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Abstract. Five major cAMP-binding proteins that dif- 
fer in size and charge have been identified in neurons 
ofAplysia californica by photoaffinity labeling with 
[32p]8-N3cAMP. These proteins, which we believe are 
regulatory subunits of cAMP-dependent protein ki- 
nase, all differ from the major cAMP-binding protein 
of buccal muscle. We have compared the structures of 
these proteins by peptide mapping after chemical and 
proteolytic cleavage. These analyses indicate that the 
five binding proteins from nervous tissue and the ma- 
jor muscle protein are closely related to each other. 
For example, the three neuronal proteins that are 
most alike and the cAMP-binding protein from mus- 
cle have a similar, if not identical, Mr 20,000 domain 
that contains the 8-N3cAMP-binding site; beyond this 

domain they diverge. All six proteins appear to belong 
to a family in which homologous regions have been 
conserved to maintain common functions. We suggest 
that the regions of the molecules that differ mediate 
special functions such as ticketing to particular com- 
partments of the cell. Evidence for regional assort- 
ment of the cAMP-dependent protein kinases accord- 
ing to structural type was afforded by subceUular frac- 
tionation of Aplysia nervous tissue; photoaffinity la- 
beling of cytoplasm, cytoskeleton, and membrane 
fractions demonstrated a differential distribution of 
the five neuronal cAMP-binding proteins. Selective 
phosphorylation of specific substrates could be a con- 
sequence of the compartmentation of diverse cAMP- 
dependent kinases. 

AMP-dependent kinase has been shown to regulate the 
function of ion channels in the central nervous system 
of the marine mollusc Aplysia (6, 7). We previously 

have used photoaffinity labeling with [32p]8-N3cAMP fol- 
lowed by two-dimensional gel electrophoresis to identify five 
cAMP-binding proteins in Aplysia nervous tissue (16). Muscle 
contains a sixth binding protein, and a survey of the other 
parts of the body has revealed that each Aplysia tissue contains 
its own characteristic group of cAMP-binding proteins (36). 

Some heterogeneity also exists in vertebrate cAMP-depend- 
ent protein kinase. These enzymes are tetramers composed of 
two catalytic subunits and two cAMP-binding, regulatory 
subunits (19, 26, 34, 42). Two classes of regulatory subunits 
have been described (designated R~ and Rn). These differ in 
molecular weight (48), affinity for DEAE-cellulose (11), sus- 
ceptibility to autophosphorylation (17, 39), and affinity for 
cAMP (5). Some also differ in their affinities for the catalytic 
subunit (21), and for calmodulin (23). Moreover, the two 
types of regulatory subunit can have different subcellular 
localizations (30). There also are tissue-specific forms: for 
example, the R, subunits of vertebrate heart, liver, brain, and 
adipose tissue differ in structure (22, 30, 41, 45) and in 
antigenicity (18, 44). 

Because of the unexpected variety of cAMP-binding pro- 
teins that we found in Aplysia nervous tissue, we suggested 
that regulatory subunits with different molecular structures 
might be directed to specific sites within the cell where they 

can selectively phosphorylate local protein substrates (16). 
Heterogeneity of kinase subtypes would be especially adaptive 
in cells, like neurons, that carry out several complex functions 
and are regionally polarized. Indeed, neurons have been 
shown to contain the greatest variety of cAMP-binding pro- 
teins of all the Aplysia somatic tissues (36). Their similar 
function implies that these proteins might share several struc- 
turally homologous regions (for example, regions for binding 
cAMP and for combining with catalytic subunit), while their 
molecular diversity predicts that the structurally different 
parts of the molecules might include heterologous domains 
that are responsible for directing the proteins to their proper 
subcellular locations. Here we present a study of the similar- 
ities and differences in the Aplysia cAMP-binding proteins, 
using peptide mapping, and further information about their 
subcellular distribution. 

Materials and Methods 

Tissue Homogenates 
Neural components (consisting of cell bodies, clusters of axons and nerve 
endings, and associated glial cells) were obtained by dissection (20) from the 
cerebral, abdominal, and pleuropedal ganglia of 150-300 g Aplysia californica 
(Pacific Bio-Marine, Venice, CA) anesthetized by injection of isotonic MgCI2 
(8). During the dissection we kept the isolated ganglia in a l:l mixture of 
supplemented artificial sea water (14) and isotonic MgCl2 to prevent synaptic 
transmission (8) and then transferred them at 0*C to buffer A: 350 mM sucrose, 
170 mM NaCl, 3 mM EDTA, 1 mM EGTA, 5 mM 2-mercaptoethanol, and 
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20 mM Tris-HCl (pH 7.4). In some experiments ganglia were frozen at -20"C 
in 50% propylene glycol in I M NaCl and kept frozen in this solution during 
dissection of neural components (2). Neural components were homogenized in 
buffer A by l I gentle passes of a glass/Teflon tissue grinder with a clearance of 
~0.05 mm driven by a motor at 500 rpm. The ratio of tissue to solution was 
30-40 ganglia per ml. (Neural components from the four major central ganglia 
from one animal contain - l  mg of protein.) 

Buccal muscle masses from 20 animals were minced in 4 mM EDTA, 1 
mM EGTA (pH 7.5), 5 mM 2-mercaptoethanol, Trasylol (2 trypsin-inhibiting 
units/ml, FBA Pharmaceuticals), and 5 mM benzamidine (Sigma Chemical 
Co., St. Louis, MO), homogenized with the PT-20 probe of a Brinkman 
Polytron (Brinkman Instruments Co., Westbury, NY), and centrifuged. The 
10,000 g supernatant was filtered through Whatman 54 paper. The proteins in 
the filtrate were precipitated in 50% saturated ammonium sulfate, resuspended 
in 3 mM EDTA, 1 mM EGTA, 5 mM 2-mercaptoethanol, and 50 mM Tris- 
HC1 (pH 7.5) (10 ml), and dialyzed extensively against the same solution. 

Unless otherwise stated, experiments were conducted at 4"C and solutions 
are percent (wt/vol) for solid solutes and percent (vol/vol) for liquid solutes: 
Protein was assayed according to Lowry et al. (3 l) using bovine serum albumin 
as the standard. 

