and contained high levels of viral RNA in liver and brain samples.

Hepatocytes and endothelial cells were strongly positive for RVFV antigen.

RVFV strain 35/74 infects cytotrophoblasts and syncytiotrophoblasts in

human placental explants

To study if RVFV strain 35/74, which was originally isolated from sheep, replicates in human

placentas, explants of human term placentas were inoculated with the virus. The results show

that the virus replicates efficiently in cytotrophoblasts and syncytiotrophoblasts (Fig 7), as

revealed by RT-qPCR, virus isolation and IHC. In some areas of the placenta, viral antigen was

detected in cytotrophoblasts but appeared to be absent in syncytiotrophoblasts, suggesting that

the former are more permissive to RVFV replication (Fig 7C). The differences and similarities

between the ovine and human placenta are depicted in S4 Fig.

Discussion

The most characteristic feature of RVFV epizootics are abortion storms in sheep herds. During

these events, all pregnant ewes in an affected herd may abort their foetuses. Although the detri-

mental effects of RVFV infection on ruminant pregnancy are well-recognized, the route that

the virus uses to cross the placenta and the pathogenic events that result in abortion have

remained undescribed. Here, we report that maternal and foetal epithelial cells in the ovine

placenta are highly susceptible and permissive for RVFV and that abortion results from severe

pathology of the placenta. In some ewes, the rapid progression of placental demise caused foe-

tal mortality before foetuses could be infected.

During gestation, the progesterone hormone keeps the uterus and myometrium in a quiescent

state to allow successful foetal development until parturition [24]. During the first trimester of ges-

tation in sheep, progesterone is produced by the corpus luteum which resides in the ovaries. Dur-

ing the second and third trimester, the developing placenta becomes an additional source of

progesterone. Placental progesterone is produced by binucleate trophoblasts that migrate to the

maternal epithelium to fuse with uterine epithelial cells to form so-called syncytial cells. At about

90 days of pregnancy, half of the progesterone in the pregnant ewe is produced by the corpus

luteum and half by the placenta. Our study has revealed that both trophoblasts and (syncytial) epi-

thelial cells are major target cells of RVFV. Widespread necrosis of these cells likely results in a

drop of systemic progesterone levels. In addition, virus-induced necrosis of placental cells leads to

the production of pro-inflammatory chemokines and cytokines like TNF-α, IFN-γ and IL-8,

which stimulate prostaglandin (E2/F2α) excretion by the placental epithelium. Prostaglandins

bring the corpus luteum in regression, resulting in a further drop in progesterone levels. In the

absence of the inhibitory effect of progesterone, prostaglandins induce uterine contractions and

cervical effacement resulting in abortion. Inflammatory cytokines, most notably TNF-α, are also

known to reduce vascular integrity. In the face of lowered coagulation factors in maternal blood

resulting from liver necrosis, this could explain the observed placental haemorrhages.

Our study has revealed that RVFV uses at least two routes to cross the ovine placenta.

The first route involves the haemophagous zones of the placenta, where foetal trophoblasts

are in direct contact with maternal blood. Trophoblast cells in the haemophagous zone are
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Fig 7. RVFV in human placental explants. Detection of viral RNA (A) and infectious virus (B) in human full term placental explants at different

timepoints post infection. Viral RNA was detected by RT-qPCR and infectious virus by virus isolation. (C, D, E) Immunohistochemical staining of

RVFV with mAb 4-D4, counterstained with haematoxylin. (C) Single villus with syncytiotrophoblasts (black arrowheads) staining negative for RVFV

antigen with cytotrophoblasts (brown staining, red arrowhead) staining positive. (D) Single villus in which no cytotrophoblasts are present, with

positive staining of syncytiotrophoblasts (black arrowheads). (E) Single villus showing absence of background IHC staining in non-infected control

placental explant. Syncytiotrophoblasts are indicated with black arrowheads. (F) Immunohistochemical staining of epithelial cells in a non-infected

placental villus with a mAb to cytokeratin showing both the syncytiotrophoblast layer (black arrowheads) and the cytotrophoblast layer (red

arrowheads). Bar = 20 μm (C, D, E) or 50 μm (F).

https://doi.org/10.1371/journal.pntd.0007898.g007
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specialised in phagocytosis of erythrocytes from the blood to provide the foetus with iron. The

presence of RVFV in maternal pools of blood in the haemophagous zone may therefore result

in direct infection of trophoblasts or via co-uptake of the virus during erythrophagy. The sec-

ond route initiates with infection of maternal epithelial cells of the placenta. Virus released

from these cells exposes foetal trophoblasts. Progeny virus produced by infected trophoblasts

is subsequently released into the foetal mesenchyme exposing endothelial cells of foetal blood-

vessels, which were also identified as target cells of RVFV.

