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ABSTRACT: A robust understanding of the sequence-dependent
thermodynamics of DNA hybridization has enabled rapid advances
in DNA nanotechnology. A fundamental understanding of the
sequence-dependent kinetics and mechanisms of hybridization and
dehybridization remains comparatively underdeveloped. In this
work, we establish new understanding of the sequence-dependent
hybridization/dehybridization kinetics and mechanism within a
family of self-complementary pairs of 10-mer DNA oligomers by
integrating coarse-grained molecular simulation, machine learning of
the slow dynamical modes, data-driven inference of long-time kinetic
models, and experimental temperature-jump infrared spectroscopy.
For a repetitive ATATATATAT sequence, we resolve a rugged
dynamical landscape comprising multiple metastable states,
numerous competing hybridization/dehybridization pathways, and
a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of
the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the
number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to
maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical “all-or-nothing” two-state
model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the
dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing
quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis
with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer
the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.

1. INTRODUCTION

Over the last couple of decades, DNA has proven to be much
more than a vessel for genetic information. From sensing to
computing to directed self-assembly, the programmable and
predictable nature of DNA has unlocked numerous unforeseen
nanotechnology applications.1−4 Recently, single molecule
localization techniques have exploited the rapid and transient
binding of short DNA oligomers in order to achieve super-
resolution microscopy and optical multiplexing.5−7 Predictive
understanding of the sequence-dependent thermodynamics of
DNA hybridization/dehybridizationthe assembly/disassem-
bly of a DNA duplex from two single strandshas
underpinned the rational design of DNA oligomer sequences
for nanotechnology applications, where sequence-dependent
nearest-neighbor models can accurately account for mis-
matched pairs, dangling ends, and other non-native bonding
effects.8,9 Secondary DNA structures such as hairpins and G-

quadruplexes have also been studied in depth and leveraged for
nanotechnology applications.10−12 Predictive models of the
dynamical, as opposed to purely thermodynamical, behaviors
of DNA have become increasingly important in developing
technologies such as DNA-PAINT (DNA Points Accumu-
lation for Imaging in Nanoscale Topography), but these
technologies have outpaced our fundamental understanding of
the dynamics themselves.13−15 Many experimental and
computational studies have investigated DNA dynamical
phenomena over picosecond to millisecond time scales.16−20
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Kinetic models have been developed for particular DNA
processes such as toehold exchanges and optical barcoding21,22

and supervised machine learning techniques have been
combined with experimental measurements to predict the
on/off rates as a function of sequence.6,23,24 A comprehensive
understanding of the full dynamical landscape of hybrid-
ization/dehybridization accounting for the sequence-depend-
ent metastable states and association/dissociation pathways
remains lacking and fundamental questions remain unresolved.
For example, it remains unclear the extent to which
hybridization of short DNA oligomers largely proceeds in a
conventionally assumed “all-or-nothing” fashion or if long-lived
metastable states facilitate the transition.17,19,25−28 Out-of-
register “shifted” base-paired structures17,18,25,29−31 and frayed
structures32−35 stand as candidates for metastable states with
the potential to mediate substantial deviations from all-or-
nothing behavior, but the degree to which these states are
kinetically relevant is difficult to determine experimentally and
is likely to be highly sequence-dependent. The development of
predictive models and design rules with which to engineer
DNA strands with tailored hybridization/dehybridization
kinetics and pathways is vital to advancing rational design of
DNA strands for nanotechnology applications and is also of
importance in understanding fundamental biological processes
such as transcription and gene regulation.
Our understanding of hybridization dynamics is built upon

decades of experimentssuch as temperature-jump, salt-jump,
pH-jump, and other perturbative methodsthat rapidly
stimulate DNA and monitor relaxation to a new equili-
brium.28,36−42 More recently, single-molecule diffusion and
tethered multi-fluorophore assays have facilitated analyses
under equilibrium conditions, but these results can be
hampered by slow data collection rates and fluorescent tags
effects on strand dynamics, particularly for shorter
oligomers.23,43−45 A number of computational modeling
approaches have also been employed to provide molecular-
level resolution of hybridization. Simplified lattice models can
recapitulate the essential aspects of the hybridization pathways
but lack the realism of continuous space representations.25,46

The long time scales associated with hybridization/dehybrid-
ization events place them outside the reach of unbiased all-
atom molecular dynamics simulations,18 but they can be
observed by employing enhanced sampling techni-
ques18,30,47−53 or by using elevated temperature or denaturing
solvent concentrations to induce one-way dissociation
events.54,55 The effect of the applied bias upon the
thermodynamics can be rigorously corrected for using standard
reweighting techniques.56−59 Rigorous elimination of the bias
in the kinetics is critical for the construction of robust and
reliable kinetic models that reflect the true system dynamics
and are uncontaminated by any residual effects of the biasing
potentials used to induce good sampling. A number of
approaches to correct the kinetics are also available, including
Girsanov reweighting, transition-based reweighting analysis
(TRAM), dynamic histogram analysis method (DHAM), and
their derivatives.60−66 The application of these methods under
the conditions of high bias necessary for good sampling can,
however, present challenges for numerical convergence. A
number of coarse-grained DNA force fields have been
developed that enable direct observation of these events over
microsecond time scales via unbiased coarse-grained molecular
dynamics simulations,29,30,49,67,68 which, up to an acceleration
factor associated with the smoothing of the underlying free

energy landscape inherent to the coarse-graining procedure,
can preserve a faithful model of the unbiased dynamics and
associated pathways. These models have previously been used
to study biological phenomena such as nucleosome dynam-
ics69,70 and transcription factor binding71,72 as well as
nanotechnology applications such as strand displacement73,74

and DNA origami.75,76 In this study, we choose to employ a
coarse-grained model for DNA49 that is sufficiently inexpensive
to enable the collection of sufficient volumes of unbiased
simulation trajectories and adequately sample configurational
space that we do not need to appeal to biasing strategies to
enhance convergence nor apply any post hoc corrections to the
thermodynamics or kinetics.
In this work, we study a family of self-complementary pairs

of 10-mer DNA oligomers using coarse-grained molecular
simulation, machine learning of the slow dynamical modes, and
data-driven inference of long-time kinetic models to establish
new understanding of the influence of sequence upon
hybridization/dehybridization kinetics and mechanisms. This
family5′-ATATATATAT-3′ (AT-all), 5′-GATATATATC-
3′ (GC-end), 5′-ATATGCATAT-3′ (GC-core), and 5′-
ATGATATCAT-3′ (GC-mix)was designed to probe the
influence of the placement of two G:C base pairs within an
otherwise repetitive A:T sequence and has been the subject of
our prior experimental investigations using temperature-jump
infrared spectroscopy and simple lattice models.19 We validate
the new computational models of hybridization/dehybridiza-
tion dynamics developed in this work against new experimental
data and reinterpret our prior experimental observations in
light of the new computational understanding. Consistent with
previous studies,18,25,30 we find the degree of repetitiveness in
the sequenceand therefore the kinetic accessibility and
thermodynamic stability of out-of-register shifted statesleads
to richer dynamics populated by a diversity of long-lived
metastable states. Our data-driven modeling and analysis
rigorously quantifies these behaviors and furnishes accurate
predictive models of the hybridization/dehybridization rates,
dynamical pathways, and metastable states. Specifically, we
demonstrate that disrupting repetitive stretches of A:T bases
by placement of interrupting G:C base pairs enables us to tune
the landscape from rich six-state to simple two-state “all-or-
nothing” behavior, and the specific location of the interrupting
pair can be used to modulate the stability of long-lived frayed
states. Taken together, our analyses establish new molecular-
level understanding of the sequence-dependent kinetics and
pathways through quantitative predictive models for the long-
time system dynamics, resolution of the dynamical folding
pathways and metastable states, and elementary design rules
with which to control the dynamical behaviors of the system.
We anticipate that this new foundational understanding, and
the extension of our approach to more extensive families of
DNA sequences, can guide the rational design of DNA
oligomers with tailored kinetic properties engineered for DNA
nanotechnology applications such as DNA-PAINT.6,7

2. METHODS
2.1. Computational Methods. 2.1.1. Molecular Dynamics

Simulations. We performed molecular dynamics simulations of four
10-base self-complementary double-stranded DNA sequences that we
have previously studied by temperature-jump infrared spectroscopy:19