Photoaffinity Labeling 
Proteins (0.1-0.4 mg/ml) were labeled at 4"C in solutions (50 ul) containing 
0.6 ~M [32p]8-N3cAMP (50-100 Ci/mmol; ICN), and 50 mM Hepes (pH 6.3) 
(49). After 15 min in the dark, the samples were photolysed for l0 min at 254 
nm (model UV G-l I Mineralight Lamp) from a distance of 5 cm. The labeled 
proteins were separated by one-dimensional (27) or two-dimensional (35) 
PAGE and were then detected by autoradiography of the dried gels with Kodak 
XAR-2 film at room temperature, or using DuPont Lightening Plus intensifer 
screens at -70"C. Sections containing each labeled protein were cut out and 
stored at -20"C if not used immediately. 

Peptide Mapping 
Exhaustive Treatment with Trypsin. Digestion with trypsin was carried out 
essentially as described by Elder et al. (15). Gel sections containing labeled 
protein were incubated for 18 h at 37"C with 0.13 mg/ml diphenylcarbamyl 
chloride-trypsin (Sigma Chemical Co.) in 50 mM NH4HCO3 (pH 8.0), and the 
digest filtered through glass wool and dried under vacuum. The peptides were 
oxidized with performic acid (24), dried, and washed to remove excess acid, 
and subjected to digestion with trypsin again. In a control experiment, we 
found that the radioactivity linked to the intact proteins labeled by the pho- 
toaffinity reagent was not released by the oxidation. The peptides were dissolved 
in acetic acid/formic acid/water (15:5:80) and separated by electrophoresis on 
cellulose-MN 300 plates (Brinkman) using a water-cooled chamber (Brinkman) 
at a field strength of 40 V/cm. After the plates had been air dried overnight, 
chromatography was performed in the second dimension in butanol/pyridine/ 
acetic acid/water (32.5:25:5:20). 

Cleavage with Cyanogen Bromide. Each gel section was incubated for 24 h 
at 23"C in 0.4-0.8 ml of 1.3% cyanogen bromide (Sigma Chemical Co.) in 70% 
aqueous formic acid. Controls were incubated in the acid alone, which extracted 
intact proteins from the gels. The acid was removed from the extract by 
repeated evaporation to dryness from water. The residue was solubilized at 
100*C in 50 ~1 of 2% SDS, 2% 2-mercaptoethanol, and 10% sucrose, and 
neutralized with 2.5 M Tris-HCl (pH 8.0). The peptides were separated on 15% 
SDS polyacrylamide gels. 

Partial Digestions with Papain and S. aureus I/-8 Proteases. The gel sections 
were rehydrated at pH 6.8, inserted into sample wells of a 2.5% SDS polyac- 
rylamide stacking gel and overlaid with the buffer with or without papain 
(Sigma Chemical Co.), or V-8 protease (Miles Laboratories, Elkhart, IN) for 
digestion in the gels as described by Cleveland et al. (9). Gels were soaked in 
5% dimethyl sulfoxide to reduce cracking during drying for autoradiography. 

Assays of cAMP-dependent Protein Kinase 
Samples obtained by subcellular fractionation and DEAE-cellulose chromatog- 
raphy were assayed by phosphorylation of a synthetic heptapeptide substrate 
by a modification of the method of Roskoski (43) in a reaction mixture (50 ul) 
containing 0.1 mM "y[32p]ATP (0.4 Ci/mmol; New England Nuclear, Boston, 
MA), 0.1 mM Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide, Sigma Chemical Co.), 
15 mM MgCI2, 0.25 mg/ml bovine serum albumin (fatty acid free; Sigma 
Chemical Co.), 0.1% Nonidet P-40, 50 mM morpholine propane sulfonic acid 
(pH 6.8), and 0.01 mM cAMP (when assaying cAMP-dependent activity). 
Reactions were initiated by adding Aplysia protein to 0.1-0.4 mg/ml and 
stopped after 10 min by applying samples (25/al) to strips of phosphocellulose 

paper (1.5 x 3 cm, Whatman P81) followed immediately by immersion of the 
paper in 75 mM phosphoric acid (5-10 ml per strip). The strips were washed 
twice with 75 mM phosphoric acid (20-30 ml per strip), blotted, and counted. 

Preparation of a Cytoskeleton Fraction 
The neural components were extracted in l mM MgSO4, 2 mM EGTA, 2 M 
glycerol, 5 mM 2-mercaptoethanol, 0.1 M K-Pipes (pH 6.9), and Nonidet P- 
40, added to a final concentration of 0.5%, following the procedure of Pallas 
and Solomon (37). In one experiment, central nervous systems from two 
Aplysia were incubated overnight at 15"C in a supplemented artificial sea water 
(14) containing 32pi ( 1.5 mCi) (2). One set of labeled ganglia was used to prepare 
the cytoskeleton fraction by extraction with Nonidet P-40. Membranes were 
isolated from the other ganglia, after homogenization in buffer A, by centrif- 
ugation for l0 min at 15,000 g. The membrane pellet obtained contained 43% 
and the cytoskeleton fraction 46% of the total cellular protein. 3~p-labeled lipids 
were isolated by extraction according to Bligh and Dyer (4). 

Homogenization and Isolation of Membranes 
The homogenate was centrifuged for l0 min at 7,000 g to obtain a supernatant 
and a pellet, which was washed once and centrifuged again, and then further 
fractionated on a discontinuous sucrose density gradient (0.8 M/l.15 M/I.35 
M/1.6 M) by centrifugation for 1.5 h at 120,000 g. Membranes were collected 
from each interface, and each sample was sedimented at 120,000 g for 30 rain. 
The combined supernatants from the preparation of the 7,000 g pellet were 
centrifuged for l0 min at 15,000 g. The pellet was saved, and the resulting 
supernatant was centrifuged for 1.5 h at 120,000 g to obtain a pellet and a 
supernatant (soluble proteins). Pellets, resuspended in buffer A, and the super- 
natant, were stored at -70"C. All assays were performed with fractions that had 
been frozen and thawed only once. No difference in activity was observed 
between these fractions and the fresh homogenates. 

