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1  |   INTRODUCTION

Understanding the metabolism of small molecules is of 
paramount importance to the drug discovery industry and 
mitigates the risk of costly late failure in drug development 
projects due to adverse ADMET properties. Modern experi-
mental approaches enable the elucidation of ADMET prop-
erties at an unprecedented level of detail but remain costly 
and time-consuming, so it is desirable to have efficient and 
reliable in silico methods in place (Kirchmair et al., 2015; 
Wilson, 2014). The most effective computational approaches 
allow the profiling of large datasets and enable the interactive 
optimization of lead compounds but at vastly lower expense. 
In the context of metabolism prediction, in silico tools are 
most commonly used for predicting substrates and inhibitors 
of metabolic enzymes, sites of metabolism (SoMs that is, 
metabolically labile atom positions in the substrate at which 

biotransformations are initiated) and structures of likely me-
tabolites. These predictions can then be used as part of the 
multi-parameter optimization drug discovery process, help-
ing to satisfy stability constraints, increase in vivo half-life 
and avoid toxic metabolites.

Metabolic enzymes and systems have evolved to provide 
defense against xenobiotics (foreign and potentially hazard-
ous molecules in our environment such as toxins and poisons) 
by transforming them into more readily excretable metabo-
lites (Testa, 2014; Tyzack, Furnham, Sillitoe, Orengo, & 
Thornton, 2017). Pharmaceuticals and other molecules en-
countered through the course of modern life fall under the 
remit of these metabolic processes which operate on them 
in two broad categories: phase I metabolism involves mak-
ing the molecule more polar and hydrophilic; and phase II 
involves conjugation with endogenous hydrophilic com-
pounds. The net result is that metabolism is responsible for 
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the clearance of about 75% of all drugs (Di, 2014) producing 
metabolites with different physicochemical, physiological, 
pharmacological, and toxicological properties (Kirchmair, 
et al., 2015; Kirchmair, Howlett, et al., 2013; Tyzack & 
Glen, 2014). Metabolism poses many challenges, but a more 
complete understanding also generates opportunities (Testa, 
Pedretti, & Vistoli, 2012), as summarized in Figure 1.

The most important enzymes in phase I belong to the cy-
tochrome P450s (CYPs) since they produce the most first 
generation metabolites and have a high proportion of toxic/
reactive metabolites (Testa et al., 2012). They are a family 
of heme-containing enzymes ubiquitously found in animals, 
plants, fungi, and bacteria where at least 57 CYP isoforms 
have been documented in humans. The different CYP iso-
forms exhibit varying pocket sizes, shapes, binding surfaces, 
and flexibility, giving them different substrate specificity 
profiles and directing metabolism toward different parts of 
small molecules (Leach & Kidley, 2014; Mustafa, Yu, & 
Wade, 2014; Testa, 2014). Some CYP isoforms have re-
markable ligand promiscuity driven in part by the size and 
plasticity of their binding sites where significant flexibility 
and conformational change has been revealed with molecu-
lar dynamics simulations (Mustafa et al., 2014). CYPs can be 
classified into two major classes: those involved in xenobiotic 
detoxification found mainly in the liver (such as the CYP2 
and CYP3 families); and those involved in the biosynthesis 
of endogenous compounds such as sterols, fatty acids, eico-
sanoids, and vitamins (Guengerich, Waterman, & Egli, 2016; 
Rendic & Guengerich, 2015).

There are many factors that make understanding the ac-
tion of CYP enzymes in vivo challenging, including expres-
sion patterns, inhibition levels, and genetic polymorphisms. 
Expression patterns vary significantly across organs, the 
highest human concentrations being found in the liver and 
small intestine, but expression is also influenced by gender, 
age, disease, stress, lifestyle, diet, and medication (Testa, 
2014). These factors will all influence in vivo CYP expres-
sion and the rate of drug clearance. Furthermore, CYP inhi-
bition and induction can be hugely influential, such as the 
flavonoid CYP inhibitors found in grapefruit juice that can 

result in higher drug concentrations than anticipated in the 
dosing regimen. Conversely, CYP induction can cause drug 
concentrations to fall below therapeutic levels, such as the di-
etary supplement St John’s Wort, a potent inducer of CYP3A4 
(Roby, Anderson, Kantor, Dryer, & Burstein, 2000). CYP ge-
netic polymorphisms manifesting as loss or gain of function 
variants also need to be considered in the drug development 
process so that undue reliance is not placed on CYP isoforms 
that have known deficiencies in certain ethnic populations. 
These factors all contribute to an overall complex picture and 
make prediction of drug metabolism highly challenging but 
essential for drug discovery and development.