5′-ATATATATAT-3′ (AT-all), 5′-GATATATATC-3′ (GC-end), 5′-
ATATGCATAT-3′ (GC-core), and 5′-ATGATATCAT-3′ (GC-mix).
We modeled the DNA sequences using the coarse-grained 3-Site-Per-
Nucleotide v2 (3SPN.2) model that uses three spherical beads to
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represent the phosphate, deoxyribose sugar, and nitrogenous base of
each nucleotide and employs anisotropic interaction potentials to
accurately treat intrastrand base-stacking, interstrand cross-stacking,
and base pairing.49 The model was parametrized against experimental
data on bond lengths, bend angles, torsional angles, base step
energies, and base stacking free energies, and reliably reproduces the
structure, melting temperatures, persistence lengths, and sequence,
salt, concentration, and temperature effects on duplex formation.49

The model enables access to millisecond time scales and has been has
widely adopted to study numerous phenomena including DNA
packing in viral capsids, protein−DNA binding, and nucleosome
unwrapping.69,77,78 Although the 3SPN.2 model was not directly
parametrized against dynamical experimental data, we will show below
that the predicted sequence-dependent kinetics and relaxations are,
within a corrective scaling factor, in good agreement with observed
experimental trends.
All calculations were performed using the LAMMPS simulation

package (http://lammps.sandia.gov) in accordance with best practices
for the 3SPN.2 model.79 A single pair of self-complementary
sequences were placed in a cubic periodic box with side length 7.8
nm corresponding to a single-strand concentration of 7 mM. This
concentration is only 3.5× larger than the 2 mM concentration
employed in our experimental analyses (section 2.2). Solvent effects
were modeled implicitly by employing Langevin dynamics80,81 with an
experimentally motivated per-site friction coefficient of 9.94 × 10−11

m2/s.49,82 We specified a 240 mM implicit salt concentration and
treated electrostatic interactions using the Debye−Hückel with a 5
nm cutoff radius.83 Simulations were performed in the NVT ensemble
employing a Langevin thermostat.84 With the exception of the
simulation data reported in section 3.1 where we draw comparisons
against experimental data collected over a range of temperatures, each
sequence was simulated at its respective melting temperature rat 7
mM concentration as dictated by the 3SPN.2 modelAT-all: 309 K,
GC-end: 317 K, GC-core: 324 K, GC-mix: 324 Kin order to
maximize the number of spontaneous transitions between dissociated
and hybridized states. Melting temperatures for each sequence were
determined empirically by comparing the ratio of hybridized to
dissociated populations over a 10 K temperature ramp centered on
the nearest neighbor (NN) model predicted melting temperature,8,9

and selecting the temperature at which the hybridized and dissociated
populations were approximately equal. The Langevin equations of
motion were integrated using the scheme of Bussi and Parrinello81

with a 20 fs integration time step. We performed 40 independent
simulations for each of the four sequences with half of the runs
initialized from the hybridized state and half from the dissociated
state. The initial hybridized state was defined based on the crystal
structure coordinates of Arnott et al.85 The dissociated state was
generated from the hybridized state by displacing one strand away
from the other by 1 nm in each of the x, y, and z directions. The
magnitude of this displacement did not affect the results so long as all
native Watson−Crick (WC) bonds were completely broken. Initial
bead velocities were assigned from a Maxwell−Boltzmann distribution
at the temperature of interest. Each simulation was conducted for 26
μs and frames saved to disc every 100 ps. Each simulation required
∼24 CPU-hours on 28×Intel E5-2680v4 CPU cores. The first 1 μs of
each run was discarded for equilibration providing us with 40 × 25 μs
= 1 ms of simulation data for each sequence, during which time we
observed 55−100 hybridization/dehybridization events.
2.1.2. Markov State Model Construction. Markov state models

(MSMs) are a powerful approach to infer long-time kinetic models
from short molecular simulation trajectories86−90 that we employ in
this work to construct high-resolution sequence-dependent kinetic
models of DNA hybridization and dissociation. In brief, a MSM
extracts from simulation trajectories an ensemble of long-lived
metastable macrostates, their equilibrium occupancy populations,
and the equilibrium probability fluxes between them. In this manner,
they provide an interpretable and predictive model of the system
thermodynamics and kinetics. MSMs have recently been implemented
to study the hybridization mechanism of one particular 14-mer DNA
oligomer, but determining the sequence-dependent kinetics and

mechanisms was not the focus of this study.91 An energy
disconnectivity graph-based approach was used to interrogate the
differences in hybridization rates and mechanisms between
GGGGGG and GCGCGC hexamers to reveal strong deviations
from “all-or-nothing” behaviors and the importance of zippering and
out-of-register diffusion mechanisms.17 Kinetic models were con-
structed not from the dynamical trajectories of the molecular model,
but by estimating rate constants between local minima using a
transition state theory approximation. A recent application of MSMs
to the long-time dynamics of short RNA oligonucleotides revealed
stacking time scales to be highly sequence dependent.92 In this work,
MSMs were constructed for each of the four DNA sequences at their
respective 3SPN.2 melting temperatures at 7 mM concentration from
the 40 × 25 μs simulation trajectories following a four-step protocol
detailed in ref 93: (i) trajectory featurization, (ii) dimensionality
reduction, (iii) microstate clustering and microstate transition matrix
inference, and (iv) macrostate clustering and macrostate transition
matrix inference. Calculations were performed using the PyEMMA
software package.94

Featurization. Trajectories comprising the Cartesian coordinates
of the DNA strands as a function of time were featurized using the
MDTraj Python libraries95 to represent the system in a manner that
exposes the essential system dynamics but eliminates trivial translation
and rotational invariances. We adopt intermolecular pairwise
distances d(i,j) between the centers of mass of the 10 bases as a
natural rototranslationally invariant featurization that represents each
system configuration as the 10 × 10 = 100-element vector of
interstrand pairwise distances. One additional symmetry arises from
the self-complementary nature of these sequencesthe sense and
antisense strands in each pair are identicalsuch that the
representation of the system under our featurization should remain
unchanged upon inverting the arbitrary labeling of strand “1” and
strand “2”.86 The 100-element pairwise distance vector is not invariant
to this permutation, but can easily be made so via a simple

symmetrization operation in which each of the ( )10
2 = 45

intermolecular pairwise distances are replaced by the mean of the
two permutationally invariant distances. Specifically, (d(i1,j2) =
d(i2,j1)) ← 0.5(d(i1,j2) + d(i2,j1)), where i1 denotes the ith base on
strand 1 and j2 the jth base on strand 2.86 Finally, we took the
reciprocal of the permutationally symmetrized pairwise distances to
provide higher resolution and differentiation between proximate
strand configurations in the near hybridized state compared to
distantly separated dissociated strands. VAMP-2 scoringcalculation
of the sum of the squared estimated eigenvalues of the transfer
operatorof trajectories under a particular featurization provides a
measure of the kinetic variance carried by that featurization.96−99

Performing VAMP-2 scoring at a lag time of τ = 1.2 ns and retaining
the top five modes, reveals that the reciprocal permutationally
symmetrized pairwise distances can carry up to twice the kinetic
variance as the nonreciprocal distances, suggesting that the higher
resolution offered at close intermolecular distances can indeed boost
the dynamical representational power of the model. Somewhat
surprisingly, we observed that augmenting our set of intermolecular
distances between bases with intramolecular distances between bases
on the same strand led to no improvement of the VAMP-2 score. This
indicates that the kinetically relevant conformational state of the two
strands are adequately represented via the intermolecular distances
and leading us to employ only intermolecular distances within our
featurization.