DEAE-Cellulose Column Chromatography 
The 7,000 g pellets containing membrane proteins from 8-10 animals were 
resuspended in buffer B (3 ml) containing 3 mM EDTA, 1 mM EGTA, 5 mM 
benzamidine (Sigma Chemical Co.), 5 mM 2-mercaptoethanol, and 20 mM 
Tris-HCl (pH 7.4). Nonidet P-40 was added to a concentration of 0.7%. The 
mixture was kept on ice for 30 min, and then centrifuged for 45 min at 120,000 
g. The resulting supernatant was applied at a flow rate of 3 ml/h to a column 
(0.3 x 5 cm) of DEAE-cellulose equilibrated in buffer B containing 0.7% 
Nonidet P-40. The column was washed with 5 ml of the same buffer and then 
eluted at a flow rate of 4 ml/h with a linear gradient of NaCI (0-0.4 M NaCl; 
24 ml). The 120,000 g supernatants (2-3 ml) containing the soluble proteins 
were chromatographed in the same way (but in the absence of Nonidet P-40) 
after a fivefold dilation and dialysis against 1 liter of buffer B for 3 h. Proteins 
from muscle were also chromatographed by this method. 

Results 

Identification of Five Distinct cAMP-binding Proteins 
in Nervous Tissue 
In previous preparations from nervous tissue we always found 
some cAMP-binding components with molecular weights of 
<45,000 that we assumed were produced by proteolysis during 
isolation (16). The regulatory subunits of cAMP-dependent 
protein kinases from vertebrates are also susceptible to pro- 
teolysis (12, 38). It is important to eliminate proteolytic 
activity because true lower molecular weight cAMP-binding 
proteins occur in Dictyostelium discoideum (the Mr 41,000 
regulatory subunit of a cAMP-dependent protein kinase 
[32]) and in Escherichia coli (CAP, the Mr 22,000 catabolite 
gene activator protein [51]). To reduce proteolysis during 
tissue isolation and subsequent manipulations, Aplysia neural 
components were dissected from ganglia that had been rapidly 
frozen in 50% propylene glycol and quickly homogenized in 
the presence of several protease inhibitors. Under these con- 
ditions we detected only the five larger binding proteins after 
photoaffinity labeling with [32p]8-N3cAMP and two-dimen- 
sional gel electrophoresis (Fig. 1). This confirms our previous 
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Figure 1. cAMP-binding proteins photoaffinity labeled by [32p]8-N3cAMP in a homogenate of Aplysia neural components. (A) One-dimensional 
separation in a 8% SDS polyacrylamide gel (26). P indicates proteolytic degradation products. (B) Two-dimensional separation under stringent 
conditions to prevent proteolysis. An abdominal ganglion was dissected out and quickly frozen in 50% propylene glycol in 1 M NaC1 at -20"C. 
Before homogenization the ganglion was transferred to buffer A (see Materials and Methods) containing 1 mM phenylmethylsulfonyl fluoride 
(Sigma Chemical Co.), Trasylol (20 trypsin inhibitory units/ml), and 5 mM benzamidine. Photoaffinity labeling of 30 ug protein samples was 
carded out at 0*C. The proteins, precipitated in 94% acetone at 0*C were separated by two-dimensional gel electrophoresis. The isoelectric 
focusing gels contained LKB ampholines (1.6% of pH 5-7 and 0.4% of pH 3.5-10). The second dimension consisted of a 3% polyacrylamide 
stacking gel and a 8 % separating gel. In a previous paper from this laboratory on Aplysia cAMP-binding proteins (16), the two-dimensional gel 
electropherograms were mislabeled, with the acidic and basic ends reversed. We previously used another nomenclature for the binding proteins. 
The concordance between the present and earlier terminologies is: 1 = III; 2 = Id; 3 =IId; 4 = Ilta_¢~; 5 = Ita-~. 

assertion that the smaller species (previously observed and 
seen below most prominently in Fig. 7) are proteolytic frag- 
ments of  the true cAMP-binding proteins of Aplysia. The 
possibility that some of  the five remaining polypeptides are 
derived from others by proteolysis cannot be completely 
eliminated. Given the stringent precautions taken in the ex- 
periment described above, however, it is attractive to think 
that were such proteolysis to occur it would be before homog- 
enization and of  physiological significance (see Discussion). 

We also observed isoelectric variants of four of  the five 
Aplysia proteins (proteins 2, 3, 4, and 5), differing by single 
units of  charge, which we do not recognize as distinct cAMP- 
binding proteins. Rather, we believe that they result from 
changes that occur within the cell (for example, phospho- 
rylation [ 16] or other posttranslational modifications) or from 
experimental artifact (for example, elimination or introduc- 
tion of charged groups by photoaffinity labeling). 

A final consideration in defining the number of  cAMP- 
binding proteins in Aplysia neurons was to rule out the 
possibility that protein 1 (Mr 105,000) is a dimer of  one of 
the lower molecular weight species. We previously presented 
evidence that protein I is not a disulfide-linked dimer and 
that it is not generated by ultraviolet irradiation (16). We now 
find that no protein with a molecular weight greater than 
60,000 is labeled by 8-NacAMP in Aplysia muscle or in rat 
brain homogenates (data not shown). Therefore, artifactual 
dimerization does not occur in these tissues. Lastly, those 

proteins (4 and 5) which we find have peptide maps similar 
to that of  protein 1 (see below) both differ greatly from it in 
charge. We might expect that the isoelectric point of  a dimer 
formed from them would be the same as that of  the monomer. 

Tryptic Peptides from 8-N3cAMP-labeled Proteins 

Analyses of  tryptic peptides derived from each photoaffinity- 
labeled protein gave two distinct patterns. One, in digests 
from neuronal proteins 1 and 3-5 and the muscle cAMP- 
binding protein M (Fig. 2A), contained two labeled peptides 
(a and b in Fig. 2), with peptide a being more prominent. 
The proportion of  peptide b in digests of  the same protein 
varied. 

