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V937 is an investigational novel oncolytic non-genetically modified Kuykendall strain of
Coxsackievirus A21 which is in clinical development for the treatment of advanced solid
tumor malignancies. V937 infects and lyses tumor cells expressing the intercellular
adhesion molecule I (ICAM-I) receptor. We integrated in vitro and in vivo data from six
different preclinical studies to build amechanistic model that allowed a quantitative analysis
of the biological processes of V937 viral kinetics and dynamics, viral distribution to tumor,
and anti-tumor response elicited by V937 in human xenograft models in immunodeficient
mice following intratumoral and intravenous administration. Estimates of viral infection and
replication which were calculated from in vitro experiments were successfully used to
describe the tumor response in vivo under various experimental conditions. Despite the
predicted high clearance rate of V937 in systemic circulation (t1/2 � 4.3 min), high viral
replication was observed in immunodeficient mice which resulted in tumor shrinkage with
both intratumoral and intravenous administration. The described framework represents a
step towards the quantitative characterization of viral distribution, replication, and oncolytic
effect of a novel oncolytic virus following intratumoral and intravenous administrations in the
absence of an immune response. This model may further be expanded to integrate the role
of the immune system on viral and tumor dynamics to support the clinical development of
oncolytic viruses.
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INTRODUCTION

Over the past 4 decades, the oncology treatment landscape has dramatically changed with the
development of advanced and targeted immunotherapies, which complement or even replace
classical chemotherapy and radiotherapy strategies (Madden, 2018). Oncolytic virus therapy
represents one such novel class of immunotherapy. Advantages of this approach rely on the
ability of oncolytic viruses to selectively replicate in cancer cells without harming normal tissues.
This process leads to a direct lysis of the tumor mass, as well as the generation of a de novo anti-tumor
immune response or boosting of an existing one (Kaufman et al., 2015).
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At present, talimogene laherparepvec (T-Vec or Imlygic®)
with intratumoral (i.t) administration is the only FDA-
approved oncolytic viral therapy for the treatment of
melanoma patients with injectable but non-resectable lesions
in the skin and lymph nodes (Pol et al., 2016). Nonetheless,
several oncolytic viruses are currently in clinical development to
target solid malignancies (Raja et al., 2018). While i. t.
administration maximizes the viral load reaching the tumor, it
is only feasible for accessible tumors. On the other hand, the
intravenous (i.v.) administration would potentially expand
oncolytic viral treatment to less accessible tumors as well as
obviate the need for interventional radiology, among other
benefits. However, systemic administration needs to overcome
viral neutralization, liver and spleen sequestration, and vessel
extravasation to exceed the a priori unknown “viremic threshold”
above which tumor destruction can be achieved (Russell et al.,
2012).

To date, there have been only a few published reports
describing i. v. administration of oncolytic viruses in clinical
trials. In these studies, viral levels as well as biological activities at
tumor lesions were observed in some patients (Kaufman and
Bommareddy, 2019), however, no evidence for clinical responses
have been observed to date (Breitbach et al., 2011; Russell et al.,
2014). Furthermore, the currently available data are from early
clinical studies with a limited number of patients wherein the
endpoints were focused on safety and tolerability rather than
therapeutic activity.

In this regard, prior to embarking on large clinical trials, it may
be prudent to understand the biology of oncolytic viruses delivery
related to tumor response in more detail (Kaufman and
Bommareddy, 2019) and mathematical models can provide a
quantitative understanding of the biological processes that an
oncolytic virus undergoes following different routes of
administration.

Various mathematical models to characterize in vitro viral
dynamics (Bagheri et al., 2011; Titze et al., 2017), in vivo behavior
limited to tumor size metrics (Bajzer et al., 2008; Eftimie et al.,
2011), theoretical frameworks (Wein et al., 2003; Mok et al., 2009;
Paiva et al., 2009; Malinzi et al., 2017; Jenner et al., 2018; Cassidy
and Humphries, 2019; Al-Tuwairqi et al., 2020) and develop
predictive in-silico trials (Jenner et al., 2021) have been so far
described. To the best of our knowledge, the integration of kinetic
parameters including viral distribution to tumor lesions and
comparing i. t. and i. v. administrations has not yet been
addressed. A greater understanding of these parameters is
critical to optimize dosing, schedules, and routes of
administration of oncolytic viruses in clinical trial design.

V937 (formerly named CVA21) is a naturally occurring
coxsackievirus currently under clinical development. In vitro
(Shafren et al., 1997a) and in vivo (Shafren et al., 2004; Au
et al., 2005) oncolytic activity of V937 has been demonstrated
in preclinical studies. However, little is known regarding how
V937 infection, replication, and tumor distribution in vivo relate
to the anti-tumor response. The objective of this work was to
develop a mechanistic quantitative framework to elucidate the
interplay between viral kinetics, dynamics and viral distribution
to tumor lesions and then link this information to an anti-tumor

response following i. t. and i. v. administration in human
xenograft tumor models in immunodeficient mice. The
mechanistic model described here will provide the basis to
integrate data related to immune response that would allow
elucidation of an oncolytic virus driven anti-tumor response
under various treatment regimens including combination with
immune checkpoint inhibitors.

