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Background: We aimed to construct and validate an energy metabolism-related gene
prognostic index (EMRGPI) to predict biochemical recurrence (BCR) in patients
undergoing radical prostatectomy.

Methods: We used Lasso and COX regression analysis to orchestrate the EMRGPI in
the TCGA database, and the prognostic value of EMRGPI was further validated
externally using the GSE46602. All analyses were conducted with R version 3.6.3 and
its suitable packages.

Results: SDC1 and ADH1B were finally used to construct the risk formula. We classified
the 430 tumor patients in the TCGA database into two groups, and patients in the high-
risk group had a higher risk of BCR than those in the low-risk group (HR: 1.98, 95%CI:
1.18-3.32, p=0.01). Moreover, in the GSE46602, we confirmed that the BCR risk in the
high-risk group was 3.86 times higher than that in the low-risk group (95%CI: 1.61-9.24,
p=0.001). We found that patients in the high-risk group had significantly higher
proportions of residual tumor, older age, and T stage. SDC1 and ADH1B were
significantly expressed low in the normal tissues when compared to the tumor tissues,
which were opposite at the protein level. The spearman analysis showed that EMRGPI
was significantly associated with B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, dendritic cells, stromal score, immune score, and estimate score. In
addition, the EMRGPI was positively associated with the 54 immune checkpoints,
among which CD80, ADORA2A, CD160, and TNFRSF25 were significantly related to
the BCR-free survival of PCa patients undergoing RP.

Conclusions: The EMRGPI established in this study might serve as an independent risk
factor for PCa patients undergoing radical prostatectomy.
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INTRODUCTION

With the population aging, the overall health burden of prostate
cancer (PCa) is increasing. Radical prostatectomy (RP) remains
the first choice for the treatment of localized PCa. However,
nearly 50% of patients encounter biochemical recurrence (BCR)
after surgery (1). The current definition of BCR is heterogeneous,
the most predictive threshold for metastasis after RP is PSA>0.4
ng/ml (2). After the radical radiotherapy, regardless of short-
term hormone control, the definition of BCR is any PSA increase
>2 ng/ml higher than the PSA nadir, regardless of the nadir value
(3). It is believed that the impact of BCR on survival is only
limited to a subgroup of patients with specific clinical risk factors
(4). However, the prognosis of patients with BCR varies. Thus,
indications for further treatment should not be based solely on
meeting the threshold defined above for PSA, but rather a
prediction method of individualized progression risk of PCa
patients (5).

The occurrence of BCR is based on multiple systematic
pathway alterations. In the process of tumor transformation,
prostate cells undergo metabolic reprogramming to meet the
needs of growth and proliferation. Metabolomics provides a
down-stream measurement. Lucarelli et al. summarized that
the PCa metabolome was characterized by accumulation of
metabolic intermediates and increased expression of genes in
the Krebs cycle, induction of de novo lipogenesis and cholesterol
production (6, 7). Clendinen et al. proposed a nomogram to
predict BCR through metabolomics, and found that many
pathways altered, including amino acid metabolism, purine
and pyrimidine synthesis, tricarboxylic acid (TCA) cycle,
tryptophan catabolism, glucose, and lactate, and the lipid
abundance was higher among BCR patients for a number of
classes, including triglycerides, lysophosphatidylcholines,
phosphatidylethanolamines, phosphatidylinositols, diglycerides,
acyl carnitines, and ceramides (8). Studying the metabolic
changes of the prostate is helpful to distinguish the indolent
tumors from aggressive tumors, and to predict BCR.

Previous studies have reported several gene biomarker
models to predict BCR for PCa patients undergoing RP (9–13),
but the large number of genes in the model limits their clinical
application. Adequate energy metabolism is essential for the
survival of tumor cells. For the first time, we constructed and
validated an energy metabolism-related gene prognostic index
(EMRGPI) using only two genes to predict BCR in PCa patients
undergoing RP. Our study has been registered in the ISRCTN
registry (No. ISRCTN11560295).
Abbreviations: EMRGPI, energy metabolism-related gene prognostic index; RP,
radical prostatectomy; PCa, prostate cancer; BCR, biochemical recurrence; TCA,
tricarboxylic acid; PSA, prostate-specific antigen; OXPHOS, oxidative
phosphorylation; CAF, cancer-associated fibroblast; EMT, epithelial-
mesenchymal transition; TME, tumor immune microenvironment; TAM,
tumor-associated macrophage; ECM, extracellular matrix; AR, androgen
receptor; WGCNA, weighted gene co-expression network analysis; DEGs,
differentially expressed genes; mRNA, message RNA; GSEA, gene set
enrichment analysis.
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METHODS