Neuronal cAMP-binding protein 2 gave the other pattern 
of  tryptic peptides (Fig. 2B). Its major peptide (c in Fig. 2 B) 
moved further toward the negative electrode and was less 
soluble in the chromatographic solvent than were peptides a 
and b from the other cAMP-binding proteins. In all digests of  
protein 2 we also found a peptide with the same mobility as 
peptide a from the other cAMP-binding proteins. With longer 
exposures, peptide b also appeared. 

The presence of  peptides a and b in digests of protein 2 is 
not likely to be the result of  contamination by another cAMP- 
binding protein, as shown by the following experiment. We 
prepared fractions by chromatography on DEAE-cellulose 
enriched in protein 2 (see below, Fig. 7B; fractions 32-40). 
The purified protein was photoaffinity labeled and separated 
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Figure 2. Autoradiographs of two-dimensional tryptic peptide maps 
of cAMP-binding proteins labeled with [32P]8-N3cAMP. Tryptic pep- 
tides derived from the designated cAMP-binding proteins were sepa- 
rated by electrophoresis (shown in the horizontal direction) and 
chromatography (vertical). Mix, mixture of tryptic digests (equalized 
for counts) of all the neuronal binding proteins. To facilitate presen- 
tation (see text), the autoradiographs have been divided into groups 
A, B, and C. 

by two-dimensional gel electrophoresis. We localized protein 
2 by autoradiography, cut it out, and exposed the gel to x-ray 
film again to confirm that only protein 2 had been removed. 
This highly purified preparation of 2 still contained both 
peptides a and b in proportions similar to those in samples 
less rigorously purified. 

By analyzing a mixture of tryptic peptides from all of the 
neuronal cAMP-binding proteins, we showed that the mobil- 
ities of the peptides designated a in each sample were identical. 
The mobilities of the peptides designated b were also invariant 
(Fig. 2 C). 

Cyanogen Bromide Peptides of  
8-N3cAMP-labeled Proteins 

After cleavage with cyanogen bromide, neuronal cAMP-bind- 
ing proteins 1 and 3-5 and protein M each gave a major 
labeled peptide migrating upon SDS PAGE with an apparent 

Figure 3. Comparison of the labeled peptides produced by cleavage 
of neuronal [3~P]8-N3cAMP-labeled proteins with cyanogen bromide. 
A 7,000 g membrane pellet and a 100,000 g supernatant were 
prepared from Aplysia neural components. A 100,000 g supernatant 
was prepared from buccal mass muscle, cAMP-binding proteins were 
photoaffinity labeled and separated in one dimension on 8% polyac- 
rylamide gels. Because of the specific membrane and cytosolic local- 
izations of the neuronal proteins, one-dimensional gels of the labeled 
fractions yield proteins 1, 2, and 5 free of other cAMP-binding 
proteins. Proteins 3 (obtained from the particulate fraction) and 4 
(from the soluble) were only slightly contaminated with each other 
(see below Fig. 6). Areas of the electropherograms containing labeled 
proteins were localized by autoradiography, cut out of the gels, and 
treated with cyanogen bromide (see Materials and Methods). Cyan- 
ogen bromide treatment (right-hand lane of each pair) was carried 
out with twice as much protein as the controls (left-hand lane of each 
pair). Autoradiography was from 24 to 48 h at -70"C with an image 
intensifier screen. 

mass of 20,000 D, and a minor one of 28,000 D (Fig. 3). 
Protein 2 gave another pattern of peptides. Although we 
always detected traces of the Mr 20,000 peptide, the two most 
prominently labeled peptides were smaller. The smallest pep- 
tide migrated to the dye front in a 15% gel (Fig. 3), but we 
have resolved it in 20% gels and estimate its mass to be 

12,000 D. The second prominent peptide had a mass of 
15,000. 

Although the major cyanogen bromide fragments are large, 
we believe that they are the major end products of chemical 
cleavage of these proteins. There is no evidence for any smaller 
peptides: very little radiolabeled material migrated at the dye 
front in 20% polyacrylamide gels. The radioactivity initially 
present in the protein before cleavage is almost all recovered 
in the large cyanogen bromide fragments (Fig. 3). The radio- 
active products are sensitive to digestion with papain (data 
not shown), and therefore are peptides and not derivatives of 
the photoaffinity reagent released by treatment with cyanogen 
bromide. 
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Limi ted  Protease Digestion o f  
8-N3cAMP-labeled Proteins 

We next compared the peptides resulting from incomplete 
proteolysis (10) of the photoaffinity-labeled cAMP-binding 
proteins. After digestion with V-8 protease, neuronal proteins 
1, 4, and 5 gave similar peptide maps (Fig. 4A) in which 
peptides with molecular weights less than 20,000 were essen- 
tially identical. The same pattern also appears in V-8 digests 
of the major muscle cAMP-binding protein. In contrast, 
comparison of the larger peptides shows that each member of 
this group of proteins differs to some degree. The patterns of 
peptides obtained from proteins 1, 4, and 5 differed from that 
obtained from protein 2 over the entire molecular weight 
range. Protein 3 yielded a third pattern of peptides after 
digestion with V-8 protease. 

Digestion with papain produced peptide patterns different 
from those produced by V-8 (Fig. 4B). From these patterns, 
the proteins could be divided into the same three groups. 
Thus, the peptide patterns from binding proteins 1, 4, 5, and 
M (data not shown) were similar to each other, while proteins 

2 and 3 each yielded its own characteristic pattern. With 
papain no peptides of M~ greater than 20,000 were observed. 

Previously, we reported that proteins 2 and 3 could be 
phosphorylated by the catalytic subunit of the bovine kinase 
(16). In preliminary experiments, we have now examined the 
sequences in the vicinity of the phosphorylation sites of these 
proteins by limited proteolytic digestion. Proteins 2 and 3 
were phosphorylated with 3' [32p]ATP and purified by electro- 
phoresis. Peptides generated from the labeled proteins by 
treatment with V-8 protease were separated as described above 
revealing two distinct patterns with no peptides of identical 
mobility (data not shown). This result indicates that the 
phosphorylation sites of these two cAMP-binding proteins 
also differ from each other. 