Dimensionality Reduction. The featurized trajectories were then
projected into a low-dimensional space in preparation for microstate
clustering. The standard approach to doing so is to employ time-
lagged independent components analysis (tICA) to learn a linear
projection into a low-dimensional embedding that maximally
preserves the kinetic variance in the data.97,100,101 In this work, we
instead employ state-free reversible VAMPnets (SRVs) that can be
conceived of as a nonlinear version of tICA.102 SRVs employ neural
networks to learn flexible nonlinear functions of the trajectory
featurization that better approximate the slow dynamical modes of the
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system and have been shown to produce substantially higher
resolution MSMs than those developed using tICA.93,102 SRV
modes were learned independently for each system to best
approximate the slow collective modes for that particular DNA
sequence. SRVs were trained using the SRV package we previously
developed (https://github.com/hsidky/srv) employing the default
network architecture of two hidden layers each comprising 100
neurons and tanh activation functions, a learning rate of 0.001, and a
batch size of 50 000. We adopted a lag time of τ = 1.2 ns as
appropriately short time scale to resolve the dynamical details of the
hybridization/dehybridization dynamics.103 As observed by Husic and
Pande, the lag time cannot be treated as a hyperparameter to be
optimized via the VAMP-2 score, but must be selected as a physically
motivated choice designed to expose the dynamical motions relevant
at a particular time and length scale of interest.104 As we shall show,
this choice of lag time leads to high-resolution Markovian macrostate
MSMs. We guarded against overfitting using 5-fold cross-validation in
which we constructed five random partitions of the 40 independent
simulation trajectories into a training set of 20 trajectories and a
validation set of 20 trajectories.93 We observed plateau of the
validation loss and no evidence of overfitting after 20 epochs of
training requiring approximately 22 GPU-minutes on a single
NVIDIA Tesla K80 GPU card. A VAMP-2 scoring of the cumulative
kinetic variance explained as a function of number of SRV collective
modes also showed no evidence of overfittingas would be evinced
by separation of the training and validation VAMP-2 scores93and
exhibited a knee for each of the four DNA sequences after the fifth,
fourth, third, and second slow modes for AT-all, GC-end, GC-core,
and GC-mix, respectively (Figure S1 in the Supporting Information),
and motivating the construction of 5D, 4D, 3D, and 2D embeddings,
respectively.
Microstate Clustering. The SRV projections of the 10 million

frames recorded over the course of the 1 ms molecular simulation
trajectories collected for each DNA sequence were then clustered into
microstates using k-means clustering. The VAMP-2 score of the
microstate transition matrix constructed for each sequence at the
selected τ = 1.2 ns was insensitive to the choice of the number of
microstates over the range 100−1000, motivating our selection of 200
microstate clusters for each system.
Macrostate Clustering. The 200 microstates comprising each

system were coarsened into our terminal macrostate MSM. Since we
are interested in the construction of models of the equilibrium
kinetics, we explicitly enforce detailed balance in the construction of
the MSM.90 The microstate transition matrix for each system was
computed at a range of lag times τ and then diagonalized to recover
the corresponding eigenvalues λi and associated implied time scales ti
= −τ/ln|λi|.

90 The implied time scale plots for the four DNA
sequences are presented in Figure S2. We observe rapid convergence
of the implied time scales ti with lag time τ for all systems, motivating
the construction of high resolution macrostate MSMs at a lag time τ =
1.2 ns. For this choice of lag time, we recover 5, 4, 2, and 1 implied
time scales for the AT-all, GC-end, GC-core, and GC-mix systems,
respectively. The identification of (i − 1) implied time scales implies
the presence of (i − 1) slow modes and motivates the coarsening of
the system into i macrostates. We estimate these i macrostates by
applying PCCA+ spectral clustering to the leading (i − 1)
eigenvectors of the microstate transition matrix.105−107 We then
estimate the corresponding 6, 5, 3, and 2 macrostate transition
matrices P for the AT-all, GC-end, GC-core, and GC-mix systems,
respectively, by projecting the molecular simulation trajectories into
these discrete macrostates. These macrostate MSMs constitute our
terminal kinetic models. We validate the Markovian nature of the four
MSMs by subjecting them to the Chapman−Kolmogorov (CK)
test.60,90,108 This test asserts that the transition matrix for a Markovian
(i.e., memoryless) MSM constructed at a lag time τ should satisfy the
condition P(kτ) = Pk(τ), which states that k successive applications of
the transition matrix constructed at a lag time τ should be equivalent
to a single application of the transition matrix constructed at a lag
time kτ. We present in Figure S3 the CK tests for each DNA sequence
to demonstrate that the τ = 1.2 ns models perform very well in

predicting transition probabilities out to kτ = 7.2 ns, validating the
Markovian nature and kinetic validity of the four models.

2.2. Experimental Methods. 2.2.1. Sample Preparation. Each
DNA oligonucleotide was purchased from Integrated DNA
Technologies (IDT) at desalt grade purity. Oligonucleotides were
purified with 3 kDa cutoff centrifugal filters (Amicon). All labile
protons were exchanged in deuterium oxide (D2O, Cambridge
Isotopes, 99.9%). Oligonucleotides were prepared at a total strand
concentration of 2 mM in 50 mM pD 7.2 sodium phosphate buffer
with 240 mM NaCl and 18 mM MgCl2. Prior to each measurement,
DNA solutions were placed in a water bath at 90 °C for 3 min and
then cooled to room temperature under ambient conditions.

2.2.2. T-Jump IR Spectroscopy. The details of the technique and
processing used to acquire temperature-jump infrared (T-jump IR)
data have been described previously.109−111 Briefly, heating was
initiated through optical excitation of the O−D stretch overtone
transition of D2O. The 1.98 μm pulses (5 ns, 20 mJ, 20 Hz) used for
heating were generated from the frequency-doubled output of a
Nd:YAG laser sent through an optical parametric oscillator. Nonlinear
IR spectra are collected from 5 ns to 50 ms delays after the T-jump
with a synchronized 1 kHz spectrometer. T-jump heterodyne-
detected vibrational echo (t-HDVE) IR spectra were acquired with
Fourier transform spectral interferometry,110 where the delay between
the local oscillator (LO) and DVE signal was scanned in 5 fs steps
between (−10) and 10 fs. t-HDVE spectra were acquired with a
parallel pulse polarization scheme and presented as a dispersed
pump−probe (t-DPP) spectrum. t-DPP data are reported as the
difference spectra relative to the initial temperature.

The sample was placed between two 1 mm thick CaF2 windows
separated by a 50 μm Teflon spacer enclosed in a brass jacket. The
initial temperature of the sample was set using a recirculating chiller
connected to the brass sample jacket. The T-jump temperature
change (ΔT) was set to 14−16 °C for all measurements and
monitored using the change in transmission of the D2O bend−
libration combination band measured in the LO beam. The
temperature change was quantified by comparing the change in
transmission of the LO beam with a FTIR temperature series of D2O.

2.2.3. Determination of Fast and Slow Dissociation Rates. To
determine observed rates from the T-jump data, the time-domain t-
HDVE data was inverse Laplace transformed into the rate domain
using a maximum entropy approach (MEM-iLT).112 Observed rates
λfast and λslow were computed from the amplitude-weighted mean rate
across detected IR frequency, as previously described.28 The fast
response kd

fast is defined as this amplitude-weighted mean rate, whereas
the dissociation rate constant kd

slow was extracted from the observed
rate of the slow response λslow using a two-state model for self-
complementary oligomers,113

λ = + [ ]k S k4 T
slow

d
slow

a
slow

f (1)

where [S]Tf
is the concentration of single-strand oligomer at the final

temperature of the T-jump, and ka
slow is the association rate constant.

In practice, eq 1 is recast in terms of the dissociation equilibrium
constant Kd to solve for kd

slow and ka
slow as a function of Kd and [S]Tf

,

λ
=

+ [ ]
k

K T
K T S

( )
( ) 4 T

d
slow

slow
d f

d f f (2)

=k
k

K T( )a
slow d

slow

d f (3)

FTIR temperature series were measured for each sequence as
reported previously,19 and the second SVD component along
temperature was fit to a two-state model to determine the fraction
of intact duplex θ as a function of temperature.114 Kd and [S]Tf

were
then determined from θ at the final temperature of each T-jump
measurement,

θ[ ] = [ − ]S T c1 ( )T f totf (4)
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θ
θ

=
[ − ]

K T
c T

T
( )

2 1 ( )
( )d f

tot f
2

f (5)

where ctot is the total oligonucleotide concentration, which was 2 mM
for all measurements.

