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Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination.
The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary
signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in
multi-dimensional NMR-spectra. Regrettably, Wavelet’s performance depends on a combinatorial search of
wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial,
which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of
denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the
window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter
(MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the
proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that
contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our
results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions.
The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably,
MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies
a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

N
uclear magnetic resonance (NMR) spectroscopy is one of the two main techniques to experimentally
determine protein three-dimensional (3D) structures. In contrast to X-ray crystallography that requires
the target protein to be crystallized, NMR can detect the 3D structure of the target protein in vivo, which

can provide information about the living form and dynamics of the protein.
The physical principle of NMR is that when an isotope nucleus that have an odd atomic number and/or odd

atomic mass (e.g., 1H, 13C and 15N) is placed in a strong magnetic field, it absorbs and re-emits electromagnetic
radiation due to its intrinsic magnetic moment. The same type of nucleus, however, often has different resonance
depending on the local chemical and geometric environment, such as binding partners, bond lengths and bond
angles. The resonance frequency of a nucleus relative to a standard frequency is called the chemical shift of this
nucleus. If two or multiple nucleic are close to each other in the 3D space, their resonance can be coupled and such
coupling can be captured by NMR spectrometers. According to the way the resonance is coupled, there can be
both through-bond and through-space spectra. Mathematically speaking, an NMR spectrum can be considered as
a multi-dimensional matrix, in which the coordinates of each dimension are the discrete chemical shift values of a
certain nucleus and the signals (i.e., peaks) of the matrix are the intensity values of the coupling.

Wüthrich (1986) proposed a multi-step pipeline for NMR protein 3D structure determination that takes a set
of multi-dimensional spectra (usually 2D and 3D spectra) as input and generates an ensemble of 3D structures as
output1. The idea is to use the physical principle of the NMR technique to extract short distance constraints from
through-space spectra, such as nuclear Overhauser effect (NOE) spectra, and solve the 3D structure of the target
protein as a constrained optimization problem accordingly. In order to interpret NOE peaks, the resonance
assignment of the atoms of the target protein is needed. Such an assignment can be obtained from picked peaks of
a set of through-bond spectra that share certain common nucleic as root, such as the 2D15N-HSQC, and the 3D
CBCA(CO)NH and HNCACB. This entire procedure, unfortunately, is a costly and time-consuming one that, up
to now, mainly depends on manual or semi-automated work with expert knowledge.
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In the last two decades, computational community has played
more and more important roles to simplify and accelerate this tedi-
ous structure determination process2–9. Peak picking has been treated
as a signal processing problem and has been tackled by a variety of
methods10–27. Resonance assignment, on the other hand, is often
formulated as a graph-based problem to find the best mapping
between spin systems and residues of the target protein. Different
types of graph algorithms and optimization algorithms have been
proposed accordingly28–44. Once the NOE distance constraints are
extracted from NOE spectra, the structure calculation is considered
as a constraint satisfaction problem, for which a number of efficient
searching algorithms have been developed5–7,45–48. Recently, it was
shown that accurate structures for small and medium sizes proteins
can be determined directly from their resonance assignments49,50.