Data Preparation
We downloaded and integrated PCa data from the UCSC XENA
and the previous study (14, 15). We extracted the matrix of
message RNA (mRNA) and identified the tumor-related genes
through weighted gene co-expression network analysis
(WGCNA). The significantly relevance was defined as
lcoefficientl > 0.3 and p < 0.05. Differentially expressed genes
(DEGs) were analyzed, which were considered as llogFCl > 1 and
padj < 0.01. Two energy metabolism-related gene sets (energy-
requiring part of metabolism and reactome energy metabolism)
were obtained from the molecular signature database (MsigDB,
http://www.broad.mit.edu/gsea/msigdb/) (16). Subsequently, the
candidate genes were identified through the intersection of
tumor-related genes, DEGs and energy metabolism-related
genes. We used the Lasso and COX regression analysis to
figure out the independent risk genes associated with BCR-free
survival, and then orchestrated the energy metabolism-related
gene prognostic index (EMRGPI). The EMRGPI risk score=
0.348*SDC1+0.229*ADH1B. Patient data undergoing RP in the
GSE46602 (17) were downloaded from the Gene Expression
Omnibus (GEO) (18), and were further used to externally
confirm the prognostic value of EMRGPI. In addition, we
confirmed the differential expression of SDC1 and ADH1B at
protein level through the human protein atlas (HPA) database
(19, 20).

Function Analysis and Tumor Immune
Environment (TME) Analysis
The genes interacted with SDC1 and ADH1B was analyzed
through the GeneMANIA database (21). We divided the 430
tumor patients into high- and low-risk group according to the
median of EMRGPI. Gene set enrichment analysis (GSEA) was
conducted to explore the possible pathways (16, 22). Considering
gene expression profile and risk groups, the minimum gene set
was 5 and maximum was 5000. P < 0.05 and false discovery rate
(FDR) < 0.10 were considered statistically significant.

We used the TIMER and ESTIMATE algorithms (23, 24) to
analyze the TME of PCa patients. The spearman analysis was
used to analyze the correlations between EMRGPI and TME
parameters and 54 common immune checkpoints. We also
explored the prognostic values of the checkpoints related to the
EMRGPI in predicting BCR-free survival.

Statistical Analysis
We performed all analyses using software R 3.6.3 and its suitable
packages. We utilized Wilcoxon test under the circumstance of
non-normal data distribution. Variables could be entered into
multivariate COX regression analysis if p value < 0.1 in the
univariable Cox regression analysis. Survival analysis was
conducted through log-rank test and presented as Kaplan-
Meier curve. Besides, the Spearman analysis was used to assess
the correlations among continuous variables if they did not meet
Shapiro-Wilk normality test. Statistical significance was set as
two-sided p < 0.05. Significant marks were as follows: no
significance (ns), p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001.
February 2022 | Volume 13 | Article 839362
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RESULTS