Association o f  cAMP-dependent Protein Kinase 
Activity and cAMP-binding Proteins with 
the Cytoskeleton 

Using the extraction procedure of Pallas and Solomon (37), 
we separated Aplysia neural components into soluble and 

Figure 4. Comparison of peptides pro- 
duced from [32P]8-N3cAMP-labeled pro- 
teins by limited proteolysis with (A) S. 
aureus V-8 protease and (B) papain. The 
labeled cAMP-binding proteins were sep- 
arated by two-dimensional gel electropho- 
resis, localized by autoradiography, cut 
out of the dried gels, and digested with 
the proteases (see Materials and Meth- 
ods). Two concentrations of each protease 
were used. Concentrations for V-8 pro- 
tease were (left) 0.025 and (right) 0.125 
#g/lane. Concentrations for papain were 
(left) 0.02 and (right) 0. l ttg/lane. 
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cytoskeleton fractions by extraction with Nonidet P-40 in 2 
M glycerol. We found that 40-45% of the neuronal protein 
is associated with the detergent-insoluble fraction which is 
highly enriched in proteins with mobilities characteristic of 
the cytoskeletal components/3-tubulin, actin, and neurofila- 
ment proteins (Fig. 5A). About half of the cAMP-dependent 
protein kinase activity was associated with the detergent- 
insoluble fraction (Table I). A substantial proportion of 
cAMP-binding proteins 1, 2, 3, and 4 were present in the 
cytoskeleton fraction; protein 5, on the other hand, appears 
to be completely unattached under these conditions of isola- 
tion (Fig. 5 B). 

cAMP-dependent Kinase Activity and cAMP-binding 
Proteins in Membranes Prepared by 
Subcellular Fractionation 

cAMP-dependent protein kinase activity was distributed be- 
tween the soluble fraction and several membrane fractions 
from homogenates of Aplysia neural components (Table I). 
Most of the particulate protein kinase activity was found in 
the 7,000 g membranes. This pellet was highly enriched in 
cAMP-binding proteins 1, 2, and 3 (Fig. 6A). These low speed 
membranes were further fractionated on sucrose density gra- 
dients, and the three proteins were found in the same propor- 
tions in all the fractions that contained them. The membranes 
that floated on 1.15 M sucrose were the most enriched in 
kinase activity (Table I) and, as expected, contained the 
highest proportion of cAMP-binding proteins. This fraction 
is enriched in synaptosomes (9, 16). 

The membranes sedimenting at 120,000 g had a lower 

Table L cAMP-dependent Kinase Activity in 
Subcellular Fractions 

Specific activity* % of total 
% of total cAMP-dependent 

+cAMP -cAMP protein kinase activity 

Cytoskeleton 
preparation * 

Supernatant 
Pellet 

Membrane prepa- 
ration s 

Homogenate 
7,000 g pellet 
15,000 g pellet 
120,000 g pellet 
I. 15 M sucrose 

subfraction 
of 7,000 g 
pellet 

nmol/mg per min 

1.19 0.35 60 48 
1.48 0.27 40 52 

1.68 0.20 100 100 (set) 
2.14 0.13 20 29 
0.88 0.18 7 3 
1.32 0.32 16 10 
3.10 0.12 8 16 

* Using the heptapeptide substrate (Materials and Methods). 
* The data tabulated are from one of three independent experiments in which 
the values for the proportion of total protein in the pellet fraction range from 
40 to 46%, and the proportion of total kinase activity, 50 to 53%. 
0 The data are from 1 of 11 experiments in which the proportion of kinase 
activity associated with membrane fractions was 33 _+ 2.8% (SEM). 

specific kinase activity than did the 7,000 g membranes and 
contained a different set of cAMP-binding proteins (Fig. 6 B). 
This set, although similar to that of the low speed membranes 
in that it contains proteins I and 2, differs first because of the 
virtual absence of protein 3 and also because protein 4 is 

Figure 5. Association of cAMP-binding proteins 
with the cytoskeleton of Aplysia neural components. 
A cytoskeleton fraction was isolated by extracting 
neural components with 0.5% Nonidet P-40 (Ma- 
terials and Methods). Proteins in the detergent-sol- 
uble and -insoluble fractions were separated by two- 
dimensional gel electrophoresis. Coomassie Blue- 
stained gels of cytoskeletal (A1) and supernatant 
(A2) fractions. Proteins with sizes and isoelectric 
points of actin (A), tubulin (T), and Aptysia neuro- 
filament proteins (N; see reference 27) are desig- 
nated. The fractions were photoaffinity labeled with 
[32P]8-N3cAMP and the labeled proteins separated 
by two-dimensional electrophoresis. Autoradiogra- 
phy of the dried gels was for 9 h with image inten- 
sifier screens. B1, cytoskeleton; B2, supernatant. 
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Figure 6. Subcellular distribution of cAMP-binding proteins from 
Aplysia neural components. Neural components were fractionated 
by differential and sucrose density gradient centrifugation; fractions 
containing 30 #g protein were photoaffinity labeled with [32p]8- 
N3cAMP and separated by two-dimensional gel electrophoresis. Au- 
toradiograms, prepared at -70"C using an image intensifier screen, 
were obtained from the dried gels on which proteins from the follow- 
ing fractions had been separated. (A) Membranes collected at the 
0.8:1.15 M sucrose interface after sucrose density gradient centrifuga- 
tion of the 7,000 g pellet (6-h exposure). (B) The 120,000 g pellet 
obtained by centrifugation of the 15,000 g supernatant (14-h expo- 
sure). (C) The 120,000 g supernatant (soluble proteins; 14-h expo- 
sure). 

present as a major component. The 15,000 g pellet, with only 
3% of the total kinase activity, contained a set of cAMP- 
binding proteins with a distribution intermediate between 
those of the 7,000 g and 120,000 g pellets. 

About 60% of the total cAMP-dependent protein kinase 
activity is soluble (120,000 g supernatant, Table I). The sol- 
uble fraction contains a third set of cAMP-binding proteins 
with protein 4 as the major component. Protein 5, which does 
not appear in particulate fractions, and proteins 2 and 3 also 
are present (Fig. 6 C). 