Peak picking, as the first step in NMR protein structure determina-
tion, is a key to all the subsequent steps. On one hand, if the picked
peaks contain a large number of false positives, it will introduce too
much noise and ambiguities to the following steps, which makes their
search space prohibitively large. On the other hand, if the picked
peaks contain many false negatives, it will bring too much missing
information that is impossible for the following steps to recover. A
practically useful peak picking method thus must provide a good
tradeoff between recall and precision. Peak picking is a computation-
ally challenging problem due to various sources of noise, including:
Gaussian white noise, low signal-to-noise ratios, peak overlaps, sam-
ple impurities, water bands, and artifacts. Therefore, the most crucial
step in peak picking is the initial denoising of the spectra. It has been
shown that once denoising is done, it is relatively straightforward to
identify peaks24,26. There are two types of commonly used denoising
techniques for NMR spectra, i.e., hard denoising and soft denoising.
AUTOPSY16 and PICKY22 both use hard denoising. The background
noise in NMR spectra is assumed to be white Gaussian noise in these
methods. The mean is assumed to be zero and the standard deviation
is estimated in local spectrum regions that do not contain signals.
The noise level is then defined as a small constant (usually 5) times
the standard deviation. Any data points that have intensity values
below the noise level are eliminated. The advantage of hard denoising
is that the denoised spectra become very sparse, which make the
following peak selection step trivial. However, hard denoising has
risks of eliminating weak peaks, especially when signal-to-noise ratio
is low. WaVPeak26, the state of-the-art method on peak picking, is
based on soft denoising. It decomposes a spectrum by wavelet
decompositions. The low frequency components are kept and the
high frequency ones are eliminated. In this way, it smoothes the
entire spectrum without eliminating any data point. However, wave-
let denoising requires several parameters to be tuned for different
proteins and different types of spectra. A combinatorial search of
such parameters is infeasible due to the slow speed of wavelet decom-
position and reconstruction, especially for 3D spectra. This issue
becomes a serious obstacle to adopt wavelet denoising in the near
future, when multi-dimensional protein NMR spectra with more
than three dimensions will be of common use.

Here, we open the way to address this wavelet denoising limitation
with a radical change of strategy that stems from a consciousness
raising. Wavelet denoising became in the last decade a sort of ‘moda’,
rapidly substituting classical adaptive spatial filtering like the Wiener
filter. This replacement was often supported by studies that clearly
demonstrate the superiority of wavelet denoising in some contexts.
However, in many other cases wavelet denoising was de facto chosen
as the strategy to adopt because considered by principle superior to
classical adaptive spatial filtering. Yet, this superiority is very signal/
noise-dependent51. In particular, when non-stationary signals are
affected by a mixture of Gaussian white noise and strong impulsive
artifacts (like small false peaks in protein NMR spectra), wavelets
denoising might be significantly outperformed by nonlinear adaptive
spatial filtering like the one provided by the Median Modified

Wiener Filter (MMWF)51. In addition, wavelet denoising is a very
sophisticated technique that requires the ‘mining’ of the proper
wavelet shape, and the combinatorial tuning of at least three para-
meters. In contrast, adaptive spatial filtering is very simple and in
most cases like the Wiener filter and the MMWF requires just the
tuning of one parameter. In conclusion, we might argue that more
sophisticated method does not necessarily mean more accurate or
time efficient. In this article we want to endorse a diverse philosophy
of denoising protein NMR spectra: less is more! We believe that
engineering needs freedom of choice on the strategies used to design
computational tools. In the end what really make the difference are
the results and, as a matter of fact, here we propose new and inter-
esting results, stemmed from a simple, but not for this reason less
powerful, designing philosophy.

Results
Classical and adaptive spatial filters. One of the most used
denoising techniques in digital signal and image processing are
linear and nonlinear local filters, also defined: spatial filters. The
common parameter in spatial filtering is the size of the window,
also called kernel or mask, which, in case of 2D signals, is the small
n 3 m pixels area around a given processed point, pixel or voxel (for
simplicity in the rest of the text we will refer just to pixels). The filter
uses the pixel intensity values of the area to re-compute the new value
of the processed pixel at the centre. In general, some spatial filters
might also have more than one adjunctive parameter, as the variance
in the Gaussian filter or the polynomial degree in the polynomial
filter.

The first two spatial filters that we considered are the mean and
median filters. The mean is a linear filter while the median is a non-
linear filter. Then, we considered their respective adaptive variations.
The Wiener filter is a linear adaptive spatial filter that derives from
the mean operator; and the MMWF is a nonlinear adaptive spatial
filter that derives from the median operator.