MATERIALS AND METHODS

Experimental Data
In vitro V937 replication data, in vivo V937 levels in sera and
tumors, and tumor sizes in control and V937-treated mice in
multiple human melanoma xenograft studies were integrated
in the analysis to build the mechanistic model (raw data
depicted in Supplementary Figure 1).

Unpublished in-house data and extracted data from published
reports were both processed using R (R Project for Statistical
Computing, RRID:SCR_001905) v3.6.1 through RStudio
interface (RStudio, RRID:SCR_000432) v1.2.1335. In cases
where data were only available from graphs, WebPlotDigitizer
(WebPlotDigitizer, RRID:SCR_013996) software was used to
extract mean profiles over time. Descriptions of the available
data are as follows:

In Vitro Viral Replication
Data of V937 replication in two human melanoma cells lines SK-
Mel-28 (NCI-DTP Cat# SK-MEL-28, RRID:CVCL_0526) and
ME4405 (RRID:CVCL_C680) and a rhabdomyosarcoma cell line
transfected with ICAM-1, RD-ICAM-1, were extracted from Au
et al., 2005. In brief, cell monolayers in 6-well plates were treated
with approximately 106 TCID50 (half-maximal tissue culture
infectious dose) of V937 over 1 h, however the number of
seeded cells is not available. At the various time points (0, 2,
4, 6, 8, 10, 12, 24, and 48 h), the cell monolayers were lysed and
the viral yield of the cell lysate was determined in triplicate using
an end-point titration assay. Average viral titers were digitalized
from reported graphs.

In Vivo Viral Kinetics
Viral RNA measurements of V937 in serum and tumor were
obtained from an in-house experiment (Table 1).

Ethical review and approval were not required for the
animal study as our work presents a modelling exercise on
data already published for which the ethical approval was
obtained at the time of experiments were performed (by
others in other institutions).

Severe combined immunodeficient (SCID) mice were
intradermally inoculated with 2 × 106 SK-Mel-28 cells in hind
flank on Day −20 for tumor growth. On Day 0, animals were
assigned into three groups (n � 16/group) with following
treatment regimens: 1) a single i. v. dose of PBS (phosphate-
buffered saline), 2) a single retro-orbital dose of 104 TCID50 V937
(low dose) 3) a single retro-orbital dose of 107 TCID50 V937 (high
dose). Sera and tumors were harvested from two animals per
group following euthanasia at various time points.
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V937 in sera was quantified by both real-time reverse
transcriptase polymerase chain reaction (RT-qPCR) (copies/
mL) and cell infectivity (TCID50/mL), while V937 in tumor
samples was quantified by real-time RT-PCR normalized by
total RNA (copies/μg RNA). Viral levels were detected in all
samples except for two tumor samples harvested at 3 h (low
dose V937), and one sample harvested at 17 days (high dose
V937).

In this experiment, tumor size was measured using calipers,
and the average tumor volumes per group on Day 0 (n � 4), Day
14 (n � 4) and Day 17 (n � 2) were reported.

In Vivo Tumor Growth Inhibition
In addition to the average tumor volumes obtained from the
in vivo V937 viral kinetic experiment, tumor size data from
two publications (Shafren et al., 2004; Au et al., 2005) were
compiled for the analysis. Experimental designs are detailed in
Table 1.

In the studies described by Shafren et al., 2004, data were
available from three experimental conditions: 1) single i. t. dose of
V937 in mice bearing one tumor lesion, 2) single i. t. dose of V937
in one tumor lesion of mice bearing two tumor lesions, and 3)
single i. v. dose of V937 in mice bearing two tumor lesions. In all
cases, non-obese diabetic (NOD) SCID female mice were
subcutaneously (s.c.) injected with 2 × 105 SK-Mel-28 cells in
one or two flanks, and single injection of phosphate buffered
saline (PBS) or V937 (10–105 TCID50) was administered when
tumors reached a predefined volume. Tumor volume was
calculated using the formula for a spheroid. Tumor volumes,
were recorded at regular intervals, and average tumor volume
were digitalized for analysis.

In vivo growth rate of SK-Mel-28 in NOD-SCID mice
following implant of 106 cells in one flank from Au et al.,
2005 was combined with control groups in SK-Mel-28 study
from Shafren et al., 2004 and used for model building.

In addition to SK-Mel-28 cell line, data from control and
treated animals inoculated with ME4405 cells were available from
Au et al., 2005. This information was used as validation (see
Experimental data section of Supplementary Methods and
Results for detailed description of experimental design).

Mechanistic-Based Model Building
The mechanistic model was built following a sequential and
integrative approach (Figure 1). First, in vitro data were used
to characterize dynamics of viral infectivity and replication.
Following, in vivo viral kinetics, viral distribution in tumor
and tumor growth were described taking into account the viral
dynamic model previously developed.