3. RESULTS AND DISCUSSION
3.1. Sequence-Dependent Coarse-Grained Kinetics

Recapitulate T-Jump IR Measurements. We first sought to
demonstrate that the coarse-grained 3SPN.2 model accurately
recapitulates the experimentally observed kinetics of DNA
oligomer hybridization/dissociation by validating our compu-
tational predictions against temperature-jump infrared (T-
jump IR) experiments. We conducted T-jump IR experiments
for each DNA sequence as a function of temperature and
extracted the “slow” kd

slow and “fast” kd
fast rates, corresponding to

processes proceeding on 10−30 μs and 70−100 ns time scales,
respectively. The slow response has previously been attributed
to duplex dissociation on microsecond time scales induced by
the rapid heating of the initially hybridized duplex.19,28 The
fast response has been assigned to terminal base pair
fraying,19,28 with this process corresponding to a relatively
complex dynamical process that can span time scales from
picoseconds to microseconds.33−35,115 All-atom simulations
suggest that frayed ends can assume misaligned WC bonds,
base-sugar hydrogen bonds, and terminal stacked conforma-
tions.32,116

To computationally mimic the T-jump process in our
3SPN.2 simulations, we conducted 1 μs simulations of an
initially hybridized DNA duplex over a range of temperatures
and monitored its structural relaxation. We performed 120
independent simulations for each DNA sequence at each
temperature, and from these extracted computational estimates
of kd

slow and kd
fast (Figure S4). First, we tracked the slow

response corresponding to duplex dissociation in our
simulations by compiling the distribution of times at which
both of the central base pairs first separate to a distance of 2.0

nm starting from an initial fully hybridized duplex. This cutoff
was selected as the distance beyond which the strands are
effectively non-interacting and defines the dissociated state. We
extracted our computational estimate of kd

slow by fitting a
decaying exponential to the fraction of hybridized sequences as
a function of time f hybridized(t) = exp(−kdslowt). We verified that
our cutoff was sufficiently large by observing that our
calculated values for kd

slow changed by an average of only 7%
by adopting a 1.3 nm cutoff.
Second, we tracked the fast response corresponding to

terminal base pair fraying by compiling the distribution of
times at which either of the terminal base pairs first separated
to a distance of 1.3 nm, corresponding to a complete breakage
of the WC interaction. We extracted our computational
estimate of kd

fast through a decaying exponential fit to the
fraction of unfrayed sequences as a function of time f unfrayed(t)
= exp(−kdfastt).
We present in Figure 1 a comparison of kd

slow and kd
fast

estimated by computation and experiment. Although the
3SPN.2 model was not directly fitted against kinetic data,49 its
predictions of sequence-dependent T-jump relaxation rates are,
within a systematic scaling factor in time and systematic shift in
temperature, in good agreement with observed experimental
trends. It is well-known that the smoothing of the underlying
free energy landscape induced by coarse-graining artificially
accelerates the kinetics of coarse-grained molecular simulations
and that different degrees of freedom may be accelerated by
different factors.117−119 We find that the simulated slow
responses corresponding to center-of-mass translation of the
strands during dissociation of the duplex is ∼10× accelerated
relative to experiment, whereas the fast responses correspond-
ing to fraying of the terminal bases is ∼120× accelerated. We
apply these sequence-independent scaling factors to our
reported computational values in Figure 1. Although the
3SPN.2 model reproduces melting temperatures relatively well,
we observed a systematic 4 K under-prediction relative to
experiment and so we apply a universal (+4) K corrective

Figure 1. Experimental measurements and computational predictions of slow and fast at T-jump IR responses. Results are reported in terms of the
final T-jump temperature. (a) The experimental and simulated slow rate constants kd

slow corresponding to duplex dissociation over long time scales.
(b) The experimental and simulated fast rate constant kd

fast corresponding to terminal base-pair fraying on short time scales. The simulation results
are corrected by a sequence-independent scaling factor that corrects for a 10× acceleration of the slow dissociation dynamics and 120× acceleration
of the fast fraying dynamics. The simulated temperature in all cases is subjected to a (+4) K corrective calibration to account for an observed
systematic under-prediction of the melting temperature by the 3SPN.2 model
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temperature shift to our computational results. We note that
our simulations are expected to slightly over-predict the
melting temperature since they are conducted at 3.5× higher
concentration relative to experiment, and the concentration-
adjusted corrective shift accounting for the approximations
inherent in the 3SPN.2 model would be slightly larger.
Owczarzy et al. present an analytical prescription to apply

concentration corrections to the melting temperature using
knowledge of the enthalpy changes associated with duplex
formation and helix nucleation.120 In the absence of these
quantities, one could instead empirically estimate concen-
tration corrected melting temperatures by conducting a suite of
simulations over a range of temperatures and assume ideal
molecular behavior to apply concentration corrections to the

Figure 2. Thermodynamic and kinetic predictions of the sequence-specific MSMs fitted at the sequence melting temperatures AT-all, 309 K; GC-
end, 317 K; GC-core, 324 K; and GC-mix, 324 K. (a) Macrostates: Schematic representation of the seven metastable macrostates occupied by one
or more of the four sequences: fully hybridized state (H), two-base out-of-register shifted states in the 5′ (5S2) or 3′ (3S2) direction, four-base out-
of-register shifted states in the 5′ (5S4) or 3′ (3S4) direction, and the fully dissociated state (D). The line drawings represent the 10-base self-
complementary sequences, where red-to-blue contacts indicates (possible) WC base pairing and black indicates an unbound bases. Adjacent to
each line drawing we provide representative molecular structures corresponding to that macrostate. (b) Thermodynamics: Histograms reporting
the number of the 107 total frames within the 1 ms of simulation trajectories observed to occupy each of the seven macrostates, corresponding to
our numerical estimates of the equilibrium occupancy probabilities. Uncertainties are calculated across 100 MSMs using a Bayesian MSM
estimation are reported for each bar and are very small compared to the total counts. Values are reported on a log y-axis to make the small
populations of the shifted and frayed states visible. (c) Kinetic networks: MSMs illustrating the kinetic network for each sequence. The orange
circles correspond to the macrostates occupied by each sequence and are labeled by the macrostate codes reported in panel a. The area of the
circles is proportional to the logarithm of the equilibrium occupancy populations reported in panel b. Molecular renderings of an illustrative
snapshot from the coarse-grained molecular simulations are provided next to each macrostate. The gray arrows between macrostates indicate the
presence of a probability flux between this pair of states at equilibrium and the arrow thickness is proportional to the flux. (To avoid congesting the
diagram, arrows are not reported for probability fluxes lower than 3 × 10−6.) The numerical value overlaid on each arrow reports the conditional
probability that a system occupying the macrostate at the start of the arrow at time t will transition to the macrostate at the end of the arrow by time
(t + τ), where τ = 1.2 ns is the lag time corresponding to a single time step of the MSM. Large orange circles correspond to thermodynamically
favorable states and large gray arrows correspond to kinetically favorable transitions. (d) Kinetic time scales. Distribution of MSM implied time
scales for each sequence. The leading implied time scale corresponds to the characteristic time scale for hybridization/dehybridization and is
approximately equal for all systems since simulations were conducted at the same concentration and at the respective melting temperatures. The
higher order implied time scales correspond to a spectrum of kinetic relaxations between the constituent macrostates in the MSM corresponding to
shifted and/or frayed states.
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observed hybridized fractions.121 (As demonstrated by
Ouldridge et al., finite-size corrections do not affect the
melting temperature for homodimers.121) Furthermore, we
note that these empirical calibration factors to the 3SPN.2
predictions are applied only for the purposes of making an
experimental comparison, but acknowledge that there are
uncertainties introduced by assuming that the equilibrium
dynamics at fixed temperature can be compared directly to
relaxation kinetics following a 15 °C T-jump. The computa-
tional time scales and melting temperatures reported in the
remainder of the paper are not corrected by these calibration
corrections since we are only interested in the relative trends in
the behaviors of the four sequences.
In Figure 1a we observe an exponential increase of kd

slow with
temperature, as expected from the large enthalpic barrier to
duplex dissociation.20,38,40 Under the time and temperature
calibration corrections, we see generally very good agreement
between the computational and experimental curves. Of the
four sequences, GC-core shows the largest discrepancy
between computation and experiment, although the general
exponential trend is preserved. This may be a result of its high
propensity to fray (cf. section 3.5). In Figure 1b we expose a
largely linear dependence of kd

fast upon temperature for AT-all,
GC-end, and GC-mix compared to an exponential dependence
for GC-end. These trends can be understood in light of the
comparatively larger enthalpic barrier for dissociation of the
terminal G:C base pair in GC-end compared to that for the
A:T terminal pair in the other three sequences. Again we see
good agreement between the scaled computational predictions
and the experimental T-jump measurements. The favorable
comparison of computation and experiment provides support
for the capacity of the 3SPN.2 model to reliably reproduce
sequence-dependent trends in the slow and fast kinetics of the
four DNA oligomers, and lends confidence in the use of these
data for the parametrization of Markov state models of the
long-time dynamics of each sequence. We observe that the
dynamical fingerprinting approach presents an elegant means
to compare experimental relaxation data directly against a
Markov state model extracted from simulation data in terms of
a “fingerprint” of peaks with amplitudes and time scales related
to the relaxation of particular system observables.122 These
techniques have been previously employed to in applications to
base stacking of DNA dinucleoside monophosphates123 and
RNA.92 We explored the use of this approach to validate the
MD simulation data but encountered challenges in resolving
fast dynamical motions below the lag time of the fitted MSM
and the extremely high computational cost of collecting
sufficient simulation data to fit MSMs at each temperature for
which experimental data was collected. Accordingly, we instead
elected to perform a direct comparison between the
experimental data and MD trajectories to validate the
simulations themselves, then proceed to train MSMs over
these data and conduct analysis and experimental tests of the
MSM predictions.
3.2. SRV-MSMs for Each Sequence. We then proceeded