The mean filter is the simplest linear spatial filter and, to compute
the denoised signal value, assigns to the pixel at the centre of the
window the average value of the pixels in the window. Moving the
window across the signals, a new denoised signal value is recomputed
for each pixel. For this reason the mean filter is also called moving
average filter. The median filter is the simplest nonlinear spatial filter,
and it is often used to reduce impulsive noise like ‘salt and pepper’
noise. It is more effective than convolution filter when the goal is to
simultaneously reduce noise and preserve edges51. The reason why
the median filter is so efficient to remove impulsive noise comes from
the fact that the median operator is much less sensitive than the mean
operator to outlier values (like small false peaks in the signal).
Therefore, median filter is better able to remove these outlier values
without reducing the sharpness of the signal. Even though the med-
ian filter provides smooth signals, in particular for large windows in
2D signals it erodes the edge of isolated spots and tends to fill the
space between close-set spots. For clarity, with the expression ‘spots’,
we refer to zones of the background of a 2D signals that emerge
indicating the presence of a significant pattern with the form of a
peak. The evidence that median filter causes signal erosion is exten-
sively treated in literature51. In contrast, the signal dilatation (that
tends to fill the space between spots in 2D signals) was firstly shown
by Cannistraci et al51. as a paradoxical effect caused by the median
operator in the particular case where it is applied in proximity of
narrow 2D signal depressions. This is an important side effect of the
median operator, which earns significance in case of close peaks in 2-
D signals like protein NMR 2D spectra. Thus, the median filter is
expected to perform poorly, especially for large window settings, in
denoising of multidimensional protein NMR spectra.

Another linear technique for spatial filtering is the Wiener filter. It
is considered a more advanced technique because it is adaptive.
Wiener filter is applied to a signal adaptively, tailoring itself to the
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local signal variance. Where the variance is large, it performs less
smoothing, while where the variance is small, it performs more
smoothing. The estimate of the local (i.e. considered in the sliding
window) mean m and variance s2 around each pixel in a 2D signal is:

m~
1

NM
:
X

n,mEg

a(n,m) ð1Þ

s2~
1

NM
:
X

n,mEg

a(n,m){m½ �2 ð2Þ

where N-by-M is the size of the local neighbourhood area, g,
contained in the window, and a(n,m) is a notation to identify each
pixel contained in the area g of the 2D signal. Then a pixel-wise
Wiener filter is implemented using these estimates to calculate the
new pixel value b:

bw(n,m)~mz
s2{n2

s2
:(a(n,m){m) ð3Þ

where n2 is the noise variance. If the Gaussian noise variance is not
given as input, the average of all the local variances estimated for each
window is used51: in our study we exploited this second variance
setting. Wiener filter often produces better results than standard
non-adaptive linear filtering. In fact, the adaptive filter procedure
is more selective (preserving edges in 2D signals) than a comparable
linear filter51. Some of the inconvenience of the Wiener denoising
(especially for large windows) is that it does not respect the morpho-
logy of the signal and thus causes fuzzification/dilatation of edges,
noise-small-features and spikes (small peaks).

Median Modified Wiener Filter (MMWF): extension to the case of
multi-dimensional signals. The MMWF was invented as an
informational filter by Cannistraci, and was proposed for the first
time for denoising application in the work of Cannistraci et al51.
Specifically, it was applied for denoising of 2D signals in image
proteomics, and the source of the signal were 2D-gel-
electrophoresis maps.

This nonlinear adaptive spatial filter was introduced with the aim
to merge the complementary qualities and abilities of median filter
and the Wiener filter, reciprocally nullifying the respective defects. In
particular, the objective was to facilitate the efficacy in removing
spike noise from the 2D signal background (typical of the median
filter) while preserving unaltered spot edges (a property partially
provided by the Wiener filter that preserves edges but unfortunately
modifying their morphology). The mathematical formula for the
MMWF in case of 2D signals, considering the notation ~m to indicate
the local window median around each pixel m:

bmmwf (n,m)~~mz
s2{n2

s2
:(a(n,m){~m) ð4Þ

The rest of the notation is the same already introduced for the
Wiener filter. The consequences of this modification in the original
Wiener filter formula are very significant and are mainly caused by
the introduction in an adaptive contest of the nonlinear behaviour
due to the median operator. A deep mathematical discussion of this
modification in the Wiener formula is offered in the article of
Cannistraci et al51. Here for simplicity we summarize the main effects
of this mathematical modification from the denoising point of view,
in 2D signals.