This review is intended to describe important contribu-
tions in the field of CYP metabolism prediction and cover 
more recent developments in this field but with a focus on 
methods that are freely available (Table 1). More compre-
hensive and complete lists of publications, software, and 
databases can be found elsewhere (Bezhentsev et al., 2016; 
Kar & Leszczynski, 2017; Kirchmair et al., 2015) with other 
reviews covering topics such as molecular dynamics, and QM 
modeling (Kirchmair et al., 2012; Shaik, Chen, Usharani, & 
Thiel, 2014; Williamson, 2014) and pharmacogenetics, phar-
macoepigenetics, and clinical significance (Manikandan & 
Nagini, 2018) in more detail.

2  |   METHODS FOR CYP 
SPECIFICITY PREDICTION

Understanding the specificity of individual CYP isoforms 
to bind small molecules can assist in the prediction of meta-
bolic stability, enzyme inhibition, and drug–drug interactions. 
Docking methods explicitly model the substrate binding 
event, such as OpenVirtualToxLab (Vedani, Dobler, Hu, & 
Smieško, 2015) that uses flexible docking in combination 
with multi-dimensional QSAR to predict the inhibition of 
five of the main xenobiotic metabolizing CYPs. However, 
these methods are computationally expensive, presenting 
challenges when attempting to incorporate them into soft-
ware tools. For this reason, machine learning methods such as 
neural networks (Dai, Xu, Xiong, Liu, & Wei, 2016), support 
vector machines (SVMs) (Daina, Michielin, & Zoete, 2017) 
and random forests (Hunt, Segall, & Tyzack, 2018) have 
evolved as the mainstay for predicting enzyme specificity as 
they allow the modeling of the complex nonlinear relation-
ships observed in large collections of enzyme–substrate inter-
action data. They differ in terms of the data on which they are 
trained, the descriptors used to represent the data, the scope 
of predictions, and the type of machine learning methodology 
employed. Machine learning models produce accurate results 
quickly and so lend themselves for usage in web applications 
where results can be returned in real time. However, the quan-
tity and quality of the available data is often a limiting factor 
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and determines the coverage and performance of these mod-
els (Kirchmair et al., 2015). So far they have not allowed the 
generation of sufficiently accurate regression models but only 
classification models (Gleeson et al., 2007).

When applying models for CYP specificity prediction, 
care must be taken to ensure that the predictive models are 
based on predicting enzyme–substrate interactions or en-
zyme–inhibitor interactions. SwissADME (Daina et al., 
2017) is a web service that offers, among many other tools, 
SVM models for the prediction of inhibitors for the five 
major CYP isoforms (i.e., CYPs 1A2, 2C19, 2C9, 2D6, and 
3A4). The classifiers were trained on data from the PubChem 
Bioassay 1851 dataset (Veith et al., 2009) using 50 molecu-
lar and physicochemical descriptors. CypRules (Shao et al., 
2015) is another web service that predicts inhibitors and non-
inhibitors of the same major CYPs based on the same data. 
It utilizes decision trees in combination with the concept of 
information entropy.

In contrast, a downloadable java program called CypReact 
(Tian, Djoumbou-Feunang, Greiner, & Wishart, 2018) classi-
fies molecules as substrate or non-substrate (but not inhibitor 
and non-inhibitor) for nine major xenobiotic metabolizing 
isoforms. It uses a machine learning method called LBM 
(learning base model) based on many physicochemical and 
structural properties but applies feature selection to avoid 
over-fitting. The training data of approximately one thousand 
compounds was compiled from several different sources.

There are also a number of commercial offerings for the 
prediction of enzyme inhibition and specificity. The StarDrop 
platform contains functionality called WhichP450 (Hunt 
et al., 2018) that identifies enzyme–substrate interactions for 
seven major xenobiotic metabolizing isoforms. It uses ran-
dom forest models based on datasets manually extracted from 
the primary literature, where care was taken to annotate the 
training data with major and minor metabolizing isoforms 
for completeness. ADMET Predictor (Simulations Plus) has 
functionality to both predict inhibitors for five major drug 
metabolizing CYPs and substrates for nine CYP isoforms 
using data acquired from the BIOVIA Metabolite database, 
(BIOVIA Metabolite, n.d.) the Drugbank database (Wishart 
et al., 2018), and other public resources.