The finding that foetal endothelial cells and endothelial cells in the maternal caruncle are

target cells of RVFV is notable, as most of our previous studies with juvenile and adult sheep

did not reveal endothelial cell infection. However, in one of our studies, RVFV-positive endo-

thelial cells were detected in lymphoid organs of a lamb that peracutely succumbed after devel-

oping exceptionally high viremia [25]. In another study, endothelial cells of the skin became

infected after feeding of mosquitoes on a viremic lamb [26]. These findings, together with the

haemorrhagic manifestations that were seen in RVFV infected placentomes in this study, calls

for further research into the interaction of RVFV with endothelial cells.

In a recently published study by McMillen and co-workers, RVFV infection of human pla-

cental explants was shown for the first time, using a strain that was originally isolated from

humans [11]. Our experiments with human placental explants corroborate this research and

highlight the potential risks of RVFV infection during human pregnancy. In the same study,

the pathogenesis of RVFV infection in pregnant Sprague-Dawley rats was described. This

work demonstrated that vertical transmission in these rats occurs through direct placental

infection and that viral loads in the placenta were higher than in the liver and other maternal

organs, similar as observed in the present study. In our study, the ovine placenta was not only

found to contain the highest viral loads but was also the only organ still containing high levels

of infectious virus at the moment of necropsy. These findings suggest that RVFV efficiently

counteracts innate immune responses in placental cells.

RVFV counteracts host innate immunity through several functions of the nonstructural

NSs protein [27–32]. One of the major functions of NSs is the downregulation of type I inter-

feron (IFN) responses, which occurs through downregulation of general host gene transcrip-

tion and the direct inhibition of IFN-β mRNA production [27,28,32]. Whereas in most cell

types, type I IFNs play a major role in innate immunity, in cells of epithelial origin, such as the

cells of the placenta, innate immunity is regulated by type III IFNs, referred to as IFN-λ [33].

Importantly, both type I and type III IFNs trigger the JAK/STAT pathway, which was shown

to be targeted by NSs [34]. We therefore hypothesize that RVFV NSs facilitates replication in

placental tissues by downregulating JAK/STAT signalling. On the other hand, previous studies

have demonstrated that RVFV can also cross the ovine placental barrier without NSs [35].

These infections did not result in abortions but instead in stillbirths and congenital malforma-

tions, including arthrogryposis and hydranencephaly, resembling pathology in ovine foetuses

infected by members of the genus Orthobunyavirus, such as Schmallenberg virus.

In conclusion, the present work has revealed how RVFV crosses the ovine placental barrier

and has provided novel insights into the pathology that results in abortion in the most suscep-

tible target species. The sheep isolate that was used was shown to replicate efficiently in human

placental explants as well, calling for further research on the risk of RVFV infection during

human pregnancy.

Supporting information

S1 Fig. RVFV infection results in extensive placental haemorrhages. Placenta from a healthy

ewe (A) and from an ewe inoculated with RVFV, necropsied six days after inoculation (B).
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Placentas were collected during experiment 1 at one third of gestation.

(TIF)

S2 Fig. Replication of RVFV in caruncles is associated with bleeding and infection of

maternal endothelial cells. (A) Micrograph of HE-stained caruncle tissue of ewe 1845 eutha-

nized at 7 dpi (experiment 2). Notice the extensive haemorrhages at the base of the caruncle

(arrowhead and inset). (B) Immunohistochemical staining of RVFV antigen. Positive staining

is only seen in those areas where necrotic maternal epithelium is still present. Some maternal

blood vessels are also stained (arrowhead and inset) and show the presence of RVFV antigen

in the endothelial cells and the smooth muscle cells of the tunica media (inset). Bar = 1000 μm

(A, B), 100 μm (inset A), or 50 μm (inset B). LP; lamina propria, C; caruncle.

(TIF)

S3 Fig. Pathological manifestations in foetuses collected from RVFV infected ewes. Healthy

foetuses collected from ewes necropsied at one third (A) or at mid-gestation (B). (C) Foetuses

carried by ewe 1764 that succumbed 4 days after inoculation with RVFV in experiment 1. (D)

Live foetus collected from an ewe that was necropsied at 4 dpi in experiment 2. (E) Autolytic

foetus collected from an ewe necropsied at 6 dpi in experiment 1. (F) Two aborted foetuses

from experiment 2 (left) and one foetus (right) that was still inside the uterus at the moment of

necropsy.

(TIF)

S4 Fig. Schematic presentation of the ovine and human placenta. A human placenta consists

of a single discoid plaque whereas an ovine placenta consists of placentomes (A). A cross sec-

tion of both placentas is depicted, showing the maternal tissues in shades of pink, and the foe-

tal villi in orange. Blood and arteries are depicted in red, veins are depicted in blue (B). In the

synepitheliochorial placenta (C, left panel), the foetal blood is separated from maternal blood

by several maternal and foetal cell layers. In the haemophagous zone (C, middle panel) mater-

nal blood is in direct contact with the foetal trophoblasts, which is similar to the human hae-

mochorial placenta (C, right panel).

(TIF)
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