The main effect is that after denoising the edge morphology is well
preserved (in contrast to the result of the median and Wiener filter).
This effect was named drop-off-effect because the slope of the sides of
the spots in the 2D signals is preserved. The second crucial result is
that MMWF showed high performance in global denoising of differ-
ent types of noise, being its best window setting invariant of the type
of noise. In general, the median filter erodes the edge of isolated spots
and fills the space between close-set spots, while the MMWF because
of the drop-off-effect does not suffer from erosion problems, pre-
serves the morphology of close-set spots, and avoids spot and spike
fuzzification, an aberration frequently encountered for Wiener fil-
ter51. In conclusion, the MMWF should theoretically improve the
precision in detection of real peaks in protein NMR 2D-spectra,
although it might also slightly decrease the recall, because of excess-
ive denoising of small real peaks erroneously smoothed. This kind of
problem was less probable in signals of 2D-gel-electrophoresis maps,
because the smallest size of the signal spots in the 2D-gel-electro-
phoresis maps was generally wider than the largest size of false and
noisy peaks distributed both in the background and over the spots.

Here, for the first time, we introduce the extension of the MMWF
to the case of multidimensional signals, with the aim to test its per-
formance in case of protein NMR 3D-spectra. The generalized math-
ematical formula is:

m~
1

Pi~1,...,n Di

:
X

d1,..., dnEg

a d1, . . . , dnð Þ ð5Þ

~m~Median a d1, . . . , dnð Þ½ � ð6Þ

s2~
1

Pi~1,...,n Di

:
X

d1,..., dnEg

a d1, . . . , dnð Þ{m½ �2 ð7Þ

bmmwf d1, . . . , dnð Þ~~mz
s2{v2

s2
: a d1, . . . , dnð Þ{~mð Þ ð8Þ

where in respect to the previous formulation we introduced the
new notations, d1, …, dn, to intend a combination of values that
indicate the location of a discrete point in an n-dimensional hyper-
cube, and Di to intend the size of the length of the i-th dimension of
the hypercube.

MMWF*: a novel variation of the Median Modified Wiener Filter.
Here, we introduce MMWF* that is a new variation of the MMWF.
We report the formula of this new filter for multidimensional signals,
however the formulation in case of 2D-signals can be easily derived.

bmmwf � d1, . . . , dnð Þ~~mz
~s2{~v2

~s2
: a d1, . . . , dnð Þ{~mð Þ ð9Þ

Where ~s2 is the variance computed as average squared deviation
from the median ~m:

~s2~
1

Pi~1,...,n Di

:
X

d1,..., dnEg

a d1, . . . , dnð Þ{~m½ �2 ð10Þ
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This first variation is significant because, since the variance oper-
ator is an edge detector, the replacement in the formula of the mean
with median provides a more robust estimation of the background
value inside the window. As a consequence, a better detection of the
signal’s edges is obtained, for instance: the edge of a spot in an image
or the edge of a real peak in a 2D NMR spectrum.

The ~v2 is the noise variance, estimated as the median of all the local
variances ~s2, which are computed for each window defined around
each point in the multidimensional signal. This second variation is
even more important because the noise variance should be window-
size independent. As a matter of fact, in non-stationary and sparse
signals like 2D-gel-electrophoresis maps and NMR-spectra, the
mean of all the local variances is an unstable estimator of the noise
variance, and tends to decrease performance for increasing window-
sizes. The motivation lies in the fact that, since the real peak signals
are sparse, for small window sizes we have a good sampling of the
noise in the background, while for large window-sizes several win-
dows will sample also real peaks, and the mean of all the local var-
iances will be affected by the presence of many outlier-values that will
introduce nonlinearity in the distribution of all the local variances ~s2.
The median operator will be much less affected by these outlier-

values in the distribution of the local variances, thus will provide a
more robust estimation of the noise variance also with increasing
window-sizes.