The model, depicted in Figure 2, accounted for the following
biological processes: 1) viral clearance from sera 2) viral
distribution to tumor mass, 3) proliferation of tumor cells 4)
uninfected tumor cells (uTC) to be infected by the virus, 5) viral
replication in infected tumor cells (iTC), and 6) viral induced
death of infected tumor cells.

The following subsections describe, 1) the final model structure
and parameter estimates, 2) data analyses as methodology used to
build the model, 3) model selection and evaluation.

Model Structure and Parameters
In Vitro Viral Dynamic Model
According to the viral mechanism of action and following
classical mathematical structures for viral dynamics (Perelson,

TABLE 1 | Design of in vivo experiments.

References Mice strain Mice (n) Cells0 (n) TV0

(mm3)
Dose Time points

Viral kinetic data
In-housea SCID 16 2.106 50–150 1) PBS i.v 3, 6, 24, 48, 72, 168, 336, 408 h post-

treatment2) 104 TCID50 i.v
3) 107 TCID50 i.v

Tumor growth data
In-housea SCID 4 2.106 50–150 1) PBS i.v 0, 14, 17 days post-treatment

2) 104 TCID50 i.v
3) 107 TCID50 i.v

Shafren (Shafren et al.,
2004)

NOD SCID 5 2.105 100 1).PBS i.t 0, 8, 14, 21, 30, 35 days post-treatment
4–6 weeks 2) 103 TCID50 i.t
NOD SCID
4–6 weeks

5 2.105 per site
(2 tumors/
mouse)

200–400 1) PBS i.tb 1, 17, 23, 30 days post-treatment
2) 103 TCID50 i.tb

3) PBS i.v
4) 103 TCID50 i.v

NOD SCID
4–6 weeks

5 2.105 400–600 1) PBS i.t 0, 7, 14, 21, 28, 35days post-treatment
2) 10 TCID50 i.t
3) 10b TCID50 i.t
4) 103 TCID50 i.t
5) 105 TCID50 i.t

Au (Au et al., 2005) NOD SCID
4–6 weeks

10 106 250–500 1) none 28, 35, 42,49, 56 days post-inoculation

i. v., intravenous (retro-orbital); i. t., intratumoral; n, number ofmice or inoculated cells (cells0); NOD: nonobese diabetic; PBS: phosphate-buffered saline; s. c., subcutaneous; SCID, severe
combined immunodeficiency; TV0, tumor volume at the start of the treatment; TCID50: half-maximal tissue culture infectious dose.
aData from same experiment.
bDose administered only to primary tumor site.
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2002b), the model described the time course of three main
entities: uTC, iTC and viral load in the extracellular medium
(VLEC) as shown in eqs. 1–3.

uTC can proliferate with a net growth first order rate constant
(λ) and be transformed to iTC in the presence of virus in the
medium. This infectivity process takes place through a second
order rate constant (β) that consumes both, viruses and
uninfected tumor cells. Once cells are infected, V937 can
replicate within iTC and generate copies of virions (α) per
infected cells during its life span. Subsequently, iTC will be
killed by viral induced cell death at a rate (δ). Extracellular
virions can also be degraded with a first order rate constant
(KVIR).

duTC
dt

� λ × uTC − β × uTC × VLEC (1)

diTC
dt

� β × uTC × VLEC − δ × iTC (2)

dVLEC
dt

� −β × uTC × VLEC + δ × α × iTC − KVIR × VLEC (3)

The system was initialized to the administered dose (TCID50)
in the compartment of VLEC, and number of seeded cells at
confluence for uTC (1.2 × 106 cells/well1). iTC were considered to
be zero at baseline.

Total predicted viral load, which is computed as the sum of
viral load in the medium (VLEC) and inside cells (α × iTS), was
fitted to measured viral concentrations from the in vitro
replication experiment, using the volume of 3 ml per well of a
6-well plate.

Given the short duration of the in vitro evaluation, viral
degradation and cell proliferation processes were considered

FIGURE 1 | Schematic representation of the modelling and data workflow, highlighting the key processes identified at each step.

1https://www.thermofisher.com/es/es/home/references/gibco-cell-culture-basics/
cell-culture-protocols/cell-culture-useful-numbers.html
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negligible, and thus their respective parameters, KVIR and λ, were
assumed to be zero at this stage.

In Vivo Viral Kinetic, Viral Dynamics and Tumor Growth
Inhibition Model
To characterize V937 viral kinetics in vivo, the time courses of
V937 viral load in sera (VLS) and tumor vasculature (VLVAS)
were modeled through a minimum physiological model (eqs.
4–5). Mouse-specific tumor blood flow (QTUM;144 ml/d) (Baxter
et al., 1995) and real organ volumes were used in the analysis.
Tumor vascular volume (VVAS) was assumed to be a 7% of total
tumor volume at baseline and serum volume (VS � 0.974 ml) was
fixed at 55% (Baxter et al., 1995) of blood volume in mice
[77 ml/kg for a 23 g mouse (Mitruka and Rawnsley, 1981)].
Viral elimination rate (KVIR) and tumor retention factor
representing viral affinity for the tumor (RF) were estimated
as drug-specific parameters.