to construct Markov state models (MSMs) from 1 ms of
aggregated simulation trajectories for each of the four
sequences at their respective melting temperatures to generate
sequence-dependent kinetic models. MSMs define the long-
lived metastable macrostates of the system, their equilibrium
occupancies, and the equilibrium transition probabilities
between them. As such, they are extremely valuable in
providing both a quantitative predictive model and a physically

comprehensible mechanistic understanding of the long-time
dynamical evolution of the system between an ensemble of
metastable macrostates. We present in Figure 2 the inferred
MSMs for each of the four 10-base DNA sequences. Across all
four sequences we identify a totality of seven metastable
macrostates corresponding to the fully hybridized state (H) in
which all native base pairings are intact, four shifted states in
which the strands are translated out-of-register by two or four
bases in the 5′ (5S2, 5S4) or 3′ (3S2, 3S4) direction, a frayed
state (F4)unique to GC-corein which four terminal A:T
base pairs are unbound, and the fully dissociated state (D). We
present these seven macrostates in Figure 2a along with
schematic and cartoon renderings of representative microstates
contained within each of these macrostates. The representative
microstates emblematic of each macrostate were selected
randomly from those possessing high (>99%) macrostate
membership probabilities. Since the microstate ensemble
exhibits a range of conformations, however, it is useful to
characterize the degree of structural heterogeneity to
determine the degree to which these microstates are
emblematic of the distribution. In Figure S5 we present a
projection of our macrostates into two physical order
parametersthe degree of 3′ shift and degree of 5′ shiftto
provide an interpretable embedding of the macrostates that
exposes base pairing patterns and structural heterogeneity
within the microstate ensemble. In all cases, we find these
microstate distributions to be relatively narrowly focused
within the low-free energy core of each macrostate such that a
single archetypal microstate is indeed a good representative for
the ensemble and an accurate representation of the base
pairing pattern of the macrostate. In Figure 2b we present the
occupancy probabilities of each state at thermodynamic
equilibrium. By virtue of the fact that each sequence is
simulated at its corresponding melting temperature (Tm), the
probability of the dissociated state (D) is, by construction,
approximately equal to the sum of the probabilities over the
remaining six states (H, 5S2, 3S2, 5S4, 3S4, F4). In Figure 2c
we present a visualization of the macrostate MSMs for each of
the four sequences showing the connectivity between the
identified macrostates. The macrostates are represented as
orange circles in proportion to their equilibrium probabilities
and the gray arrows indicate the probability of hopping from
one macrostate to another under one time step of the kinetic
model. The fluxes between the macrostates provide a wealth of
high-level, interpretable information on the sequence-depend-
ent metastable states and hybridization/dehybridization path-
ways. Immediately, we identify that the AT-all sequence
possesses a rich and complex dynamical landscape comprising
six metastable states whereas at the other end of the spectrum
GC-mix exhibits far simpler two-state “all-or-nothing” behav-
ior. In Figure 2d we present the so-called implied time scales of
each MSM. These time scales correspond to the relaxation
times of the DNA dimer among its constituent metastable
macrostates. The leading implied time scale for each system
corresponds to the characteristic time scale for hybridization/
dehybridization. Since each system is simulated at the same 7
mM concentration and at its respective melting temperature, it
is not surprising that the leading time scale is approximately
equal for all four systems and corresponds to the characteristic
time scale for hybridization/dehybridization. The spectrum of
higher order time scales corresponds to increasingly quicker
relaxations between the metastable macrostates within the
kinetic model and resolve the interesting sequence-dependent
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differences in the hybridization/dehybridization kinetic path-
ways. The total number of implied time scales is typically one
fewer than the number of metastable macrostates and the
existence of large implied time scales is indicative of slowly
relaxing kinetic processes. The dense spectrum of slow implied
time scales for AT-all is indicative of its relatively complex
kinetic landscape whereas that for the two-state GC-mix
comprises only a single time scale corresponding to hybrid-
ization/dehybridization. We now proceed to analyze in detail
the sequence-dependent thermodynamics, kinetic, and mech-
anisms exposed by the four MSMs.
3.3. Comparison of MSM Thermodynamic Predictions

with NN Model. We first compare the thermodynamic
predictions for the equilibrium macrostate probabilities made
by the MSM models fitted at the sequence 3SPN.2 melting
temperatures to those of the nearest neighbor (NN) model as
a popular empirical model of DNA hybridization thermody-
namics. The NN model predicts the free energy of duplex
formation as a sum over helix initiation terms and the
hybridization free energies of nearest neighbor pairs of bases
that account for both the specific WC pairings and the
modulating effects of the local (i.e., nearest neighbor)
environment.8,9 The parameters of the NN model were
estimated by regressing over 108 experimental measurements
to furnish a predictive model for the free energy of association
as a function of DNA sequence and explicitly account for
stacking contributions of native pairs, internal mismatches, and
dangling ends. We apply the NN model to predict the free

energy FNN of each of the macrostates occupied by each of the
four sequences. A full accounting of our application of the NN
model is provided in Figure S6 and supporting text within the
Supporting Information. The free energy of each macrostate is
related to its equilibrium occupancy probability P via the
statistical mechanical relationship F = −kBT ln P + C, where T
is temperature, kB is Boltzmann’s constant, and C is an additive
constant reflecting our ignorance of the absolute scale of free
energies. We use this relationship to convert the equilibrium
occupancy probabilities predicted by our MSM and reported in
Figure 2b into free energies FMSM. The unknown additive
constants preclude comparisons of absolute free energies
between the MSM and NN model, but it is legitimate to
compare relative free energies between pairs of macrostates
since the additive constant cancels in taking differences. As
such, we arbitrarily set the additive constant C in both the
MSM and NN model such that the hybridized state H defines
a zero free energy reference state and we report the stability of
all macrostates relative to the hybridized state as ΔFNN = FNN

− FH
NN for the NN model and ΔFMSM = FMSM − FH

MSM for the
MSM.
As illustrated in Figure 3, we see that the MSM tends to

predict higher free energies for all macrostates relative to the H
state compared to the NN model. Although the trends are in
qualitative agreement, what is the root of the quantitative
discrepancy of the MSM and NN models in the predicted
relative stabilities? First, the MSM is constructed bottom-up
from molecularly detailed 3SPN.2 simulations whereas the NN

Figure 3. Comparison of the macrostate free energy predictions of the MSMs and nearest neighbor (NN) thermodynamic model at the sequence
3SPN.2 melting temperatures.8,9 (a) Free energies of each macrostate relative to the hybridized state ΔF = F − FH. We define the hybridized state
H to possess a free energy of zero and take care to only compare relative free energies (i.e., ΔF) between the MSM and NN model. (b) Discrepancy
between the macrostate relative free energy predictions ΔΔF = ΔFMSM − ΔFNN of the MSM relative to the NN model. The MSM tends to predict
higher relative free energies (i.e., lower occupancy probabilities) relative to the hybridized state H compared to the NN model.
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model is fitted top-down by regression against experimental
data. There are approximations inherent in the 3SPN.2 model,
not least of which is the coarse-grained representation that
integrates over atomic degrees of freedom, and in the NN
model that was fitted to limited experimental data assuming a
low-order expansion in terms of nearest neighbor additive
contributions. Second, although 3SPN.2 is expected to capture
some dangling end stabilization effects through base stacking
and cross-stacking interactions, the model was not para-
metrized to fully capture the enthalpic contributions of the
interaction of unbound bases with terminal base pairs, whereas
this term is explicitly included within the NN model. Third, a
well-known deficiency of the NN model is the absence of any
treatment of inert tailsfree bases that extend beyond the
dangling end tend to destabilize the duplex.124