3  |   METHODS FOR SITE OF 
METABOLISM PREDICTION

There are two components to model in order to predict 
SoMs: the reactivity and accessibility of atoms in a molecule. 
Modern methods for SoM prediction follow different con-
cepts to model these two components falling into two cat-
egories: structure-based and ligand-based. Structure-based 
methods incorporate knowledge about the CYP enzyme and 
suffer from being computationally expensive. Consequently, 

ligand-based methods trained on datasets of known (non-) 
binders and metabolic sites are far more commonly applied in 
prediction tools. Ligand-based methods can be further subdi-
vided into the sub-categories data mining, expert knowledge, 
and machine learning. The models presented in the follow-
ing sections address reactivity and accessibility using various 
combinations of structure- and ligand-based approaches.

3.1  |  Reactivity
The reactivity of different molecular fragments toward 
CYP-mediated oxidation is the major determinant of SoMs. 
Reactivity can only really be classified as structural in terms 
of QM-MM simulations that model the reaction in silico but 
the extremely high computational cost limits this approach to 
very detailed studies of a particular pathway with a particular 
substrate (Shaik et al., 2014). Consequently, reactivity is nearly 
always ligand-based in the SoM prediction tools that will be 
described. Data mining, expert knowledge, and machine learn-
ing methods are almost exclusively ligand-based, involving 
searching annotated ligand datasets, applying knowledge of li-
gand metabolism, or learning from ligand datasets respectively.

3.1.1  |  Reactivity: Simulation-based
QM methods allow the accurate investigation of reactivity 
but at substantial computational expense and it is common 
for investigators to carry out QM calculations on a predefined 
library of molecular fragments from which to match to query 
molecules. This technique was adopted as one component of 
SMARTCyp (Rydberg, Gloriam, & Olsen, 2010; Rydberg, 
Gloriam, Zaretzki, Breneman, & Olsen, 2010), which pre-
dicts SoMs based on activation energies calculated using 
density functional theory (DFT) calculations applied to a li-
brary of molecular fragments. The P450 Module within the 
commercial software stardrop adopts a different approach 
(Tyzack, Hunt, & Segall, 2016), directly modeling the re-
action pathway using parameterized semi-empirical AM1 
QM methods. This enables activation energy estimates to 
be generated for each molecular fragment in the context of 
the molecular environment in which it resides, rather than 
treating each fragment as identical regardless of its neighbor-
ing atomic moieties. The semi-empirical QM methods use a 
methoxy radical to simplify the calculations since modeling 
the heme group and its protein environment is more akin to 
full QM-MM methods which are extremely computationally 
expensive and cannot be run routinely for SoM identification 
(Olsen, Rydberg, Rod, & Ryde, 2006; Shaik et al., 2014).

3.1.2  |  Reactivity: Descriptor-based
Other methods include reactivity descriptors as a compo-
nent to approximate the hydrogen and electron abstraction 
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processes fundamental to the CYP catalytic cycle but often 
require QM minimization to be carried out on a query mol-
ecule which carries significant computational expense. A 
number of studies have identified reactivity descriptors 
based on the energies of molecular orbitals (Mukherjee, Lal 
Gupta, & Jayaram, 2015; Tyzack, Williamson, Torella, & 
Glen, 2013) and hardness (Pragyan, Kesharwani, Nandekar, 
Rathod, & Sangamwar, 2014) as important metrics to 
help determine SoMs. The commercial software ADMET 
Predictor (Simulations Plus) uses reactivity descriptors based 
on Huckel charges and semi-empirical molecular orbital cal-
culations among others, and MetScore (Göller, Finkelmann, 
Goldmann, & Schneider, 2018) is based on quantum chemi-
cal partial charges.

3.2  |  Accessibility
Accessibility can be modeled either as structure-based, using 
(pseudo-) docking approaches to insert the molecule into the 
CYP binding pocket, or ligand-based, using molecular fin-
gerprints to approximate steric hindrance and orientational 
concerns. These approaches will be discussed in more detail 
alongside the reactivity metric they supplement.