Evaluations and comparisons. We evaluated the denoising
performance of the spatial filters and wavelet on a similar
benchmark NMR spectrum set used in refs 22, 26. The details on
the evaluation procedure are provided in the Methods section. Our
spectrum set contains 16 raw 2D and 3D spectra in the UCSF format
extracted from eight proteins, i.e., TM1112 (PDB ID: 1LKN),
YST0336 (PDB ID: 2JYN), RP3384 (PDB ID: 2JTV), ATC1776
(PDB ID: 2JYA), CASKIN (PDB ID: 2KE9), HACS1 (PDB ID:
2KEA), VRAR (PDB ID: 2RNJ), and COILIN (unpublished data).
The sizes of these proteins range from 64aa to 146aa. The spectra
contains eight 2D 15N-HSQC spectra and eight 3D CBCA(CO)NH
spectra, one for each protein, respectively.

First, we compared the performance of the five different spatial
filters for denoising of NMR 2D protein spectra. As mentioned, we
selected spatial filters that present just one tuning parameter: the size
of the sliding window. This window is introduced in the spatial filter
algorithm for sampling the information stored around a signal region

Figure 1 | F-score curves for 2D spectra. F-score curves of peak picking when using four different spatial filters for denoising NMR 2D spectra

(15N-HSQC) of the eight proteins. The filters used are the Mean and Median filters (dashed lines), and their respective adaptive variations (full lines)

Wiener and Median Modified Wiener Filter (MMWF). MMWF*, the new variation of the MMWF, is distinguished by a red line marked by red crosses.

Each filter is tested for a range of squared window size that is varying from 3 3 3, 5 3 5, 7 3 7,… to 31 3 31 pixels. The figures show that adaptive filters

outperform the non-adaptive ones significantly in the denoising task. It is also clear that adaptive filters maintain their performance quite stable for

different window sizes.
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that should be denoised. The rationale to select spatial filters with just
this simple tuning parameter is in adopting algorithms that are com-
putationally fast and easy to generalize to NMR protein spectra with
dimension higher than two. On the other side, algorithms with sev-
eral parameters like wavelets, although in principle more powerful,
present the drawback that they might require a combinatorial tuning
of their parameters in relation to different protein spectra. This com-
binatorial tuning might be complicated if implemented in an auto-
matic pipeline where there is not intervention of an external human
operator. In addition, extension of these last algorithms to protein
spectra with dimension higher than 2D can be theoretically very
complicated and might require a significant increase of computa-
tional time and memory allocation.

The first two spatial filters that we considered are the mean and
median filters. The mean is a linear filter while the median is a non-
linear filter. Then, we considered their respective adaptive variations.
The Wiener filter is a linear adaptive spatial filter that derives from
the mean operator; and the Median Modified Wiener Filter
(MMWF) is a nonlinear adaptive spatial filter that derives from the
median operator. We also evaluated the performance of the
MMWF* (which is a variation of the MMWF) here introduced for
the first time. We tested the performance of these five filters for a
range of squared window size that is from 3 3 3 to 31 3 31 pixels. We
considered squared windows because the shape of each peak in the
spectra is, as first approximation, isotropic. For the evaluation we
considered as main reference the F-score measure, because it is a
balanced estimation that merges together precision and recall
performance.

The results presented in Fig. 1 for eight different 2D protein spec-
tra clearly point out that adaptive filters make a significant difference
in denoising task at least in the context of the analyzed proteins. We
are aware that eight proteins are not a sufficient number for general-
izing our result, however since this significant discrepancy in per-
formance are confirmed also by the plots of Precision (see Suppl. Info
Fig. 1) and Recall (see Suppl. Info Fig. 2), we feel confident on the