We can further explore the role of inert tails upon
macrostate stability by analyzing the AT-all and GC-end
sequences that occupy out-of-register shifted macrostates 5S2
and 3S2 comprising a one-base inert tail and 5S4 and 3S4
comprising a three-base inert tail (cf. Figure 2a). For both
sequences, our simulations show that 5S2 is both the most
stable of shifted states relative to H (Figure 3a) and has the
smallest discrepancy (∼4 kJ/mol AT-all, ∼10 kJ/mol GC-end)
compared to NN predictions (Figure 3b). The 3S2 and 5S4
states have nearly the same deviation from NN predictions
(∼7 kJ/mol AT-all, ∼ 15 kJ/mol GC-end), indicating that
longer tails in the 5′ direction are as destabilizing as shorter
tails in the 3′ direction. It is known from differential scanning
calorimetry studies125 that 3′ inert tails are more destabilizing
than 5′ tails, with the differential behavior attributed to a
combination of 5′ tails preferentially stacking on the core
duplex and 3′ tails perturbing the duplex structure.124−126 Both
the NN and MSM predictions for AT-all are consistent with
this trend (i.e., F3S2 > F5S2 and F3S4 > F5S4). For GC-end, the
MSM and NN models both predict the out-of-register shifted
states to be less stable relative to the hybridized state than the
corresponding predictions for AT-all. This is in line with
expectations since the terminal G:C pairs in GC-end decrease
by two the number of available WC pairings in out-of-register
shifted states compared to AT-all. The GC-end NN
predictions run contrary to the expectation that the 3′ inert
tails should be more destabilizing than the 5′ tails, whereas the
MSM predictions are consistent with this trend. Indeed, the
MSM model for GC-end does not identify the 3S4 macrostate
as a metastable conformation for the duplex.
In sum, the qualitative trends in the macrostate thermody-

namic stabilities are in good agreement between the MSM and
NN models, but show quantitative discrepancies for macro-
states possessing inert tails. In these instances the MSM
predicts these macrostates to be less stable relative to the
hybridized state compared to the NN model predictions by
4.0−14.5 kJ/mol. The MSM predictions are also consistent
with the experimental expectation that 3′ inert tails should be
more destabilizing than the 5′ tails, whereas the NN
predictions can be in conflict with this trend.
3.4. Out-of-Register States Facilitate Hybridization

and Dissociation Dynamics (AT-All, GC-End). In addition
to thermodynamic stabilities, the macrostate MSM also
furnishes quantitative and interpretable predictions of hybrid-
ization and dehybridization pathways and mechanisms at the
sequence melting temperatures. It should be noted that
because we are using a reversible MSM framework, detailed
balance is enforced by construction. We now proceed to

analyze these predictions for each of the four sequences and
illuminate the relationship between sequence and dynamics.
Two of our sequences, AT-all and GC-end, support out-of-
register metastable states, and we commence our analysis with
the role of these shifted states.
AT-all possesses the richest and most complex MSM of the

four sequences by virtue of its repetitive nature, comprising a
hybridized state (H), dissociated state (D), and four out-of-
register shifted states (5S2, 3S2, 5S4, 3S4) (Figure 2c).
Analysis of the MSM transition probabilities reveal a critical
role of the shifted states in mediating hybridization and
dehybridization. Commencing from the dissociated state D, we
observe approximately equal probabilities for transitions to
each of the other five states, such that a transition to one of the
out-of-register shifted states 5S2, 3S2, 5S4, or 3S4 is
approximately 2.2 times more likely than a direct transition
to the hybridized state H. Commencing from the hybridized
state H, however, a direct transition to the dissociated state is
approximately 1.2 times more likely than a transition to one of
the two-base shifted states 5S2 or 3S2. Once in one of the four
shifted states, the 5′ vs 3′ overhang and degree of shifting play
an important role in determining whether the duplex will
transition to more shifted states, more aligned states, or
completely dissociate. Transitions from more shifted states
toward more aligned states (i.e., 5S4 → 5S2, 5S2 → H, 3S4 →
3S2, 3S2 → H) are approximately an order of magnitude more
probable than the reverse transitions from more aligned states
to more shifted states. The largest single transition probability
from the four shifted states 5S2, 3S2, 5S4, and 3S4 is, however,
back to the dissociated state D. Consistent with the higher
destabilizing effect of 3′ inert tails relative to 5′ tails,124−126 the
3S4 → D transition probability is twice as large as the 5S4 →
D, and the 3S2 → D is four times larger than the 5S2 → D.
The transition probability from the 5S2 and 3S2 states back to
the dissociated state D is equal to or greater than the transition
probability to the hybridized state. A transition path theory
analysis of the MSM reveals that 33% of productive
hybridization trajectories D --> H (where the dashed arrow
indicates the combination of both direct and indirect
pathways) and dehybridization trajectories H --> D proceed
through one or more out-of-register shifted states. Among
these out-of-register hybridization pathways, the D --> 5S2 -->
H transition is predicted to occur 57% of the time. A mean first
passage time (MFPT) analysis returns a MFPT for D --> H of
3.0 μs and for H --> D of 2.5 μs. As expected by the fact that
the calculations are performed at the melting temperature, the
MFPTs are approximately equal.
GC-end comprises the next most complex MSM. The

introduction of the G:C pairs at the termini of the strands
maximally preserves the repetitive tract of A:T base pairings
such that the GC-end MSM possesses all of the same
macrostates in its dynamical landscape with the exception of
the 3S4 state (Figure 2c). As discussed in section 3.3, the 3S4
state is rendered unstable within the lag time of our MSM due
to the presence of the destabilizing 3′ inert tail and only four
WC base pairings compared to six in the case of AT-all.
Analysis of the transition probabilities reveal significant
differences compared to those in the AT-all kinetic network.
Commencing from the dissociated state D, we observe a
similar transition probability to the 5S4 state as for AT-all, but
once in the 5S4 state there are no significant transition
probabilities to any other state except back to D. As such, the
5S4 state acts as a kinetic trap rather than as an intermediate to
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hybridization. The D → H and H → D transition probabilities
are commensurate with those for AT-all. However, the D →
5S2 and D → 3S2 transition probabilities are half or less of
those in AT-all, and the reverse transitions are an order of
magnitude larger. This may be attributed to the reduced
thermodynamic stability of the 5S2 and 3S2 states in GC-end
that comprise only six WC pairs compared to eight in AT-all
(cf. Figure 3). The 5S2 → H and 3S2 → H transition
probabilities are more than an order of magnitude larger than
in AT-all, which may again be attributed to the lower
thermodynamic stability of the two shifted states relative to
the hybridized state H. Again, the transition probabilities out of
the 3S2 state to D or H are comparatively higher than those
out of the 5S2 state, consistent with the increased destabilizing
effect of 3′ inert tails.124−126 Commencing from the hybridized
state H, a direct transition to the dissociated state is
approximately seven times more likely than a transition to
one of the two-base shifted states 5S2 or 3S2. A transition path
theory analysis of the MSM reveals that only 7% of
hybridization events D --> H and dehybridization events H
--> D proceed through one or more out-of-register shifted
states. The significantly reduced role for out-of-register shifted
states in mediating the hybridization and dissociation pathways
for GC-end relative to AT-all is consistent with the reduced
thermodynamic stability of these states due to the elimination
of possible out-of-register WC base pairing for the terminal
G:C pairs and therefore a reduced accessibility of these states
in the GC-end kinetic network. We compute a MFPT for D -->
H of 1.6 μs and for H --> D of 2.1 μs, which are again
approximately equal.
The out-of-register kinetic landscape that defines AT-all and

GC-end hybridization have been explored by a number of
previous computational studies. Simulations have identified
internal displacement mechanisms capable of correcting base
pair alignment in 3SPN.218 as well as in the coarse-grained
oxDNA30 and BioModi67 models. In all cases, these
mechanisms were shown to be crucial components of the
hybridization pathway for homogeneous and repetitive
sequences. Xiao et al. performed an all-atom energy land-
scape-based analysis of 5′-GGGGGG-3′ and 5′-GCGCGC-3′
hexamers.17 Out-of-register states for 5′-GCGCGC-3′ hexam-
ers were identified as deep kinetic traps along the hybridization
pathway and “slithering” through these states did not provide a
significant hybridization pathway compared to an alternative
“zippering” mechanism. (In contrast, slithering through out-of-
register shifted states and zippering served as two parallel
pathways for hybridization of 5′-GGGGGG-3′.) This stands in
contrast to our results for our AT-all (5′-ATATATATAT-3′)
sequence, in which out-of-register states participated in 33% of
productive hybridization events. It is conceivable that the
stronger hydrogen bonding in G:C WC pairs relative to A:T
pairs may render out-of-register shifted states less favorable to
hybridization by suppressing fluctuation-driven rearrange-
ments,127,128 but additional studies would be required to
reconcile these observations.
3.5. Central GC Placement Induces Long-Lived