EMRGPI and Its Clinical Values
We obtained 498 tumor and 52 normal samples of PCa from the
TCGA database, among which 430 PCa patients undergoing RP
had complete data of BCR (Supplementary Table 1). Patients
who experienced BCR were significantly associated with higher
Gleason score and advanced T stages (Supplementary Table 1).
We clustered the genetic mRNA expression of 498 tumor and 52
normal samples of PCa from the TCGA database using the
WGCNA analysis (Figure 1A), and identified 2183 genes in the
black, greenyellow, and pink modules which were highly related
to tumor (Figure 1B). 66 candidate genes were found through
the intersection of tumor-related genes, DEGs and energy
metabolism-related genes (Figure 1C). 11 genes were found
through the Lasso regression analysis using the methods of 10-
fold cross-validation, where the lambda value was 0.0185
(Figure 1D). We also presented the trajectory diagram of the
11 genes in Figure 1E. A total of 7 of the 11 genes were
significantly associated with BCR-free survival, and
multivariate COX regression analysis was conducted using the
7 genes (Figure 1F). SDC1 and ADH1B were the independent
risk factors of PCa patients, and we further constructed the risk
formula using the two genes. We classified the 430 tumor
patients in the TCGA database into two groups according to
the median of the EMRGPI score, and patients in the high-risk
group had a higher risk of BCR than those in the low-risk group
(HR: 1.98, 95%CI: 1.18-3.32, p=0.01; Figure 1G). We further
observed that the EMRGPI could serve as the independent risk
factor of BCR for PCa patients through the multivariate COX
regression analysis which enrolled the EMRGPI and clinical
indicators in the TCGA database (Supplementary Table 2).
Moreover, PCa patients in the GSE46602 (17) were divided
into high- and low-risk groups based on the median of
EMRGPI score, and we confirmed that the BCR risk in the
high-risk group was 3.86 times higher than that in the low-risk
group (95%CI: 1.61-9.24, p=0.001; Figure 1H). The diagnostic
ability of EMRGPI distinguishing BCR patients from no BCR
patients in the TCGA database was low (Figures 1I, J). Physical
interactions and co-expression between ADH1B, and ADH1C,
ADH1A and ALDH2 were observed, and CXCL2, MMP14, and
TOPORS were predicted to interacted with SDC1 (Figure 1K).
The age of high-risk group was significantly higher than that of
low-risk group (61.58 ± 6.61 vs 60.29 ± 6.86, p=0.047; Table 1).
Moreover, we found that patients in the high-risk group had
significantly higher proportions of residual tumor (p=0.016), and
T stage (p < 0.001) (Table 1).

Differential Expression of SDC1 and
ADH1B and TME Analysis
The mRNA expression of SDC1 and ADH1B were significantly
lower in the tumor tissues when compared to the normal tissues
(Figure 2A), which were opposite at the protein levels through
the HPA database (19, 20) (Figures 2B, C). The spearman
analysis showed that EMRGPI was significantly associated with
B cells (r: 0.27), CD4+ T cells (r: 0.42), CD8+ T cells (r: 0.29),
neutrophils (r: 0.47), macrophages (r: 0.22), dendritic cells
Frontiers in Immunology | www.frontiersin.org 3
(r: 0.55), stromal score (r: 0.47), immune score (r: 0.41), and
estimate score (r: 0.48) (Figure 2D). In addition, the EMRGPI
was positively associated with the 54 immune checkpoints
(Figure 2E), among which CD80 (HR: 1.76, 95%CI: 1.03-3.00,
p=0.037; Figure 2F), ADORA2A (HR: 2.02, 95%CI:
1.09-3.44, p=0.01; Figure 2G), CD160 (HR: 2.29, 95%CI: 1.32-
3.96, p=0.003; Figure 2H), and TNFRSF25 (HR: 1.92, 95%CI:
1.13-3.26, p=0.016; Figure 2I) were significantly related to the
BCR-free survival of PCa patients undergoing RP.

Functional Enrichment Analysis
430 PCa patients in the TCGA database were classified into two
groups according to the median of the EMRGPI score, and the
results of GSEA analysis between low- and high-risk group were
presented in Table 2. Several cancers, such as thyroid cancer,
renal cell carcinoma, and small lung cancer, were enriched in
high-risk group. In terms of signaling pathways, insulin,
chemokine, WNT, T cell receptor, MAPK, and NOD like
receptor signaling pathways were highly upregulated in high-
risk group. In addition, several cellular and molecular processes,
including regulation of actin cytoskeleton, snare interactions in
vesicular transport, apoptosis, focal adhesion, extracellular
matrix (ECM) receptor interaction, FC gamma R-mediated
phagocytosis, endocytosis, and cell adhesion molecules, were
enriched in the high-risk group.
DISCUSSION

Although surgery or radiotherapy can effectively improve the
prognosis of PCa patients and prolong their survival, the rate of
recurrence and metastasis remains high. Meanwhile, there may
be a tendency of over-medical treatment for the large
population of PCa patients (25). Magnetic resonance imaging
variables, prostate-specific antigen (PSA), and Gleason score
are currently common mainstream methods for predicting BCR
(26, 27). It is currently recommended that PSA doubling time
and pathological Gleason score are indicators used to grade the
risk of BCR after RP (5). Actually, we observed that BCR
patients had higher Gleason score and advanced T stages
than no BCR patients in this study. Maxeiner et al. used
magnetic-resonance-spectroscopy-based metabolomic profiles
to establish a model for predicting BCR through changes in
several metabolites including spermine/polyamines, glutamine,
myo-inositol, phosphoryl choline, scylloinositol, and glutamate,
with an accuracy of 78% (28). Stabler et al. used the
combination of serum PSA with cystathionine, cysteine, and
homocysteine as markers to predict BCR with an AUC of 0.86
(29). In this paper, from the perspective of energy metabolism,
we firstly found individual approach of gene-level recurrence
markers that are helpful to the clinical decision-making of PCa
patients. Furthermore, compared to the previous gene
signatures (9–13), we included two different genes in our
study and provided a simpler prognostic gene formula from
the perspective of energy metabolism.