3.2.1  |  Accessibility: Structure-based
Structure-based methods explicitly model the accessibility 
criteria by placing the molecule into the CYP binding pocket. 
The output from these methods is easy to interrogate as they 
generate binding poses that can be inspected by the user and 
are rooted in the physical reality of explicitly modeling the 
binding event. Today, crystal structures are available for al-
most all CYP isoforms relevant to xenobiotic metabolism 
(Guengerich, 2014; Oostenbrink, 2014). Malleability of 
these enzymes, their complex interplay with water, and the 
hydrophobic character of their—in part—very large bind-
ing sites pose significant challenges to the application of 
structure-based approaches, in particular docking. For this 
reason, structure-based methods are primarily applied for 
the detailed investigation of the interaction of CYPs with 
individual compounds rather than for the profiling of small-
molecule libraries. In this setup, structure-based methods can 
be particularly valuable for rationalizing distinct biological 
properties of enantiomers.

A large number of studies employing docking algorithms 
to determine the SoMs of small molecules have been pub-
lished. One example from 2015 used Autodock Vina (Trott 
& Olson, 2010) to insert substrates into an ensemble of CYP 
2C9 structures (Kingsley, Wilson, Essex, & Lill, 2015) and 
gave overall predictions by coupling with reactivities from 
SMARTCyp. The authors highlighted the importance of con-
sidering flexibility and sampling conformational space by the 
improvement in going from docking into a single structure to 

an ensemble of structures. Constrained docking has also been 
explored (Tyzack et al., 2013), reducing the size of the search 
space by fixing each ligand atom in turn in a position relevant 
to catalysis relative to the CYP heme and explicitly obtain-
ing a score for each potential SoM. However, it is far more 
common for unconstrained docking to be applied, predicting 
SoMs as those that are in close proximity to the heme in the 
best pose(s), but placing reliance on the docking algorithm to 
fully explore conformational space rather than forcing it to 
consider each potential SoM as in the constrained workflow.

Another publication used the top three poses from in-
house docking software combined with reactivity descriptors 
based on molecular orbitals to build a classifier with good 
performance (Mukherjee et al., 2015). The docking method 
carries considerable computational expense since its estima-
tion of binding free energies requires the calculation of par-
tial charges from QM software and energy minimization with 
MD software, but a good correlation to experimental binding 
free energies was observed. The docking software GLIDE 
has also been combined with reactivity descriptors based on 
hardness to identify metabolically labile sites (Pragyan et al., 
2014).

There are also several commercial packages available 
that make SoM predictions using CYP structural informa-
tion. MetaSite (Cruciani et al., 2005) was one of the pio-
neers of structure-based methods for SoM prediction and 
was developed into a commercial software package. It uses 
a pseudo-docking approach where steric and chemical prop-
erties of CYPs such as hydrogen bonding or hydrophobic re-
gions are described by molecular interaction fields (MIFs), 
calculated by placing various chemical probes in a grid 
system embedded over the CYP structure. Potential SoMs 
can be identified in a target molecule by aligning to the 
MIFs, coupled with matching molecular fragments to pre-
computed reactivity scores from QM approaches. IDSite 
(Li, Schneebeli, Bylund, Farid, & Friesner, 2011) samples 
the conformational space of CYPs as part of a flexible dock-
ing procedure with Glide (Friesner et al., 2004).

3.2.2  |  Accessibility: Ligand-based
Ligand-based approaches have the benefit of speed and have 
been shown to perform at least as well as structural methods, 
although sometimes with less interpretability. They provide 
indirect information about the active site of a protein on the 
basis of the location of documented SoMs in the molecular 
graph, a concept rather like describing a glove by the prop-
erties of hands that will fit into it. There are various ways 
to encode the accessibility of molecular fragments using a 
2D molecular graph such as the simple SPAN predictor 
used in SMARTCyp (Rydberg, Gloriam, Zaretzki, et al., 
2010) which measures the relative distance to the “edge” of 
a molecule and was used in conjunction with pre-computed 
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reactivity scores. A different concept is the use of 3D align-
ments to derive the SoMs for a compound of interest from 
reference compounds with annotated SoMs (de Bruyn Kops, 
Friedrich, & Kirchmair, 2017). Typically, methods evaluat-
ing the accessibility of atom positions are combined with 
reactivity metrics to produce predictive models such as the 
P450 Module within StarDrop which contains orientational 
and steric descriptors derived from manually curated datasets 
from the primary literature.