Distribution o f  Lipids in the Subcellular Fractions 

To estimate the purity of the particulate fractions, Aplysia 
ganglia were labeled overnight with 32pi and fractionated to 
obtain membranes or the cytoskeleton (see Materials and 
Methods). We found that the cytoskeleton fraction contained 

only 20% of the labeled lipids. Membranes obtained by ho- 
mogenizing the ganglia in the absence of detergent and cen- 
trifuging at the same speed used to isolate the cytoskeleton, 
contained almost the same proportion of cellular protein, but 
80% of the labeled lipids. 

cAMP-binding Proteins Fractionate Together with 
cAMP-dependent Protein Kinase Activity 

The membrane-associated fraction (7,000 g) and the soluble 
fractions, each of which contained a different complement of 
cAMP-binding proteins, were fractionated further by DEAE- 
cellulose column chromatography (Fig. 7). 

Soluble Proteins. When the soluble neuronal proteins were 
fractionated a small amount of kinase activity was eluted early 
(fractions 3-6, Fig. 7A). These fractions contained protein 5, 
as shown by two-dimensional gel electrophoresis (Fig. 8A). 
Most of the kinase activity eluted in fractions 12-20 (Fig. 7A) 
where the major cAMP-binding constituent is protein 4 (Fig. 
8 B), which is also present in all subsequent fractions. This 
was followed by two broader peaks, one that contained protein 
3 (fractions 20-26; Fig. 8 C) and the other, 2 (fractions 25- 
34; Fig. 8D). 

Membrane Proteins. On DEAE-cellulose chromatography 
of the solubilized membranes, cAMP-dependent protein ki- 
nase activity was eluted as two peaks (Fig. 7 B). The first was 
enriched in protein 3 and the second in protein 2. These 
cAMP-binding proteins could be identified by one-dimen- 
sional gel electrophoresis alone because proteins 4 and 5 are 
absent from the 7,000 g membranes. Fractions 15-22 were 
enriched in protein 1 and also contained kinase activity that 
appeared as a small shoulder, but 1 was not well resolved 
from protein 3. The Aplysia proteins were not as well sepa- 
rated on DEAE-cellulose as the vertebrate kinases containing 
Rx and RH (11). Evident from the appearance ofphotoaffinity- 
labeled components smaller than Mr 40,000, considerable 
proteolysis of the particulate cAMP-binding proteins occurred 
during the fractionation. 

cAMP-binding Proteins in Muscle. More than 90% of the 
protein in buccal muscle that is labeled with 8-N~cAMP is a 
polypeptide with Mr 54,000. This molecule is soluble (present 
in 100,000 g supernatants) and does not co-migrate with any 
of the binding proteins from nervous tissue (16, 36). On 
DEAE-cellulose chromatography, it was eluted together with 
cAMP-dependent kinase activity at 0.025-0.1 M NaC1 (data 
not shown), the portion of the salt gradient where 4, the major 
soluble kinase from nervous tissue, was eluted. 

Discussion 
Three related issues that emerge from our results require 
discussion. First, are the several distinct cAMP-binding pro- 
teins that we have separated from Aplysia nervous tissue and 
muscle after photoaffinity labeling with 8-N3cAMP all regu- 
latory subunits of the cAMP-dependent protein kinase? As- 
suming that they are, we next must examine the mechanism 
by which the large number of versions are generated in 
Aplysia, and ask how these molecules might be related to 
their vertebrate counterparts. Lastly, we need to discuss the 
functional significance of the molecular differences between 
the subunit molecules, and, in the light of our structural 
studies which show that all of the molecules share large 
homologous domains containing the 8-N3cAMP-binding site, 

The Journal of Cell Biology, Volume 102, 1986 326 



Figure 7. Fractionation of Aplysia cAMP-binding and cAMP-dependent protein kinase activities by ion exchange chromatography on DEAE- 
cellulose. A 120,000 g supernatant and a 7,000 g pellet and were obtained from the central ganglia of 10 animals. Solubilization of the 
membranes in Nonidet P-40, desalting of the soluble proteins, and ion exchange chromatography on DEAE-cellulose with a salt gradient from 
0 to 0.4 M NaCI are described in Materials and Methods. Fractions were assayed for cAMP-dependent protein kinase activity and by 
photoaffinity labeling with [32p]8-N3cAMP: we plotted the difference between phosphorylation of the heptapeptide substrate in the presence 
and in the ~ absence of cAMP. The photoaffinity-labeled proteins were separated in 8% SDS polyacrylamide gels. Autoradiograms of selected 
lanes from the dried gels are shown, labeled with the corresponding fraction numbers: (left) soluble proteins; (right) membrane proteins. 

suggest a functional role for those regions of the proteins that 
are structurally variable. 

Are the cAMP-binding Proteins Regulatory Subunits? 
Aplysia muscle and nervous tissue both contain protein kinase 
activity. Essentially one form of 8-N3cAMP-binding protein 
(M) predominates in muscle. It seems logical to assume that 
this species functions as a regulatory subunit; protein M 
resembles the vertebrate subunits in size, and it purifies to- 
gether with kinase activity on DEAE-cellulose chromatogra- 
phy. After treatment with cAMP, higher salt concentrations 
are required to elute M from the DEAE-cellulose suggesting 
that, like the vertebrate protein, it is associated with a basic 
catalytic subunit that dissociates in the presence of cAMP 
(unpublished data). In nervous tissue, where five distinct 
forms have been separated, the total amounts of the binding 
proteins (as estimated either by photoaffinity labeling or by 
[3H]cAMP-binding [1]) are of the same order as that of the 
catalytic subunit (as estimated from kinase activity). Each of 
the five cAMP-binding proteins is eluted with cAMP-depend- 
ent kinase activity during DEAE-ceUulose column chroma- 
tography. Since here we demonstrate structural homology 

between the muscle cAMP-binding protein and all of the 
neuronal species, it is reasonable to think that the neuronal 
binding proteins also function as regulatory subunits. Because 
each one has not been clearly separated from the others in 
the form of the holoenzyme, the biochemical evidence that 
they all function as regulatory kinase subunits is not yet 
compelling. The evidence for the largest component, protein 
1, is least persuasive because it is not well resolved from 
protein 3 by DEAE-cellulose chromatography and is present 
in relatively small amounts (Fig. 7B). 