Like other metabolic cancers, increased glycolysis can provide
more metabolic intermediates and energy for the rapid
February 2022 | Volume 13 | Article 839362
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FIGURE 1 | Identification of EMRGPI and its clinical values. (A) gene cluster plot showing the process of WGCNA analysis; (B) modules and phenotype showing
2183 genes in the black, greenyellow, and pink modules which were highly related to tumor; (C) Venn plot showing the intersection of tumor-related genes, DEGs
and energy metabolism-related genes; (D) variables screening through the Lasso regression analysis where the lambda value was 0.0185; (E) trajectory diagram of
the 11 genes identified through the Lasso regression analysis; (F) forest plot showing the COX regress analysis of genes associated with BCR-free survival;
(G) Kaplan-Meier curve showing survival difference of high- and low-risk group in the TCGA database; (H) Kaplan-Meier curve showing survival difference of high-
and low-risk group in the GSE46602 (17); (I) ROC curve showing the diagnostic ability of EMRGPI in distinguishing BCR from no BCR; (J) Time-dependent ROC
curve showing the diagnostic ability of EMRGPI in distinguishing BCR from no BCR; (K) Gene interacted with ADH1B and SDC1. BCR, biochemical recurrence;
DEGs, differentially expressed genes; EMRGPI, energy metabolism-related gene prognostic index; WGCNA, weighted gene co-expression network analysis; mRNA,
message RNA; ROC, receiver operating characteristic curve. prostate cancer patients were divided into high- and low-risk groups according to the median of the
EMRGPI score.
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proliferation of PCa cells (30). Shao et al. observed significant
accumulation of metabolic intermediates in PCa and the
enrichment of genes in the TCA cycle, indicating that the TCA
cycle in PCa tissue is over-activated, and existence of potential
replenishment pathways for the metabolism of pyruvate,
glutamine and branched chain amino acids in PCa
supplements the metabolites of the TCA cycle (31). Androgen
receptor (AR) plays an important role in increasing glycolysis in
PCa cells, which can induce flux through the classical TCA cycle
and reductive carboxylation of glutamine (32–34). The AR
constitutively actives splice variants, such as AR-V7, stimulates
glycolysis to a similar degree to AR in changing metabolism, and
at the same time improves the utilization of citrate, and possibly
metabolize it into other compounds needed for cell growth, such
as lipids, steroids and amino acids, which increases the tumor’s
ability to grow (34). It has been shown that androgens can
stimulate AMPK-PGC1a cascade by increasing mitochondrial
function and biogenesis, and activate glycolysis and oxidative
phosphorylation (OXPHOS) (33). Clendinen et al. found that
lactate and other end products of glucose catabolism increased in
patients with BCR (1). The increased lactate may be related to the
Warburg effect (35). Meanwhile, tumor cells induce the secretion
of lactate and pyruvate by cancer-associated fibroblasts (CAFs)
through aerobic glycolysis, and then they take up these energy-
rich metabolites to promote efficient energy production through
mitochondrial OXPHOS, thereby producing higher proliferation
capacity, the reverse Warburg effect (36). This process of lactate
exchange between CAFs and cancer cells is called lactate shuttle
(37). In addition, different literatures also reported the
Frontiers in Immunology | www.frontiersin.org 5
relationship between elevated methionine metabolites such as
cysteine and BCR (8, 29).