3.3  |  Data mining
These methods encode the SoMs stored in metabolic databases 
in a manner that allows easy interrogation with molecular 
fragments in query molecules. One example is MetaPrint2D 
(Adams, 2010) that derives likelihoods of metabolic transfor-
mations for atoms in defined atomic environments by min-
ing the BIOVIA Metabolite database, but is unfortunately no 
longer maintained. PROXIMAL (Yousofshahi, Manteiga, 
Wu, Lee, & Hassoun, 2015) uses a similar data mining of 
atomic sites approach but using the KEGG and DrugBank da-
tabases, where matches are scored by activity and abundance 
data obtained from the literature.

3.4  |  Machine learning
Machine learning software tools are popular since they can 
be routinely applied to large datasets early in the drug discov-
ery process (Xiong et al., 2018). However, the size and qual-
ity of available data and the features used to describe them 
are of paramount importance in the development of these 
approaches. Much data are held in-house within big phar-
maceutical companies but there is a dearth of high-quality 
SoM data in the public domain where the Zaretzki dataset 
(Zaretzki, Matlock, & Swamidass, 2013) (recently revised by 
de Bruyn Kops et al., 2017) remains the most comprehensive. 
Also, many of the datasets only record the major sites and 
metabolites and often significant secondary or tertiary data 
points are overlooked, leading to pessimistic false positive 
rates being reported when a non-recorded SoM is predicted. 
Recent efforts at Optibrium to collate enlarged, high-quality 
datasets from the literature highlighted this issue where it was 
observed that papers from different groups studying the same 
metabolic process varied in the completeness of the meta-
bolic sites recorded although this data remain in-house and 
forms the basis of the P450 module within StarDrop.

There can be a tendency with machine learning approaches 
to keep adding extra descriptors but this can lead to over-
fitting problems and hinder interpretability of the models. 
However, one study showed that 2D topological descriptors 
based on MOLPRINT2D fingerprints (Bender, Mussa, Glen, 
& Reiling, 2004) coupled with machine learning methods 
were sufficient to produce strong classification performance 

(Tyzack, Mussa, Williamson, Kirchmair, & Glen, 2014). 
Descriptors based on 2D atomic neighborhoods also form 
the basis of SOMP (Rudik, Dmitriev, Lagunin, Filimonov, & 
Poroikov, 2014) (available as a web server; Rudik, Dmitriev, 
Lagunin, Filimonov, & Poroikov, 2015) which uses Bayesian 
classification models trained on data from the BIOVIA 
Metabolite database and confirms that successful prediction 
models can be built without having to resort to a plethora of 
QM based descriptors.

FAME 2 (Šícho, de Bruyn Kops, Stork, Svozil, & 
Kirchmair, 2017) is an accurate and robust approach to the 
prediction of SoMs related to CYP metabolism. It is built 
on the strong foundations laid by its predecessor, FAME 
(Kirchmair, Williamson, et al., 2013), but utilizes an ex-
tremely randomized tree algorithm (rather than random for-
est) and a new type of circular fingerprint. At the same time, 
FAME 2 maintains the overall design ethos of stripping away 
complexity where it is not justified in terms of performance. 
The more descriptive topological descriptors of FAME 2 pro-
duce models that generalize well, making them applicable to 
molecular structures distant from those represented by the 
training data, such as complex natural products. The model 
was shown to obtain competitive performance with computa-
tionally more expensive methods based on density functional 
theory (Finkelmann, Göller, & Schneider, 2017; Šícho et al., 
2017).

Another example of a free SoM predictor is Xenosite 
(Zaretzki et al., 2013), which was built on RS-Predictor. 
Xenosite utilizes neural networks trained on topological, 
molecular, and quantum chemical descriptors coupled with 
SMARTCyp reactivities. In contrast to its predecessor, out-
puts are represented as probabilities rather than rank order-
ings. Xenosite is available as a web server (Matlock, Hughes, 
& Swamidass, 2015) and was extended to non-CYP applica-
tions such as UGT-mediated metabolism prediction (Dang, 
Hughes, Krishnamurthy, & Swamidass, 2016).