Structure of Aplysia cAMP-binding Proteins 
We have compared the structures of the five neuronal cAMP- 
binding proteins from Aplysia and the protein from muscle. 
In many respects, these proteins seem similar to vertebrate 
regulatory subunits. Despite the strong emphasis in the bio- 
chemical literature on there being only two forms, RI and Rxt, 
within the same animal, evidence for considerable molecular 
heterogeneity in some vertebrate cells and tissues has accu- 
mulated over the past few years (for review see reference 30). 
Especially pertinent is the diversity exhibited by the Rt~ sub- 
units of bovine brain (29). The structural relationships of the 
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Figure 8. Identification of soluble 
cAMP-binding proteins from 
Aptysia neural components sepa- 
rated by column chromatography 
on DEAE-cellulose by two-dimen- 
sional gel electrophoresis. Proteins 
in fractions 6(A), 18(B), 24(C), and 
30(D) from Fig. 7A were photoaf- 
finity labeled, separated by two- 
dimensional gel electrophoresis, 
and detected by autoradiography. 
Exposures were for 24 h with im- 
age intensifier screens. 

various heterogeneous forms of vertebrate subunits have not 
yet been scrutinized, and it has been assumed that each variant 
is highly homologous to one of the two basic types from 
bovine muscle, R~ (47) or R.  (46). 

Bovine R~ and Ru each consist of three domains (A, B, and 
C) of approximately equal size (47). Domains B and C, at the 
COOH-terminal ends of the subunits, each can bind a mole- 
cule of cAMP, and are highly homologous to their counter- 
parts in the other subunit. Internal homology exists between 
domains B and C within each regulatory subunit but it is 
weaker than the interchain homology between analogous 
domains, suggesting an early internal gene duplication before 
a second duplication and divergence of the R~ and Rn genes. 
The NH2-terminal A domains show far weaker but still sig- 
nificant homology with each other suggesting that they did 
not arise from the splicing of heterologous segments of DNA 
to those encoding the two cAMP-binding domains. 

After labeling with [32p]8-N3cAMP followed by exhaustive 
treatment with trypsin, Aplysia proteins 1, 3, 4, 5, and M 
gave the same two peptides (a and b; Fig. 2) suggesting that 
the five proteins are homologous in the vicinity of the 8- 
N3cAMP-binding site. In porcine Rn, 8-N3cAMP had been 
found to bind selectively to the cAMP-binding site of domain 
C (25). After photolysis and exhaustive trypsin digestion, this 
vertebrate subunit yielded a single labeled peptide and se- 
quence analysis revealed that a tyrosine residue (correspond- 
ing to Tyr38~ in the fully sequenced bovine Ru) had reacted. 
Recently, 8-NacAMP has been shown to label two amino acid 
residues on two distinct tryptic peptides of the porcine RI 
subunit (which correspond to Pro27~ and Tyr37~ of bovine RI 
[3]). With the Aplysia subunits, we cannot tell whether the 
two peptides are derived from two distinct cAMP-binding 
sites within a single protein (as with porcine R1 [4]), or whether 
two different peptides were produced after labeling of one 
site. Generation of two peptides from a single site might have 

occurred (a) if there were two residues labeled at the single 
site; (b) if, despite our efforts, cleavage by trypsin were incom- 
plete; or (c) if chemical modification of the reagent-peptide 
adduct took place after the proteins had been extracted from 
the tissue (for example, by reaction with performic acid). In 
contrast with Aplysia, the 8-N3cAMP-labeled tryptic peptides 
that are generated from porcine R~ and Ru differ considerably 
and would not be expected to fingerprint together (4, 25). 

Protein 2 also yielded peptides a and b but they were minor 
components compared with a third peptide, c. Again we 
cannot tell whether c is derived from still another cAMP- 
binding site or whether a subtle difference in the structure of 
protein 2 leads to labeling of a subsite (represented by peptide 
c) that is part of one of the sites that yields peptide a or 
peptide b. The Ru subunit from bovine brain also yielded 
three radioactive peptides upon photolabeling and digestion 
with trypsin (45). 

In a second analysis, we examined peptides generated by 
treatment with cyanogen bromide from the labeled cAMP- 
binding proteins. Proteins 1, 3, 4, 5, and M again gave 
identical fragments: a major Mr 20,000 peptide and a minor 
Mr 28,000 peptide. One interpretation of this result is that the 
Mr 20,000 fragment was derived from one cAMP-binding site 
and the Mr 28,000 from another. A second interpretation, 
which we favor, is that the larger fragment resulted from 
incomplete cleavage. First, if there were two sites labeled, the 
two fragments together would make up almost the entire mass 
of each subunit: an unlikely possibility given the prevalence 
of methionine residues in proteins. Second, if the Aplysia 
proteins are homologues of the vertebrate proteins, a large 
peptide derived from photoaffinity labeling in domain C 
would span both known 8-N3cAMP-binding sites (4). Con- 
sequently, labeling in domain B would not be expected to 
yield a new peptide. 

Protein 2 again gave a different result. The major cyanogen 
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bromide fragment had a molecular weight of 12,000. Less 
intense bands corresponding to peptides of Mr 20,000 and 
15,000 were also seen. One interpretation, based once again 
on presumed homology with vertebrate R~ and Rn, is that 
methionine residues absent from 1, 3, 4, 5, and M are present 
in protein 2 in the vicinity of the two cAMP-binding sites. 
The Mf 15,000 and 20,000 peptides would now be incomplete 
cleavage products and the Mr 12,000 fragment a limit peptide. 
Again, alternative explanations based on two (or more) widely 
separated cAMP sites are conceivable. It is important to note 
that because of the likelihood of incomplete fragmentation 
and the strong possibility of large fragments spanning two 
sites, our results do not allow us to distinguish between the 
possibilities of one or several cAMP-binding sites. Again for 
comparison we note that bovine R~ contains seven methionine 
residues and that Rn contains nine. Only two of these are 
conserved, and their distribution is such that no cyanogen 
bromide fragments from the two vertebrate subunits are the 
same size. 