Frayed States (GC-Core). The GC-core MSM represents a
departure from the relatively rich and complex kinetic
networks dominated by out-of-register shifted states to a
much simpler one dominated by fraying (Figure 2c). The
MSM contains only three stateshybridized H, dehybridized
D, and frayed F4. The F4 state is unique to GC-core and
contains up to six WC pairsthe two central G:C core pairs

and as many as four A:T pairs on one side or other of the core,
while the other run of four A:T pairs remains free. (As
expected by symmetry, the particular AT run that is free occurs
with equal probability on either side of the core.) Although
partially frayed states containing less than four free A:T bases
on either end of the duplex are common, these tend to
interconvert faster than the lag time and are not registered as
metastable within our MSM. Our model reveals the absence of
any direct hybridization or dehybridization transitions between
the H and D states, with all pathways passing through the
frayed state F4. Previous studies would suggest that hybrid-
ization of this sequence should proceed via a zippering
mechanism, wherein upon formation of the strong central G:C
WC base pairings the duplex helix should rapidly assemble in a
middle-out fashion.16,30 Our results are partially consistent
with this expectation, but reveal the frayed state F4 to be
unexpectedly metastable, serving as a long-lived state with an
mean lifetime of 1.8 ns. The stability of the state is attributable
to the enthalpic stabilization offered from up to six WC pairs
and the entropic stabilization associated with the configura-
tional entropy of the two free AT-tails.
Analysis of the transition probabilities show that commenc-

ing from the F4 state, progression to the hybridized state F4→
H is 25 times more likely than dissociation F4 → D. Thus,
once a D → F4 transition has occurred, a F4 → H transition
will likely proceed; concomitantly, H → F4 events tend to fall
back to the H state and are less likely to proceed to complete
dissociation D. We noted in section 3.1 that fraying dynamics
in the 3SPN.2 model appear to be significantly accelerated
relative to center-of-mass translation, and it is conceivable that
this may lead to elevated sampling of the F4 state within the
computational model relative to experiment and the induction
of more frequent dissociation. Moreover, since GC-core is the
sequence most prone to fraying, this effect could be the root of
the relatively poorer agreement of the kd

slow response for GC-
core compared to the other sequences due to an artificially
elevated computational prediction of this rate (Figure 1a). Our
model predicts a MFPT for D → F4 → H of 3.4 μs and for H
→ F4 → D of 2.9 μs, which are again approximately equal.
Lattice models have previously identified frayed states as

putative intermediates in DNA hybridization/dehybridiza-
tion.19,25,46 Araque et al. studied a 5′-ATGCGCAT-3′ octomer
using a lattice model and identified a symmetrically A:T frayed
state as a crucial part of the duplex transition path.25 We
previously studied the four sequences that are the subject of
the present work using T-jump IR and 2D IR spectroscopy and
identified GC-core as possessing the highest deviation from
two-state behavior during dissociation when neglecting out-of-
register contributions.19 This result was interpreted to arise
from loss of A:T contacts and fraying around the central G:C
core, and this hypothesis was supported by lattice model
calculations that predicted the GC-core conformational
ensemble to possess substantially more frayed configurations
than the other three sequences.46 Follow-up T-jump measure-
ments and Smoluchowski simulations on model 1D free energy
landscapes showed that AT termini fraying was an effectively
barrierless process characterized by rapid interconversion
between all accessible frayed states.28 These prior results are
consistent with the present findings that expose the GC-core
sequence to be the only sequence that occupies the F4 frayed
state and therefore the only one possessing a metastable frayed
state on time scales exceeding the τ = 1.2 ns lag time of our
MSMs.
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3.6. Disruption of Repetitive AT Tracts Promotes
Two-State “All-or-Nothing” Kinetics (GC-Mix). The GC-
mix sequence is the only one of the four sequences studied that
exhibits simple two-state “all-or-nothing” behavior.17,19,25,26

This characterization is intended to reflect the mechanistic
observation that GC-mix MSM comprises just two states, the
hybridized H and dehybridized D (Figure 2c), indicating that
association and dissociation of the strands proceeds directly
without passing through any metastable intermediate states
resolvable under the τ = 1.2 ns lag time of our MSM. Indeed,
the sequence’s propensity to fray in simulation and the role of
termini fraying in dissociation experiments19 indicate that there
remain deviations from “all-or-nothing” behavior which are not
fully captured within the MSM lag time. (We note that “all-or-
nothing” can also be used, somewhat ambiguously, to refer to a

two-state thermodynamic model where the hybridized and
dehybridized are separated by a large free energy barrier but
that the transitions between them may proceed through a
network of metastable states.) The two-state behavior appears
to arise as a consequence of the placement of the G:C pair that
maximally disrupts the repetitive AT tract within the decamer
and destabilizing either out-of-register shifted states or frayed
states. We note that we do observe substantial transient fraying
of the terminal two-base AT tails within our dynamical
simulations, but these frayed states are not sufficiently
thermodynamically stable to produce a metastable macrostate
within the resulting MSM. This stands in contrast to the
metastable F4 state populated by GC-core. Our MSM predicts
a MFPT for D → H of 2.9 μs and for H → D of 2.3 μs, which
are again nearly equal.

Figure 4. GC-mix hybridizes by nucleation−zippering and dehybridizes by fraying−peeling. Tracking of the 10 intermolecular distances between
native WC base pairs over the course of an (a) hybridization event and (b) dehybridization event. Symmetrically permutable distances (e.g., A1:T10
and T10:A1) are reflected across the x-axis to avoid congestion in the plot. Circles superposed on the x-axis indicate the instantaneous MSM state
assignment as dissociated D (blue) or hybridized H (orange). Hybridization tends to occur by a nucleation−zippering mechanism, wherein a native
G:C pair and adjacent A:T pair or 2−3 central A:T pairs first form prior to rapid formation of the duplex. Dehybridization tends to occur by a
fraying−peeling mechanism wherein fraying of the two-base AT-tails on one or both sides of the duplex precedes dissociation of the central native
base pairs and complete dissolution of the duplex. Four additional hybridization events and four additional dehybridization events are presented in
Figure S7.
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Given the very simple two-state “all-or-nothing” behavior of
GC-mix and the absence of any intermediate metastable states,
we sought to interrogate our simulation trajectory data to
elucidate the hybridization and dehybridization mechanisms.
To do so, we followed all 10 intermolecular distances between
native WC base pairs and tracked their evolution through a
number of hybridization and dehybridization events. We
present one representative example of each event in Figure 4
and four more in Figure S7. During the hybridization process,
we observe a global decrease in all 10 distances as the strands
approach one another and the formation of key native WC
contacts immediately prior to duplex formation: specifically,
one of the G:C WC pairs and at least one neighboring A:T pair
or 2−3 central A:T pairs. This behavior is consistent with a
“nucleation−zippering” mechanism as has been reported in
previous studies.16,20,37,52 In dehybridization, we observe
fraying of one half of the duplex with the strands remaining
associated until the loss of the final A:T pairs and ultimately
the last G:C pair. Qualitatively, we observed some short-lived
states composed of two to four native WC base pair contacts
immediately before full dissociation occurs, but, in contrast to
the F4 state we observe in GC-core, these conformations do
not constitute a metastable state within our MSM nor do they
tend to reform intact duplexes. These dissociation dynamics
are consistent with a “fraying−peeling” dehybridization
mechanism.32,54,55 We observe that the principle of micro-
scopic reversibility for a molecular system at thermodynamic
equilibrium imposes the conditions of detailed balance and
symmetry of the classical equations of motion under time
reversibility.129 A consequence of these considerations is that if
our system is indeed at equilibrium, then the “fraying−peeling”
dehybridization mechanism can be considered a reversal of the
“nucleation−zippering” hybridization pathway since the time-
reversed simulation trajectories represent an equally valid
sampling of the system dynamics. This is indeed borne out by
our mechanistic observations for GC-mix wherein the early
stages of “nucleation−zippering” proceed by the formation of
one G:C contact followed by one or more additional A:T pairs
and the late stages by the formation of all remaining WC pairs,
which we compare with the early stages “fraying−peeling”
wherein one half of the duplex frays and the late stages wherein

dissociation finally completes by the dissolution of the last few
A:T contacts and the final G:C pair.