Alcohol dehydrogenase family (ADH1B and ADH1C)
metabolize a wide variety of substrates, including ethanol,
retinol, other aliphatic alcohols, hydroxysteroids, and lipid
peroxidation products (38). ADH1B (rs1229984) and aldehyde
dehydrogenase 2 (ALDH2) (rs671) are the two main genes
involved in ethanol metabol ism (39, 40) . Genet ic
polymorphisms of ADH1B, ADH1C and ALDH2 have been
reported involving in the development and progression of many
cancers, such as gastric cancer (41), head and neck cancers (42),
esophageal cancer (43), and pancreatic cancer (44). In a
mendelian randomization study, it was found that in
ALDH1B1 (rs10973794) was associated with PCa mortality
with low-grade prostate cancer (HR = 1.43; p = 0.002) (45). So
far, epidemiologic evidence for association between alcohol
intake and the risk of PCa still remain unclear. Many articles,
meta-analyses and systematic reviews showed contradictory
conclusions (46–49). The possible reason might be the gene
polymorphism which was associated with the enzyme activity.
SDC1 was found to be significantly associated with BCR for PCa
patients undergoing RP (50, 51), which could mutually confirm
with our results. Moreover, serum SDC-1 levels have also been
confirmed to be related to PCa progression, overall survival,
disease specific survival, and chemotherapy resistance (52, 53).
The inflammation of tumor patients is not limited to the local
tumor, but systemic inflammation, clinically manifested as
increased myeloid cells, and neutrophil-to-lymphocyte ratio in
the circulation is closely related to poor prognosis in cancers
TABLE 1 | The correlations between EMGPI and clinical parameters in the TCGA database.

Characteristic Low-risk group High-risk group P value

Sample (n) 215 215
Age, mean ± SD 60.29 ± 6.86 61.58 ± 6.61 0.047
BCR, n (%) 0.034
No 194 (45.1%) 178 (41.4%)
Yes 21 (4.9%) 37 (8.6%)

N stage, n (%) 0.310
N0 152 (40.5%) 154 (41.1%)
N1 29 (7.7%) 40 (10.7%)

Positive lymphnodes, n (%) 0.249
No 144 (40.2%) 144 (40.2%)
Yes 29 (8.1%) 41 (11.5%)

Residual tumor, n (%) 0.016
No 151 (36%) 122 (29.1%)
Yes 62 (14.8%) 84 (20%)

Gleason score, n (%) 0.066
GS=6 23 (5.3%) 16 (3.7%)
GS=7 113 (26.3%) 93 (21.6%)
GS=8 26 (6%) 33 (7.7%)
GS=9 53 (12.3%) 73 (17%)

T stage, n (%) <0.001
T2 98 (23.1%) 57 (13.4%)
T3-4 115 (27.1%) 154 (36.3%)

Race, n (%) 0.088
ASIAN 9 (2.2%) 2 (0.5%)
Black or African American 26 (6.2%) 24 (5.8%)
White 172 (41.3%) 183 (44%)
February 2022 | Volume 13 | Article
EMRGPI, energy metabolism-related gene prognostic index; BCR, biochemical recurrence; GS, Gleason score; SD, standard deviation.
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FIGURE 2 | Differential expression of SDC1 and ADH1B and TME analysis. (A) volcano plot showing differentially expressed genes between tumor and normal
tissues; (B) differential expression of SDC1 at protein level in the HPA database (19, 20); (C) differential expression of ADH1B at protein level in the HPA database
(19, 20); (D) the correlations between EMRGPI and TME indicators; (E) the correlations between EMRGPI and immune checkpoints; (F) Kaplan-Meier curve showing
survival difference of high- and low-expression of CD80 in the TCGA database; (G) Kaplan-Meier curve showing survival difference of high- and low-expression of
ADORA2A in the TCGA database; (H) Kaplan-Meier curve showing survival difference of high- and low-expression of CD160 in the TCGA database; (I) Kaplan-Meier
curve showing survival difference of high- and low-expression of TNFRSF25 in the TCGA database. BCR, biochemical recurrence; EMRGPI, energy metabolism-
related gene prognostic index; TME, tumor immune microenvironment.
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(54). Systemic mobilization of neutrophils promotes metastatic
diffusion, while SDC1 shedding is a critical endogenous
mechanism that facilitates the resolution of neutrophilic
inflammation by aiding the clearance of proinflammatory
chemokines (like CXCL12) in a heparan sulfate-dependent
manner (54, 55). MMP14 is up-regulated in PCa cells, and
may be involved in mediating the mutual crosstalk between
PCa cells and periprostatic adipose tissue, promoting tumor
invasion (56). SDC1 could inhibit early stages of liver
fibrogenesis by interfering with TGFb1 action and upregulating
MMP14 (57). Besides, TOPORS is a ubiquitously expressed E3
ubiquitin ligase that can ubiquitinate the tumor suppressor gene
p53 (58). Notably, we found that the transcriptional and protein
levels of these two genes were completely opposite in this
study, which indicated the role of epigenetic or post-
transcriptional regulation.