In a third analysis, we carried out partial proteolytic diges- 
tions with V-8 protease or with papain on each Aplysia 
subunit and examined the resulting fragments by gel electro- 
phoresis in one dimension. Peptides smaller than Mr 20,000 
generated from proteins 1, 4, 5, and M were identical, indi- 
cating strong and extended homology on both sides of the 
major 8-N3cAMP labeling site. (Of course, the homology 
would extend in one direction only if the labeling site were 
close to the COOH-terminus as it is in bovine Rn.) The sets 
ofpeptides larger than Mr 20,000 generated from 1, 4, 5, and 
M differed, providing evidence that these proteins diverge in 
sequence at their extremities (or towards the NH2-terminus 
only, if the analogy with bovine R. is continued). The one- 
dimensional peptide maps of proteins 2 and 3 clearly differed 
from each other and from the common pattern of 1, 4, 5, and 
M. With protein 2, we cannot be certain if this is because the 
major labeling site is different (see above); with protein 3 
(which was identical to 1, 4, and 5 by the other criteria) we 
cannot quantitate the extent of sequence divergence because 
only a few substitutions could alter the peptide pattern com- 
pletely. Comparison of partial V-8 protease digests of 32p_ 

labeled phospho forms of proteins 2 and 3 indicate that these 
two binding proteins also differ in the vicinity of their auto- 
phosphorylation sites. 

The three methods of peptide mapping that we used indi- 
cate that the cAMP-binding proteins in Aplysia neurons are 
closely related. Proteins 1, 4, and 5 appear identical, given 
the limitations of the methods, within 20,000 D of a major 
8-N3cAMP-labeling site. The muscle cAMP-binding protein, 
M, is a close relative of these three. Protein 3, and to a lesser 
degree 2, are also related to the others. To the extent that the 
Cleveland procedure (10) relies on sequence differences alone 
it should be a sensitive test of homology. Vertebrates R~ and 
RH, which are -50% homologous over much of their se- 
quences (47), have completely different peptide maps (40, 
52). It is not possible to quantitate our results but it does seem 
very likely that all six polypeptides are more closely related 
than is bovine R~ to RH.~ Their structural relationship seems 

Phosphorylated 2 and 3 have identical electrophoretic mobilities when com- 
pared with the unmodified proteins (our unpublished results). This observation 
adds to the evidence against placing the Aplysia proteins in the category R~ or 
Ru (17. 39, 40, but see also reference 41). 

more analogous to the close relationship demonstrated be- 
tween the bovine brain and heart Rn subunits (45). Until the 
structures of the genes encoding the family of cAMP-binding 
proteins in Aplysia have been analyzed, it will be impossible 
to choose among the several possible molecular mechanisms 
by which the six related proteins might have been generated 
(for example, from a multiple gene family, by differential 
RNA processing, or by posttranslational modification; see 
reference 13). For example, although we favor a gene family, 
it is possible that a subset of the cAMP-binding proteins in 
neurons is generated by proteolytic cleavage of another mem- 
ber of the group. Generation of diverse structures by this 
mechanism is well known for hormones and neuropeptides 
(13). 

Functional Significance of Molecular Heterogeneity of 
cAMP-binding Proteins 

We can now ask why Aplysia neurons should contain five 
cAMP-binding proteins, presumed to be subunits of cAMP- 
dependent protein kinases, that structurally are partly homol- 
ogous and partly divergent. Regions of homology would be 
required to maintain the functions of common regions such 
as the sites for cAMP binding, catalytic subunit binding, 
dimerization, and autophosphorylation. Some heterogeneity 
in the cAMP-binding domain might also be expected because 
the cell contains subunits with different affinities for cAMP 
(1). Because the binding proteins can be distinguished both 
with respect to regional localization within the tissue (for 
example, in neurons to cell body, axon and nerve endings) 
and with respect to subcellular distribution (association with 
membrane or cytosol2), we speculated earlier (16) that the 
type of regulatory subunit might predispose the particular 
holoenzyme that contains it to a specialized function within 
the cell. Many physiological functions are altered by cAMP- 
dependent protein phosphorylation (19, 26, 34, 42), but since 
the cAMP-dependent protein kinase is thought to possess only 
a single kind of catalytic subunit, it is attractive to think that 
selective phosphorylation might be achieved by building holo- 
enzymes of regulatory subunits with different properties. 

Heterologous regions would contain modules for targeting 
the proteins to particular subcellular locations. Thus a hydro- 
phobic domain could cause association with membranes or a 
signal sequence insertion into a particular organelle. We sug- 
gest that these modules lie in the regions outside the conserved 
domain in proteins 1, 4, 5, and M, four structurally similar 
proteins with quite different subcellular addresses. These het- 
erologous regions might also confer other properties on the 
molecules. The Mr 105,000 protein, protein 1, for example, 
conceivably could possess a fused catalytic domain like the 
vertebrate cyclic guanosine monophosphate-dependent pro- 
tein kinase (47). 

2 Novak-Hofer et al. (33) failed to find any cAMP-dependent protein kinase 
associated with membranes from Aplysia ganglia, but this apparent discrepancy 
may have arisen because of the low ionic strength of the buffer they used (20 
mM 4-morpholine propane sulfonic acid [pH 7,0]) or because the nervous 
tissue was homogenized in the absence of inhibitors of proteolysis. Novak- 
Hofer et al. (33) also homogenized the ganglia intact without first removing the 
connective tissue sheath, whereas we dissect the neural components and discard 
the sheath before homogenization. Since the sheath contains at least three times 
as much protein as the neural components (the amount depends on the age of 
the animal) and is rich in muscle cells, the properties of the cAMP-dependent 
protein kinase in homogenates of intact ganglia would most likely reflect those 
of muscle rather than of nervous tissue. 
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In vertebrates, others have also found different distributions 
of regulatory subunits within cells and among tissues (see 
introductory paragraphs), though none have the striking com- 
plexity of the distribution in Aplysia in which there are at 
least eight different cAMP-binding proteins in several com- 
binations in various tissues (36) and where the five neuronal 
proteins are produced within a single nerve cell (16). The 
definitive answer to the question of whether more versions of 
the regulatory subunit exist in Aplysia than in vertebrates 
awaits an analysis of  the organization of the gene family and 
its expression in the cells of Aplysia and the other animals. 
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