dVLS

dt
� −QTUM × (VLs

Vs
− VLVAS

RF × VVAS
) − KVIR × VLS (4)

dVLVAS
dt

� QTUM × (VLs

Vs
− VLVAS

RF × VVAS
) − β × uTC × VLVAS

+ δ × α × iTC

(5)

The initial values of VLS and VLVAS at time 0 were set to the
administered dose (TCID50) and 0, respectively, following i. v.
dose. In the case of i. t. administration, VLS was initialized to 0
and VLVAS to the administered dose at time 0. The kinetic
model was linked to the previously developed viral dynamic

model at tumor level replacing VLEC by VLVAS in eqs. 1–2 as
follows:

duTC
dt

� λ × uTC − β × uTC × VLVAS (6)

diTC
dt

� β × uTC × VLVAS − δ × iTC (7)

As for the in vitromodel, uTC compartment was initialized to
the number of initial tumor cells that were derived from
measured tumor size at baseline, and iTC was assumed to be
zero at baseline.

To identify KVIR and RF drug parameters, predicted viral load
concentration in serum (VLS/VS in TCID50/mL or copies/mL
after correction by a factor accounting for the ratio between
TCI50 and copies, referred to as RATIO) and in tumor
[computed as the sum of vascular, VLVAS, and intracellular
levels, α × iTS, normalized by an estimated factor to account
for the amount of RNA (µg) per tumor volume unit, RNAVOL],
were fitted to experimental levels of V937 in sera and tumor over
time (see In Vivo Viral Kinetic Experimental Data section). The
parameters α and β were fixed to those obtained in vitro, while λ
and δ parameters, considered to vary between in vitro and in vivo
experimental scenarios, were estimated by fitting tumor size
model predictions (uTC + iTC) to experimental tumor size
data (see Tumor Growth Inhibition Experimental Data
section). Note that tumor size was measured in mm3 while
uTC and iTC are expressed as cell units, therefore a standard
conversion factor of 106 cells per mm3 was used (Makkat et al.,
2007).

FIGURE 2 | Schematic representation of the mechanistic model for viral kinetics, viral dynamics and tumor growth. uTC, uninfected tumor cells; iTC, infected tumor
cells; VLS, serum viral load and VLVAS, viral load in tumor vasculature.
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In addition, a proportionality ratio (RATIO) between TCID50

and copies was computed to account for the conversion between
both metrics as the model describes the dynamics of TCID50/mL
and copies/mL, assuming that both variables have same time
course but different magnitude.

Data Analysis
For in vitro or in vivo viral levels, each observation was obtained
from a different well or animal; therefore, a naïve pool approach
was used (i.e. data were pooled together and analyzed as coming
from one single ID). For tumor size data in vivo, each mean
profile was considered as an independent animal, thus enabling
the use of the population approach to characterize inter-subject
variability in model parameters as well as residual error.

The software NONMEM 7.4 (NONMEM, RRID:
SCR_016986) and the First Order Conditional Estimation
method with interaction algorithm were used for the analysis.

Data were logarithmically transformed during the analysis and
an additive error model in the logarithmic scale was used to
account for the discrepancies between model predictions and
observations. A different residual error for each measurement
was considered. When the population approach was applied the
inter-subject variability was modelled exponentially (Kiang et al.,
2012; Mould and Upton, 2012).

Model Selection and Evaluation
Model selection was largely driven by biological plausibility
and capability of the model to describe the tendency of the
data, taking into account also 1) parameter precision, 2)
classical goodness-of-fit plots including observation versus
model prediction and conditional weighted residuals over
time or over model predictions, and 3) objective function
value (OFV, approximately equal to -2xlog- likelihood).
When models were nested, a drop of 3.84 or 6.63 in OFV
was considered significant at the levels of 5 and 1%,
respectively.

Model Exploration
The dynamics of the different entities of the system were explored
over the range of evaluated dose levels (10–107 TCID50),
comparing outcome after i. v. or i. t. administration including
one or two tumor lesions, the latter allowing for exploration of
abscopal effects.

In addition, a parameter scan was performed varying one
parameter at a time to explore its impact on viral levels and tumor
response for selected design scenarios. During the simulation
step,, a function (FMOI) was introduced at the infectivity term:
FMOI × β × uTC × VLVAS; this was used to avoid infectivity of
cells at very low virus levels just because high number of
uninfected tumor cells in a continuous manner, rather than
setting viral levels to zero at random value. This function
cancels the infection of new cells when the viruses are too low
compared to the number of total cells, with FMOI defined as
follows:

FMOI � MOI
MOI +MOI50

(8)

Where MOI (multiplicity of infection) is computed as the ratio
between viral load levels in the vasculature and total tumor
burden (iTS + uTS) and MOI50 represents the MOI at which
50% of maximum infectivity is obtained. After a sensitivity
analysis, MOI50 was fixed to a low value (10–6) that did not
affect model characterization of the experimental data.