The overexpression of focal adhesion kinase is associated
with the formation and invasive activity of androgen-
independent PCa cells (59). The activation of FAK/src/
paxillin/Rac/JNK leads to an increase in the activity of
matrix metalloproteinases and the reorganization of
membrane molecules, changes in adhesion to collagen type I
and invasion into collagen type I, and may be one of the
mechanisms of PCa invasion (60). The remodeling of collagen
ECM is thought to be related to aging and PCa growth and
Frontiers in Immunology | www.frontiersin.org 7
invasion, since the collagen matrix extracted from aged mice
enhances the invasion and proliferation of PCa cells in vitro
(61). Reactive stroma where metabolites and genes linked to
immune functions and ECM remodeling are significantly
upregulated is a common tissue feature in the TME of PCa
and are also associated with BCR (62). The MAPK signaling
pathway can be triggered by growth factors such as TGF-b,
leading to the down-regulation of epithelial markers and the
up-regulation of mesenchymal markers, resulting in epithelial-
mesenchymal transition (EMT) (63–65). The activation of the
non-canonical Wnt pathway induced by Wnt5a/Fzd2 is
significantly related to EMT and metastasis, and has been
proven to be an important predictor of BCR (66). This
feature is also related to the decreased concentration of
metabolites citrate and spermine, which are thought to be
associated with aggressive PCa (66). A nomogram constructed
based on the Wnt ligand gene family is used to predict BCR,
and the C index is 0.719 (67). In addition, we also found that
EMRGPI was related to chronic myelogenous leukemia,
thyroid cancer, renal cell carcinoma, and small cell lung
cancer through functional analysis, further proving its
clinical relevance.

In this study, we observed that EMGPI was positively
associated with the immune infiltrating cells and TME
scores. We thought that the metabolic competition between
TABLE 2 | The results of gene set enrichment analysis between low- and high-risk group.