importance of this result. In particular, our experimental results are
also supported by the theory, in fact adaptive filters such as Wiener,
MMWF and MMWF* should theoretically maintain their perform-
ance quite stable for different window sizes compared to non-adapt-
ive filters such as mean and median, and this is evident in Fig. 1. In
order to discriminate the difference in performance between Wiener,
MMWF and MMWF*, we considered the average F-score, Precision
and Recall across the different 2D spectra. This result is displayed in
Fig. 2A, C, E. The difference of performance between the Wiener and
MMWF does not look really significant; however MMWF offers a
higher F-score and precision, while the difference in Recall is neg-
ligible. Interestingly, MMWF offers the best F-score performance for
window size 3 3 3 with a monotonically decreasing slope. This is an
important result because it suggests that using the MMWF with
windows size 3 3 3 might be a smart selection in many cases where
we want to implement an automatic pipeline. Particularly impressive
is the result of the novel MMWF*, which offers very stable and high
performance with a trend that is almost invariant to the window size
setting (Fig. 2A, C, E). This is a confirmation of the result we were
theoretically expecting according to the new MMWF* mathematical
formulation that we discussed in the paragraph above. Therefore,
using MMWF* should offer even a better solution than using
MMWF for implementation of automatic pipeline. We also decided
to compare the average performance of these two adaptive filters with
wavelet denoising (Fig. 2B, D, F). For the wavelet denoising, we used
the best parameters of the wavelet proposed in Liu et al26. For this
comparison we considered the best average performance offered by
the adaptive filters at a fixed window size, as example for MMWF it
was window 3 3 3 (Fig. 2A). We were surprised to notice that the
performance of MMWF* was higher than wavelet denoising, while
the performance of the other adaptive filters were not that far from a
more complicated and advanced algorithm such as wavelet denois-
ing: in practice, there was not any significant performance difference.
This key result was an important achievement because to the best of
our knowledge it is the first time that spatial filtering is demonstrated

Figure 2 | Average performance for 2D spectra. Subfigures (A), (C), and (E): Average performance curves of the three adaptive spatial filters over the 2D

spectra with respect to the window size. (A). average F-score curves; (C). average precision curves; and (E). average recall curves. Subfigures (B), (D),

and (F): Bar charts of average performance of the wavelet denoising in Liu et al26 and the three adaptive spatial filters with the best window size on the 2D

spectra. (B). average F-score bar charts; (D). average precision bar charts; and (F). average recall bar charts.
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to be so competitive in denoising of such type of signals (like protein
NMR multi-dimensional spectra). We were then encouraged to con-
tinue our study investigating whether the denoising performance of
these algorithms would dramatically change in case we considered
the 3D NMR spectra of the same eight proteins analyzed in Fig. 1 and
Fig. 2. The rationale for selecting the same eight proteins in a higher
dimensional space is coming from the intention to reduce any change
or bias in evaluation performance related with modifying the original
dataset characteristics. This simplifies the comparison between the
results obtained in 2D and 3D spectra denoising. To notice, we
introduce in this article for the first time MMWF* and the general-
ization of the MMWF to the case of multi-dimensional signals, and
this was an important test to verify their behavior on 3D signals like
protein NMR spectra.

The supremacy of adaptive spatial filtering on the non-adaptive
one (Fig. 3, and Suppl Info: Fig. 3 and Fig. 4) is as expected confirmed
also in 3D spectra denoising. Additionally, it is confirmed also the
robustness of adaptive spatial filtering to changes in the window size,
particularly for MMWF* (Fig. 3; and Suppl Info: Fig. 3 and Fig. 4).
Surprisingly, although it is not detected any significant difference
between adaptive spatial filters and wavelet performance, the

MMWF and MMWF* in this case gave higher performance in F-
score and Precision than wavelet. However, these results should be
taken with the congruous reserve. Since the number of the available
analyzed spectra is low (just eight proteins) though it is the largest in
NMR peak picking studies, we expect that changing the context of the
analysis, an example considering different type and number of pro-
teins, might modify the fact that MMWF and MMWF* resulted the
first in this 3D denoising comparison. The most interesting informa-
tion regarding MMWF is not related with the fact that it gave a
slightly (and likely not statistical significant) higher performance,
but is connected with the fact that this best average performance
was achieved again for window size 3 3 3 (Fig. 4A, C, E). Also 3D
experiments advocated the use of the MMWF with windows size 3 3

3 to get the best performance in most of the cases in automatic
computational pipelines. This is even more valid for MMWF* that
also in the context of 3D denoising confirmed a very stable perform-
ance almost invariant to the window size setting. Somehow, we can
summarize that considering the nature of the signal present in the 2D
and 3D protein spectra, the MMWF produced a stable performance
at least for a fixed and well determined window size that was 3 3 3,
while MMWF* produced high and stable performance for all the

Figure 3 | F-score curves for 3D spectra. F-score curves of peak picking when using four different spatial filters for denoising NMR 3D spectra

(CBCA(CO)NH) of the eight proteins. The filters used are the Mean and Median filters (dashed lines), and their respective adaptive variations (full lines)

Wiener and Median Modified Wiener Filter (MMWF). MMWF*, the new variation of the MMWF, is distinguished by a red line marked by red crosses.