Simulations were performed in Berkeley-Madonna software
(v9.2.1) and plotted in R (v3.6.1) through RStudio interface
(v1.2.1335).

Sensitivity Analysis
To evaluate the impact of simultaneously varying all parameters
on model output, a global sensitivity analysis was performed
following the approximation technique described by Saltelli et al.,
2008; Saltelli et al., bib_Saltelli_et_al_20102010 of the Sobol’s
method (Sobol′, 2001) using the SAFE toolbox available as R
package (Pianosi et al., 2015), where to have even probabilities of
sampling parameters differing in several order of magnitudes the
latin hypercubic sampling method from a uniform distribution
was used. Tumor size at day 14 was selected as the variable to
represent drug response for model output.

Model Applicability
The combined impact of the most influential parameters was
explored for two-by-two combinations of different dose levels
and dosing routes. To do so, a virtual population (n � 1,000) was
simulated varying all other parameters but those of interest (i.e. α
and β, α and RF or β vs RF) following the same sampling
approach as described for the global sensitivity analysis.

Tumor size profiles of the virtual population were then
simulated using combinations of the two parameters of interest
over the plausible parameter space. Probability of response under
the different scenarios (i.e. combination of parameters, dose levels
and dosing routes) was computed as the probability of observing at
least 20% tumor shrinkage at day 14.

RESULTS

In Vitro Viral Dynamic Model
The levels of viral load obtained in vitro showed an initial decay
reflecting infectivity, followed by a rapid increase up to 108

TCID50/mL, 8–12 h post-infection, indicating viral production
(raw data depicted in Supplementary Figure 1A).

Due to the availability of only total viral levels, it was not
feasible to account for intracellular viral production and
subsequent release to the cytoplasm as independent processes.
Describing viral replication as a unique process dependent on
both cell death and number of copies per cell allowed us to 1)
obtain precise estimates of viral infectivity and production and 2)
account for intracellular levels without increasing model
complexity. As expected from the quick viral plateau reached
in vitro, a fast death rate constant (δ) was identified, although
with low precision due to the lack of cell death time profiles.
Accounting for degradation of virus in the medium provided a
very low estimate of viral clearance (KVIR), suggesting this process
could be neglected without affecting model performance

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 7054436

Parra-Guillen et al. Modeling Framework for Oncolytic Viruses

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(p > 0.05), probably as a consequence of the short duration of the
experiment.

Different α, β or δ parameter estimates for the three available
cell lines (RD-ICAM-1, SK-Mel-28 and ME4405) were evaluated.
Best results in terms of model performance and parameter
precision were obtained using a different δ, estimated to be
higher for ME4405 than for RD-ICAM-1 and SK-Mel-28. The
use of the different δs provided a significant drop in objective
function (p < 0.05) and improved parameter precision (from
100% error to less than 60%) (Table 2). Nonetheless, α and β
estimates did not differ statistically across the three cell lines.
Overall, a good description of the in vitro data was obtained
(Figure 3A).

In Vivo Viral Kinetic and Tumor Growth
Inhibition Model
I.V. administration of V937 at both 104 and 107 TCID50 resulted
in a rapid increase in V937 in sera and tumors, 6–24 h post
administration. Despite the 3 log10 difference in dose (104 vs 107

TCID50), similar viral concentrations were observed in plateau
suggesting viral capability to replicate in vivo (raw data depicted
in Supplementary Figure 1B).

A semi-physiological pharmacokinetic model that accounts
for viral replication in the tumors provided a sufficient
description of the available kinetic data in both serum and
tumor. Infectivity (β) and replication (α) estimates were fixed
to those obtained from the in vitro analysis, while physiological
parameters (i.e. tumor blood flow, serum volume and fraction of
tumor vasculature) were taken from the published literature. The
rest of the model parameters were estimated. High V937
elimination (t1/2_KIV ∼4.3 min) and V937 tumor retention

(RF), supported by the low initial viral levels and the
capability of the virus to efficiently distribute to tumor and
quickly replicate, were identified with good precision.

Regarding tumor size data, certain dose response could be
identified, but no major differences across routes were
experimentally detected, though large variability in tumor
size at dosing time was observed (raw data depicted in
Supplementary Figure 1C). When simultaneously
modelling control and treated groups, exponential growth
provided a better overall description (p < 0.001). Variability
across mean tumor profiles was identified on baseline tumor
cells and death rate of infected tumor cells. In addition,
estimating different baseline and growth rate for secondary
tumor lesions produced a significant (p < 0.01) decrease
in OFV.

Acknowledging that tumor growth/shrinkage could also
impact V937 viral distribution to the tumor (i.e. tumor blood
flow), different models that assumed changes in QTUM with
tumor mass were explored either assuming a proportional
relationship between them (i.e. tumor blood flow and tumor
mass) or as a power model that allow to account for the fact that
not all tumor mass is perfusable (Ferl et al., 2005). None of the
models was supported by the data, neither provided a different
description of pharmacokinetic (PK) profiles and therefore this
feature in the model was not included.