Gene set enrichment analysis (low vs high) ES NES P value FDR

Diseases
Thyroid cancer -0.5641 -1.7859 0.002 0.0993
Renal cell carcinoma -0.4976 -1.7256 0.0061 0.0857
Chronic myeloid leukemia -0.4632 -1.9046 0.004 0.0913
Small cell lung cancer -0.5052 -1.6768 0.002 0.0902
Viral myocarditis -0.6277 -1.6275 0.0179 0.0951
Prion diseases -0.6151 -1.6357 0.0096 0.0948
Amyotrophic lateral sclerosis -0.6664 -2.0416 0 0.0667
Signaling pathways
Insulin signaling pathway -0.422 -1.6726 0.0041 0.0859
Chemokine signaling pathway -0.6329 -1.674 0.002 0.0887
WNT signaling pathway -0.5035 -1.6844 0.002 0.0945
T cell receptor signaling pathway -0.6221 -1.6316 0.0222 0.0954
MAPK signaling pathway -0.4928 -1.6858 0 0.099
NOD like receptor signaling pathway -0.6707 -1.6584 0.0118 0.0889
Epithelial cell signaling in helicobacter pylori infection -0.4971 -1.7791 0.0095 0.0928
Cellular and molecular processes
Aminoacyl tRNA biosynthesis 0.671 2.0732 0.002 0.0069
Protein export 0.6717 1.9508 0.004 0.0136
Terpenoid backbone biosynthesis 0.7399 1.9039 0.0043 0.0159
ECM receptor interaction -0.67 -1.7404 0 0.084
Cell adhesion molecules -0.6756 -1.6688 0 0.0845
Glycerophospholipid metabolism -0.4809 -1.6577 0.0036 0.0861
Apoptosis -0.5184 -1.7541 0 0.0862
FC gama R-mediated phagocytosis -0.5799 -1.7315 0.006 0.0867
Focal adhesion -0.5713 -1.7456 0.002 0.0875
Endocytosis -0.4043 -1.7156 0.008 0.0891
Leukocyte transendothelial migration -0.5816 -1.6832 0 0.0904
Snare interactions in vesicular transport -0.4596 -1.7564 0.0094 0.0917
Regulation of actin cytoskeleton -0.5287 -1.7681 0 0.0922
Vascular smooth muscle contraction -0.5444 -1.6403 0.0039 0.0946
February
 2022 | Volume 13 | Article
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cancer cells and immune cells inhibited the function of
immune cells and the metabolic reprogramming also played
a significant role in suppressing the immune attack on the
tumor cells and in resistance to therapies (68). Lactate is an
immunosuppressive molecule, whose elevation in PCa cells
and TME could promote the immune escape (69). Meanwhile,
lactate inhibits the differentiation of monocytes and dendritic
cells, and induces the inactivation of cytotoxic T lymphocytes
(35). Moreover, the elevated lactate in TME can promote the
polarization of tumor-related macrophages (TAMs) to M2 by
activating the ERK/STAT3 signaling pathway (70), and tumor
cells tend to survive and metastasize through its secretion of
anti-inflammatory and promoting angiogenesis cytokines
(71). Excessive production of pro-inflammatory cytokines
and extracellular matrix-related molecules leads to the
lipolysis of cancer cells to produce free fatty acids, which
induce oxidative stress through the expression of pro-oxidant
enzyme NADPH oxidase 5 (56). Then, increased reactive
oxygen species production activates the HIF1/MMP14
pathway, which contributes to the invasion ability of PCa
cells (56). At the same time, we observed that EMRGPI was
correlated with stromal score. The interaction between tumor
and stroma is also believed to play a role in the metabolic
reprogramming of tumor cells. It is worth noting that this
ability to induce metabolic reprogramming is bidirectional.
CAF is induced to up-regulate the expression of the glucose
transporter GLUT1, enhance the production and the output of
lactate through the de novo expression of monocarboxylic acid
transporter 4 (72). At the same time, after PCa cells are in
contact with CAF, the expression of GLUT1 decreases, and the
input of lactate through the lactate transporter MCT1
increases and then lactate enters the TCA cycle (72). The
so-called reverse Warburg effect describes a metabolic
symbiosis model in which CAF provides energy and
metabolites for epithelial cancer cells (72). In tumor stroma,
matrix components. including CAFs establish a metabolic
symbiosis relationship with PCa cells through lactate shuttle
and cellular bridges both in vitro and in vivo, which ultimately
leads to a high exploitation of mitochondria, TCA cycle
deregulation and enhanced PCa invasiveness (73). Other
stromal components such as adipocytes are also believed to
possess a similar metabolic symbiosis relationship and are
believed to be related to PCa metastasis (74, 75). In TRAMP
+/p62adipo mice, obesity and more aggressive PCa are shown.
At the same time, energy expenditure pathways such as
lipogenesis and OXPHOS in adipose tissue are inhibited to
save energy substrates for FA b-oxidation gene-enriched PCa
cells, with an up-regulated level of the rate-limiting enzyme of
the transport of long-chain FAs for b-oxidation, CPT1A, thus
promoting EMT and cancer aggressiveness (76).

We also found positive correlations between EMRGPI and
many checkpoints, among which CD80, ADORA2A, CD160,
and TNFRSF25 were highly associated with BCR-free survival.
Adenosine mediates immune suppression in the TME by
ADORA2A on immune cells. Drugs targeting ADORA2A have
entered phase I clinical trials for the immunotherapy of patients
Frontiers in Immunology | www.frontiersin.org 8
with renal cell carcinoma (77). Serum CD80 is related to BCR
(78). CD160 is essential for NK-mediated IFN-g production (79).
For hepatocellular carcinoma, the reduction in the number and
function of CD160 + NK cells in TME contributes to the immune
escape (80). Members of the TNF receptor superfamily
(TNFRSF) are the key co-stimulators of T cells, and
TNFRSF25 can promote CD8⁺ T cell responses and anti-tumor
immunity (81).

For the first time, our article proposed genes related to energy
metabolism to predict BCR of PCa patients undergoing RP. It
not only provided the latest insights to the correlations between
cancer cells and TME cells, but most importantly, it proposed a
method for screening high-risk BCR patients at the genetic level,
which was helpful for individualized screening of early treatment
patient groups, and ultimately helped to reduce PCa medical
costs. However, the potential mechanism of the opposite
difference between transcriptional and protein levels is needed
to be further studied. Besides, the role of energy metabolism
between tumor cells and immune cells still warranted to
be investigated.
CONCLUSIONS

The EMRGPI established in this study might serve as an
independent risk factor for PCa patients undergoing RP.
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