4  |   METHODS FOR METABOLITE 
STRUCTURE PREDICTION

Methods for metabolite structure prediction are dominated 
by knowledge-based approaches. These approaches rely on 
cumulative knowledge acquired by drug discovery scientists 
over the years through observation and experimental work. 
Underlying these methods are a series of expert-curated 
rules that represent SoMs and metabolic transformations, 
but when applied iteratively they can lead to an unmanage-
able combinatorial explosion of predictions. SyGMa (Ridder 
& Wagener, 2008) combines an expert-curated rule set 
with empirical scoring to predict and rank the likely prod-
ucts of phase I and phase II metabolism. It was one of the 
earliest freely available offerings to generate metabolite 
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structures but remains a highly effective and useable tool. 
More recently, in addition to being made available as a 
software package, SyGMa has been released as a KNIME 
(Berthold et al., 2018) node as part of the 3D-e-Chem pro-
ject (Kooistra et al., 2018). ToxTree (Patlewicz, Jeliazkova, 
Safford, Worth, & Aleksiev, 2008) includes a module for 
metabolite structure prediction which is based on SoMs pre-
dicted with SMARTCyp. A further example of a free model 
is the MetaTox web server (Rudik et al., 2017) which uses 
a Bayesian approach for the prediction of likely metabolites 
and additionally estimates the toxicity of predicted metabo-
lites using QSAR models. MetaPrint2D-React is an extension 
to the SoM predictor MetaPrint2D (Adams, 2010) which pre-
dicts the structures of likely metabolites based on the occur-
rence ratio of biotransformations in the BIOVIA Metabolite 
database. Unfortunately, the MetaPrint2D-React web service 
is no longer maintained.

Commercial tools for specificity and SoM prediction 
usually have functionality to generate metabolite structures 
from their regioselectivity predictions, including StarDrop, 
ADMET Predictor, and Percepta. Also the previously dis-
cussed pseudo-docking method MetaSite includes an array 
of methods for the prediction and assessment of metabolite 
structures. A leading expert system for the prediction of 
likely metabolites and structures is Meteor Nexus (Marchant, 
Briggs, & Long, 2008), which mitigates the combinatorial 
explosion problem with the 2017 addition of a k-nearest 
neighbor approach to prioritize transformations toward those 
most commonly observed (Marchant, Rosser, & Vessey, 
2017). Meteor also includes models for SoM prediction via a 
reimplementation of SMARTCyp and tools for linking mass 
spectrometry data with predicted metabolites of phase I and 
phase II biotransformations.

5  |   CHALLENGES AND OUTLOOK

This review has demonstrated the number and diversity of 
different approaches to predict xenobiotic metabolism high-
lighting the fundamental importance of this topic to drug 
discovery. Machine learning methods are by far the most 
commonly adopted method to make predictions as they can 
be usefully applied to large, complex data at an early stage 
in a drug discovery project. It is hoped that this review will 
be useful in focusing readers’ attention to those methods that 
can be readily applied in drug discovery programmes.

The users of metabolism prediction tools are primarily 
industry-based but due to confidentiality issues data can 
often not be submitted to web services across the internet. 
For the available tools to be useful to industry, they need to be 
distributed as packages that can be executed within the com-
pany’s infrastructure. However half of all tools developed 
in academia are unfortunately only offered as web services. 

This should be reconsidered to make software developed by 
academia more useable by industry.

The predictive performance of these methods is strong 
and is probably approaching the limit based on the quality 
of the available data. However, annotation (SoM assignment 
in particular) is time-consuming and requires expert knowl-
edge hindering the availability of data in the public domain. 
The amount of data is growing slowly and would be greatly 
aided by the release of metabolic data by pharmaceutical 
companies but suffered a significant setback when BIOVIA 
decided to withdraw the Metabolite database from their 
product range which formed the basis of many applications.

Similarly, strong classification performance is often re-
ported by new methods but it would be desirable if metabo-
lism prediction tools gave some assessment of their domain 
of applicability or an indication of the confidence domain 
of predictions. This functionality is sometimes observed in 
commercial offerings such as the metabolic lability labels in 
StarDrop and the SoM propensity scores in ADMET Predictor 
but is often neglected in academic tools. Furthermore, the 
comparison of methods is often challenging because many 
studies do not disclose their training sets and the creation of 
benchmark datasets would make direct comparison much 
easier. When presenting performance, it would also be bene-
ficial to routinely make comparisons to pure chance to fairly 
reflect the predictions being made.

We expect the momentum in metabolism prediction 
software to be maintained in the foreseeable future due to 
the importance of this topic to drug discovery but prog-
ress will inevitably be hindered by the lack of high-quality 
data. Currently, the focus has been on CYP metabolism due 
to its relevance to phase I drug metabolism but we expect 
that more attention will turn to enzymes involved in other 
clearance pathways such as glutathione transferases and 
sulfotransferases.
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