Overall, the final model was able to satisfactorily describe all
sources of in vivo data simultaneously (Figures 3A–C) enabling
precise parameter estimates (Table 2). Moreover, the final model
structure could adequately describe the limited experimental
tumor response data obtained when implanting ME4405 cell
line in xenografts (see results section of supplementary
material).

TABLE 2 | Parameter estimates of final models.

Parameter name Description Typical estimate (RSE) Variability % (RSE)

Viral dynamics
α (TCID50/cell) Viral particles released per infected cell 208 (27.2%)
ß (1/TCID50/h) Infectivity rate 0.489 × 10−8 (32%)
δinvitro (1/h) Death rate of infected cells in vitro 55 (60.7%)
δinvitro_ME4405 (1/h) Death rate of infected cells in vitro for ME4405 cell line 332 (58.4%)
Error (log TCIDI50/mL) Additive residual error of viral load 0.958 (16.2%)

Viral kinetics
KVIR (1/d) Viral degradation rate 232 (14%)
QTUM (ml/d) Blood flow to tumor 144 FIX
VS (ml) Serum volume 0.974 FIX
FVAS (unitless) Fraction of tumor vascular volume 0.07 FIX
RF (unitless) Retention factor of V937 in the tumor 623 (12.4%)
RATIO (copies/TCI50) Number of copies per TCDI50 170 (4.5%)
RNAVOL (copies x μg RNA/TCID50/mL) Scaling factor to adjust for RNA levels in tumor 1,580 (50.1%)
Error (log10 TCIDI50/mL) Additive residual error of serum V937 levels in TCID50/mL 0.757 (8.8%)
Error (log10 copies/mL) Additive residual error of tumor V937 levels 0.807 (8.4%)
Error (log10 copies/μg RNA) Additive residual error of tumor V937 viral load 1.29 (11.2%)

Tumor growth inhibition
λ1 (1/d) Growth rate of primary lesion 0.0601 (6.8%)
λ2 (1/d) Growth rate of secondary lesion 0.129 (11.1%)
Tc_01 (mm3) Baseline tumor size of primary lesion 256 (19.1%) 62.5 (20%)
Tc_02 (mm3) Baseline tumor size of secondary lesion 148 (22.6%)
δ invivo (1/d) Death rate of infected cells in vivo 0.17 (16.1%) 54.6 (21.6%)
Error (log10 mm3) Additive residual error of tumor size in log scale 0.227 (14.1%)
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Model Exploration
The final model was used to explore the behavior of the observed
and unobserved elements of the system under different
experimental scenarios.

Following i. v. or i. t. administration, V937 reaches a quick
equilibrium of distribution between serum (VLS) and tumor
vasculature (VLVAS) as shown in Figure 4 and at both at the
primary and secondary lesion as shown in Supplementary
Figure 2. Given the estimated high tumor affinity and
infectivity, the model predicts that the vast majority of cells get
quickly infected (in less than 1 h at a dose of 104 TCID50) and start
to produce new viral copies that return to serum. This aspect,
observed at all experimental doses available (Supplementary
Figure 3), explains the increment in observed circulating
levels, despite the fast viral degradation. Time to reach the
maximum infectivity of tumor cells, and thus peak viral load
levels, depends on both dose and initial tumor burden, with a
shortening in time observed as dose level (Supplementary
Figure 3) or tumor size increases (data not shown). Under

these conditions, differences between routes of administration
are mainly located at early time points, before maximum
infectivity is achieved, but in all cases tumor response is
ultimately attained, as also observed experimentally.

Sensitivity Analysis
The impact of varying one model parameter at a time within a
plausible parameter space was evaluated as exemplified for α in
Figure 5A and for the rest of model parameters in
Supplementary Figure 4. Only changes in viral replication
(α), viral infectivity (β) or tumor retention factor (RF) were
able to invert the course of tumor response from cure to
progression when parameter values were decreased. The rest
of parameters showed an impact on the rate of response, like
the infected cell death rate (δ), or minor influence on overall
profiles, without changing tumor progression.

When performing a global sensitivity analysis to
simultaneously explore the impact of model parameter
changes on tumor response, similar results were obtained

FIGURE 3 | Model evaluation. Model predictions (lines) versus real observations (dots) for (A) in vitro viral replication model and (B) in vivo viral kinetic model at
typical level, and (C) tumor growth inhibition model at individual level for the different experimental scenarios. ID: individual. In panel A viral dynamics of RD-ICAM-1 and
SK-Mel-28 are almost equivalent and model predictions appear superimposed.
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(Figure 5B). α, β, RF and δ were the most influential parameters,
accounting for around 10–16% of the variability in response as
single parameters (first-order index), and 28–40% in total when
taking into account the different doses evaluated and routes of
administration (Supplementary Figure 4). These data highlight
the importance of combined effects among parameters to
explain model outcome. However, a different scenario is
observed for the lowest dose of 10 TCID50; this is due to the
lack of infectivity and response for most of the simulated
parameter vectors, thus leaving the rate of tumor growth and
baseline tumor size as the most influential parameters
determining tumor size outcome.