Each filter is tested for a range of squared window size that is varying from 3 3 3, 5 3 5, 7 3 7,… to 31 3 31 pixels. The figures show that adaptive filters

outperform the non-adaptive ones significantly in the denoising task. It is also clear that adaptive filters maintain their performance quite stable for

different window sizes.
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range of window settings. This MMWF’s window invariance was also
a main finding of the previous proteomic study on signals of 2D-gel-
electrophoresis maps51, a result that now is even reinforced by the
introduction of the new MMWF*. Here, the window invariance
might represent a consistent advantage for introducing nonlinear
adaptive spatial filtering in the implementation of automatic pipe-
lines for NMR protein spectra analysis.

Discussion
From the results presented in this study on the denoising of 2D and
3D protein spectra, we can gather that unexpectedly a simple and
efficient procedure like adaptive spatial filtering offers a valid alterna-
tive to complicated and time-consuming techniques like wavelet-
denoising, which suffers from the problem of the combinatorial
tuning of multiple parameters and settings. In addition, we propose,
for the first time, the 3D extension of the Median Modified Wiener
Filter (MMWF) and its new variation named MMWF*: nonlinear
adaptive spatial filters that are adaptive variants of the median filter.
Our results demonstrate that performance of MMWF is comparable
to that of wavelet and Wiener filter on 2D spectra, but noticeably
better on 3D spectra. The performance of the new MMWF* on 2D/
3D-spectra is even better than MMWF and wavelet-denoising.
Noticeably, MMWF* gains stable high performance almost invariant
to diverse window-size settings, which might represent a consistent
advantage in automatic computational pipelines for protein NMR-
spectra analysis.

Non-stationary signals, such as protein NMR spectra, are difficult
to treat due to the large and unstructured variations in intensity and
size. Nonlinear adaptive spatial filters, like MMWF and MMWF*,
perform well also on non-stationary signals, are easy to implement
and fast to use, and theoretically can be implemented in any multi-
dimensional space without the need of a strong theoretical revision
on their original equations or algorithms. We hope that this study
(and the computational codes here released) might trigger further
interests in the development of novel and most refined adaptive

spatial filters for denoising of protein NMR-spectra and of non-sta-
tionary signals in general.

Methods
Since the main focus of this paper is on denoising of NMR spectra, in all the
experiments, as described above, we apply different methods on denoising the ori-
ginal, raw 2D and 3D NMR spectra only. The settings of these denoising techniques
were all specified and commented during the presentations of the results together
with the respective references. Then, we followed Liu et al26 to use a brute force
algorithm to select all the local maxima in the denoised spectra, ranked them
according to their estimated volumes, and selected the top K predicted peaks, where K
is a number determined by the Benjamini-Hochberg algorithm25. The peak lists
returned by each denoising method was compared with the manually picked peaks
(obtained from the Biological Magnetic Resonance Bank) to calculate precision, recall
and F-scores. A predicted 2D peak is considered correct if and only if its coordinate in
dimension N (nitrogen) is within 0.5 ppm with a true peak and its coordinate in
dimension H (hydrogen) is within 0.05 ppm with the same true peak. A predicted 3D
peak is considered correct if and only if its coordinate in dimensions N and C (carbon)
is within 0.5 ppm with a true peak and its coordinate in dimension H (hydrogen) is
within 0.05 ppm with the same true peak.

The MATLAB codes for running MMWF and MMWF* for general denoising of
2D and 3D signals are available at: https://sites.google.com/site/
carlovittoriocannistraci/5-datasets-and-matlab-code/median-modified-wiener-
filter-for-2d-and-multidimensional-signal-denosing.

The proposed MMWF and MMWF* have been also incorporated into the
WaVPeak program as options for the spectrum denoising step, and available at http://
sfb.kaust.edu.sa/Pages/Software.aspx.
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