3.7. Long-Lived Metastable Shifted States Predicted
by the MSM Are Resolved by T-Jump IR. Finally, we
sought to validate the predictions of our sequence-dependent
MSMs against experimental T-jump IR spectroscopy. T-jump
IR measurements commence from a low temperature, apply a
step jump in temperature, and track the relaxation of the
system to the dehybridized state. We hypothesized that the
influence of the out-of-register shifted states present in the AT-
all and GC-end sequences upon the system relaxation kinetics
should manifest in the slow and/or fast responses measured by
T-jump IR. As discussed in section 3.1, the slow IR response is
largely attributed to dissociation events and the fast to terminal
base fraying. With regards to the slow response, our MFPT
analyses of our MSMs predict out-of-register shifting events
(i.e., H → 3S2, 5S2, 3S4, 5S4) to proceed on microsecond
time scales, which are commensurate with the 1.4−2.9 μs time
scales for dehybridization (i.e., H → D) for each of the four
sequences. As such, we anticipate that the dynamical
relaxations associated with out-of-register shifted states
proceed on similar time scales to, and may not be
distinguishable from, the relaxation to the dehybridized state.
Nevertheless, the presence of these out-of-register shifted
states in the low-temperature equilibrium ensemble prior to
the T-jump step may be observable via their influence on the
fast T-jump IR response attributable to fraying. Specifically, we
hypothesize that the dangling ends and inert tails present in the
out-of-register shifted states should promote a broader fraying
response over the course of the relaxation that is distinct from
that of in-register fraying. This heterogeneity of configurations
should lead to heterogeneous dynamics, manifested in the
observation of a more stretched relaxation over experimental
time scales of 70−100 ns. Analysis of the MSM equilibrium
distributions (Figure 2b) reveals 10.0% of the equilibrium
ensemble to reside in out-of-register shifted states 3S2, 5S2,
3S4, and 5S4 for AT-all, compared to just 0.23% for GC-end,
and 0% for GC-core and GC-mix. It is our conjecture that a
substantial population of out-of-register shifted states in the
pre-T-jump AT-all ensemble should be distinguishable from

Figure 5. T-Jump IR responses reflect sequence-dependent conformational heterogeneity. The final temperature for each measurement is AT-all,
320 K; GC-end, 319 K; GC-core, 327 K; and GC-mix, 326 K. (a) Mid-IR t-HDVE difference spectra for GC-core at time delays from 5 ns to 560
μs. Normalized time traces for each sequence are shown at (b) 1600 cm−1 and (c) 1660 cm−1. The signal at 1600 cm−1 corresponds to changes in A
and T ring vibrations while the signal at 1660 cm−1 contains contributions from G and T carbonyl vibrations. Each time trace is fit to the sum of a
stretched exponential with two exponentials (solid lines): S(t) = A exp(−(t/τfast)βfast) + B exp(−t/τslow) + C exp(−t/τcool). The stretched
exponential describes the process from 5 ns to 1 μs, and the two exponentials describe the signal increase from 1 to 320 μs and signal decay from
rehybridization induced by thermal relaxation back to the initial temperature. The stretch factor βfast for the fits at 1600 and 1660 cm

−1 are reported
directly on the plots in panels b and c.
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the GC-end, GC-core, and GC-mix as an elongation of the fast
relaxation response associated with terminal base fraying.
We present in Figure 5 our T-jump IR t-HDVE difference

spectra and corresponding normalized time traces at 1600 and
1660 cm−1. The signal at 1600 cm−1 corresponds to changes in
A and T ring vibrations while the signal at 1660 cm−1 contains
contributions from G and T carbonyl vibrations. Each time
trace was fitted to the sum of a stretched exponential and two
exponentials S(t) = A exp(−(t/τfast)βfast) + B exp(−t/τslow) +
C exp(−t/τcool). The stretched exponential describes the
relaxation process from 5 ns to 1 μs, and the two exponentials
describe the signal increase from 1 to 320 μs and signal decay
from rehybridization induced by thermal relaxation back to the
initial temperature. The fitting parameters A, B, and C
correspond to the relative amplitudes of the three kinetic
responses and the stretch factor βfast to the heterogeneity of
fraying dynamics at the fast time scale. A testable prediction of
our hypothesis is that the long-lived out-of-register shifted
states in AT-all should result in a significantly smaller value for
the fitted βfast parameter (i.e., a more stretched response)
relative to those for GC-end, GC-core, and GC-mix. This
hypothesis was supported by the experimental time series at
both 1600 cm−1, where βfast

AT‑all = 0.3 compared to βfast
GC‑end = 0.6,

βfast
GC‑core = 0.7, and βfast

GC‑mix = 0.6, and 1660 cm−1, where βfast
AT‑all =

0.4 compared to βfast
GC‑end = 0.7, βfast

GC‑core = 0.6, and βfast
GC‑mix = 0.6.

This result supports our hypothesis and validates a testable
prediction of our sequence-dependent MSMs.

4. CONCLUSIONS
We have conducted an integrated computational and
experimental study of the sequence-dependent kinetic
mechanisms for the hybridization and dehybridization
dynamics of a family of four self-complementary 10-mer
DNA oligomers: ATATATATAT (AT-all), GATATATATC
(GC-end), ATATGCATAT (GC-core), and ATGATATCAT
(GC-mix). We conducted 1 ms of unbiased coarse-grained
molecular dynamics simulations at the melting temperature of
each sequence and employed deep learning techniques to
construct high-resolution Markov state models as predictive
and interpretable models of the sequence dependent dynamics.
T-jump IR spectroscopy was used to calibrate the kinetic time
scales of the coarse-grained molecular model and validate the
kinetic prediction of the Markov state models that the AT-all
sequence should possess long-lived out-of-register shifted
states that are detectable within T-jump IR t-HDVE time
traces. Our results reveal that the specific placement of
interrupting G:C pairs within an otherwise repetitive AT
sequence can have a profound impact on the kinetic pathways
and mechanisms for association and dissociation of the DNA
duplex. In particular, we found AT-all to possess the richest
and most complex kinetic landscape of the four sequences that
is dominated by out-of-register shifted states that participate in
33% of complete hybridization eventspathways leading from
the dissociated state to full duplex formationand dehybrid-
ization eventspathways from the complete duplex to full
dissociation. Introduction of the G:C pairs at the end of the
strand maintains an eight-base-pair repetitive AT tract and the
GC-end kinetic landscape possess all but one of the same out-
of-register shifted states as AT-all. Destabilization of the GC-
end shifted states relative to AT-all, however, results in a far
more limited participation of these states with only 7% of GC-
end hybridization and dehybridization events passing through
one or more shifted states. Placing the G:C pairs in the center

of the strand maintains two four-base AT tracts on either side
of the core and results in qualitatively different kinetic
behaviors for GC-core. In this case, no metastable out-of-
register shifted states are registered by our model with the
hybridization and dehybridization pathways all passing through
a strongly metastable frayed state in which one or other of the
four-base AT-tracts is unbound to produce two free AT-tails.
Finally, placing the G:C bases between the center and end of
the strand to maximally disrupt the repetitive AT tracts results
in no metastable out-of-register or frayed states for GC-mix
and results in simple two-state “all-or-nothing” hybridization/
dehybridization behavior. Analysis of the specific pathways
reveals hybridization to largely proceed by a nucleation-
zippering mechanism and dehybridization to proceed by a
fraying-peeling mechanism.
The ordering of the computationally predicted kinetic

landscapes from most to least complexAT-all > GC-end >
GC-core > GC-mixis largely dictated by sequence
repetitiveness, specifically the number of consecutive AT
motifs. We note that this ordering differs from our previously
reported ordering in terms of deviation from two-state
behavior of GC-core > GC-mix > AT-all > GC-end.19,28 We
can understand these two apparently discrepant orderings by
understanding that the latter was deduced based on
experimental analyses and lattice models that did not account
for out-of-register states and focused largely on fraying
behaviors. Indeed, under the assumption that fraying is the
dominant kinetic process relative to out-of-register shifting, we
can harmonize the predictions of the present work with our
prior work by eliminating all out-of-register shifted states in
our fitted MSMs (Figure 2c), in which case we find GC-core to
contain an F4 frayed intermediate and the remaining
sequences to all have simple two-state dynamics such that
the predicted ordering is GC-core > GC-mix ≈ AT-all ≈ GC-
end.
In sum, our results demonstrate the profound effect of

sequence upon the kinetic landscapes, metastable states, and
hybridization/dehybridization mechanisms of short DNA
oligomers. Our analysis of this small family of sequences
expose preliminary design principles for the (meta)stability of
out-of-register and frayed states but we anticipate much greater
richness in the landscapes will emerge with studies of longer
and more diverse sequences. Going forward, we will extend
this work to discern more general trends in sequence-
dependent hybridization/dehybridization for a wider range of
oligomer sequences and motivate strategies for experimental
comparisons. We also suggest that the MSM approach
followed in this work, possibly coupled with biased sampling
and reweighting techniques,94,130 may be well-suited to expose
changes in the hybridization/dehybridization mechanism and
kinetics as a function of temperature. We anticipate that these
insights may provide foundational design rules by which to
improve understanding of in vivo hybridization processes and
rationally engineer optimized sequences for DNA nano-
technology applications such as DNA-PAINT7 and DNA
barcoding.6
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