Model Applicability
The model was further evaluated to study the probability of
observing a response (i.e. tumor shrinkage greater than 20%) for
different two-by-two combinations of most influential model
parameters with an impact on ultimate response.

This methodology allowed us to identify those areas where the
probability of observing a response is almost null or very high,
regardless of the combination of all other model parameters. As
expected under this system, similar profiles were obtained after i. v.
and i. t. administration, with slightly higher probability of response
for the latter (data not shown). In all explored scenarios, increasing
the dose translated into an increase in the probability of response,
covering a wider area of the parameter space (Figure 6).

DISCUSSION

Mathematical modelling in immunology and virology has been
extensively explored to provide a better understanding of the
infection time course and to optimize viral therapies (Perelson,
2002a; Santiago et al., 2017). With the increasing interest in the
use of oncolytic viruses in treating cancer, different models that
integrate these concepts into a tumor dynamic environment have
appeared (Santiago et al., 2017).

In this work, we present a modelling framework using
ordinary differential equations that is capable of
simultaneously accounting for three key processes of a novel
oncolytic virus, V937, currently in clinical development: 1)
capability to infect and replicate within tumor cells, 2)
pharmacokinetics including distribution of V937 virus to
tumor and 3) finally oncolytic V937 effects in vivo. To the
best of our knowledge, this is the first time that distribution to
tumor has been explicitly taken into account to enable
characterization of different routes of administration.

To build the framework, an intermediate approach between
the classical top-down and bottom-up approaches (i.e. data
driven vs biology driven) was followed, thus balancing
mechanistic knowledge and available data. Data from different
sources, levels of information and even measurement units were
integrated, highlighting the importance of quantitative models to
combine and exploit experimental data as already shown in other
therapeutic scenarios (Campagne et al., 2018; Parra-Guillen et al.,
2020).

In this respect, the use of in vitro data to identify viral infectivity
and replication processes, which are hard to identify only using in
vivo data, has been of particular relevance. Parameter comparison
with other viruses is not straight-forward as different dosing and
measurement units (pfu, copies, TCID50) are used across
experiments. However, in absolute terms, V937 replication
capability was within the reported ranges for oncolytic viruses
of 50–1,350 virions/cell (Liu et al., 2000), which inmost cases come
from direct experimental observations and not from modelling
exercises. Similarly, estimated in vitro death rate was in line with
the upper ranges reported by Titze et al., 2017 (1.2–761 1/h) using a
similar model structure, as well as the infectivity rate (0.35 × 10−8

to 0.98 × 10−8). Nonetheless, larger intervals depending on the
virus and cell type can be found in the literature for viral infectivity
(10−7–10–10) (Bajzer et al., 2008; Mahasa et al., 2017; Cao et al.,
2018).

V937 employs the intercellular adhesion molecule I (ICAM-I,
CD54) receptor for attachment and viral entry (Shafren et al.,
1997a; 1997b); this receptor is overexpressed in numerous
malignant cells, including melanoma (Kageshita et al., 1993;
Hayes and Seigel, 2009). V937 can also bind to the DAF
receptor; however, it appears that DAF may function as a low-
affinity attachment receptor either enhancing viral presentation
or providing a viral sequestration site for subsequent high-affinity
binding to ICAM-1 (Shafren et al., 1997b). Despite different
ICAM-I expression in the three in vitro cell lines, differences in
viral entry across cell lines could not be adequately identified.
This could potentially be due to the experimental data and design,
e.g. the lack of dose range as well as errors associated with end

FIGURE 4 | Model exploration. Model predicted time course of the
different entities following intravenous (i.v.) or intratumoral (i.t.) single
administration of V937 at a dose levels of 104 TCID50. VLS, viral load in serum;
VLVAS, viral load in tumor vasculature; uTC, uninfected tumor cells; iTC,
infected tumor cells. Log-log scale used.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 7054439

Parra-Guillen et al. Modeling Framework for Oncolytic Viruses

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


point titration for TCID50 assessment. However, it could also be
due to a sufficiently high ICAM-1 expression levels in all cases
(Au et al., 2005) compared to the threshold of 5,000 ICAM-1
molecules per cell required for V937 to exhibit in vitro activity

(Annels et al., 2018). Nonetheless, and given the mechanistic
nature of the model, additional data for example regarding
ICAM-I expression could be easily introduced to further refine
the model.

FIGURE 5 | Sensitivity analysis. (A) Impact of varying viral replication (α) parameter on the predicted time course of viral concentrations in viral load in serum (VLS,
left panels) and tumor size volume (right panel) following intravenous (dashed line) or intratumoral (solid line) administration of a single V937 dose of 104 TCID50. (B).
First-order and total-order Sobol’s sensitivity indices computed using model predicted tumor size at day 14 following intravenous (i.v.) or intratumoral (i.t.) single
administration of a V937 dose of 104 TCID50.

FIGURE 6 | Model applicability. Probability of observing at least 20% of tumor shrinkage at day 14 in a simulated virtual population at different two-by-two
parameter combinations after single intratumoral dose. α, viral particles released per infected cell (viral production); β, viral infectivity; RF, retention factor.
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In the current model tumor cells infection is predicted to take
place quickly and in less than a day due to either the high
infectivity rate constant obtained in vitro in combination with
the high predicted tumor levels after i. t. administration, or the
fast tumor distribution and high tumor retention estimated after
i. v. distribution. That critical aspect of the model has been
explored carefully and is supported by the data. Specifically,
viral replication in vitro indicated a fast infectivity process,
with increasing viral levels reaching a plateau 8–12 h after
V937 exposure. Moreover, it has been described that the virus
is capable to trigger an extensive lytic destruction of melanoma
cells 23 h after infection at a dose level of one TCID50/cell
(Shafren et al., 2004), level similar to the one used in vitro.
Regarding the vivo scenario, a sharp and sustained increase in
viral levels at tumor is also observed after i. v. administration,
despite the high viral clearance, supporting that infection and
replication of the virus takes place fast, given the current model
structure.

One novel aspect introduced in this work is the description of
viral kinetics and viral distribution to tumor using a semi-
physiological pharmacokinetic model that enables
simultaneous description of both i. v. and i. t. administration
routes. Viral measurements at tumor level are scarce in the
literature (Kelly et al., 2008; Workenhe et al., 2014; Garcia-
Carbonero et al., 2017; Andtbacka et al., 2019), and even more
so over time. However, these types of data have been essential to
characterize the tumor compartment in the model. In our
modelling framework, the tumor was represented by two sub-
compartments: 1) a vascular compartment in fast equilibrium
with serum and 2) a cellular compartment which gets infected
upon viruses arriving to the vascular compartment. A high
retention of the virus at tumor level (RF � 623), which cannot
be compared due to lack of literature data, and direct release of
newly formed virions to the vascular compartment were required
to successfully characterize the data behavior, suggesting no
distribution limitations between serum and tumor in our
preclinical setting. Moreover, an estimated half-life of 4.3 min,
in line with the fast clearance observed for oncolytic viruses in
clinical studies (Garcia-Carbonero et al., 2017), was obtained.
This result indicates that the sustained levels observed in tumor
and plasma are due to V937 capability to infect and replicate in
immunodeficient mice, which ultimately leads to a potent
oncolytic response as reflected by the infected cell death rate
constant (δ) estimate, which is in line with those reported in the
literature (Okamoto et al., 2014; Cao et al., 2018).

One of the major hurdles in current drug development in
oncolytic viruses, and immune-therapies in general, is the need
for predictive animal models (Russell et al., 2012). Certainly,
xenograft mouse models that lack an immune system can be
limited. However, they present a valuable opportunity to assess
the properties of the oncolytic viruses in isolation, without any
other limitation, on human tumor cell lines, as illustrated in this
work. In this mouse model, viral retention, infectivity and
replication at tumor level were identified as the key processes
controlling V937 tumor response. These processes are tightly
interconnected and difficult to identify simply using tumor
response data. Viral infectivity and replication identified in vitro

experiments could be directly integrated into the in vivo model
structure to enable an adequate prediction of tumor response, thus
providing an in vitro/in vivo framework for oncolytic viruses that
can be used to support the selection between candidates based on
their in vitro properties.

In this tumor mouse model and despite the rapid systemic
clearance, minor differences between i. v. and i. t. routes of
administrations were observed due likely to high viral infectivity
and replication in the tumor level, as reflected by the
corresponding parameter estimates, which in principle can lead
to complete tumor eradication. However, this result should be
interpreted with caution at the time to translate to other scenarios
as the impact of the immune system is not yet considered and its
role on the viral infection and proliferation mechanisms cannot be
ruled out. In addition, given the small number of animals used in
the experiments further data would be needed to validate the
current model structure and parameter estimates. In this regard,
model development should be seen as an iterative process that
needs to be coupled with experimental work in order to reflect
biology of the system and maximize model usefulness. As a next
step, information from syngeneic mouse models that include not
only tumor size measurements, but also kinetic levels in serum
(and ideally in tumor as well) and relevant immune response
markers, could be integrated into this framework. Such
developments could facilitate a mechanistic and quantitative
understanding of the dual role that the immune system can
play in viral response, potentially limiting viral infectivity as
well as triggering a potent anti-tumor immune response.

In summary, a mechanistic framework integrating in vitro
viral dynamic properties into an in vivo system to describe
oncolytic effects of V937 on tumor response in
immunodeficient mice has been successfully developed. This
model allows for a better understanding of the role that the
different processes play in the final outcome, and enables
selection between oncolytic virus candidates based on in vitro/
in vivo features, such as infectivity. Moreover, the developed
model can serve as a backbone to include future additional
biological components, such as the immune response, to
provide a quantitative understanding of the balance between
immune and antiviral response. This would facilitate a better
understanding of the limitations of systemic administration in
immunocompetent scenarios, guide dosing strategies, and help
identify potential combination strategies to ultimately support
the development of programs for oncolytic viruses.
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