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Background: Immunotherapy might be a promising auxiliary or alternative

systemic treatment for early-stage lung adenocarcinomas manifesting as

ground-glass nodules (GGNs). This study intended to investigate the PD-L1

expression in these patients, and to explore the non-invasive prediction model

of PD-L1 expression based on radiomics.

Methods: We retrospectively analyzed the PD-L1 expression of patients with

postoperative pathological diagnosis of lung adenocarcinomas and with

imaging manifestation of GGNs, and divided patients into positive group and

negative group according to whether PD-L1 expression ≥1%. Then, CT-based

radiomic features were extracted semi-automatically, and feature dimensions

were reduced by univariate analysis and LASSO in the randomly selected

training cohort (70%). Finally, we used logistic regression algorithm to

establish the radiomic models and the clinical-radiomic combined models

for PD-L1 expression prediction, and evaluated the prediction efficiency of the

models with the receiver operating characteristic (ROC) curves.

Results: A total of 839 “GGN-like lung adenocarcinoma” patients were

included, of which 226 (26.9%) showed positive PD-L1 expression. 779

radiomic features were extracted, and 9 of them were found to be highly

corelated with PD-L1 expression. The area under the curve (AUC) values of the

radiomic models were 0.653 and 0.583 in the training cohort and test cohort

respectively. After adding clinically significant and statistically significant clinical

features, the efficacy of the combined model was slightly improved, and the

AUC values were 0.693 and 0.598 respectively.
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Conclusions: GGN-like lung adenocarcinoma had a fairly high positive PD-L1

expression rate. Radiomics was a hopeful noninvasive method for predicting

PD-L1 expression, with better predictive efficacy in combination with clinical

features.
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Introduction

Ground-glass nodules (GGNs) refer to the shadows with

similar density of ground glass but not covering blood vessels

and bronchial structures on computed tomography (CT) images.

Lung cancer, tuberculosis, pneumonia and other lung diseases

can all present such non-specific imaging manifestations. GGN

bears the increased incidence with the popularization of low-

dose CT screening and a significantly higher degree of

malignancy than solid nodule, and the most common type of

malignant GGN is early-stage lung adenocarcinoma (1). It’s

reported that 95.5% stage 0/IA lung cancer patients detected by

health screening were manifested as GGNs and 98.9% diagnosed

as adenocarcinomas (2). Surgery is the main treatment strategy

for early-stage lung cancer, whereas the 5-year recurrence-free

survival (RFS) rate is about 85.5%-87.6% in these presented as

mixed ground-glass nodules (mGGNs); in addition, treatment

option for multifocal GGNs is limited in consideration of the

nodule characteristics and the patient’s health condition, which

lower the feasibility of curative surgery (3–5). Therefore, with a

view to reduce recurrence risk in surgery patients and provide

more treatment options for inoperable patients, “GGN-like lung

adenocarcinoma” requires systemic therapy as an auxiliary or

alternative to achieve individualized treatment.

Immune checkpoint inhibitors (ICIs) targeting programmed

cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1)

pathway have been widely used in advanced non-small cell

lung cancer (NSCLC) for the enduring efficacy and better

safety, and the PD-L1 expression is approved by the Food and

Drug Administration (FDA) as a predictive biomarker of ICI

efficacy (6–8). Recently, several clinical trials have demonstrated

that early-stage lung adenocarcinoma patients can benefit from

neoadjuvant immunotherapy (9–14). Besides, studies also

elucidated that PD-L1≥1% was positively associated with the

major pathological response (MPR), pathological complete

response (PCR), 3-year overall survival (OS) and disease-free

survival (DFS) rates in neoadjuvant immunotherapy (15, 16).

Therefore, PD-1/PD-L1 inhibitors are expected to be a

promising remedy for early-stage lung adenocarcinoma

patients and PD-L1 expression is likely to be the best
02
predictive biomarker or one of the best biomarker

combinations for predicting efficacy in these patients.

Currently, PD-L1 expression in tumor tissues is mainly

detected in surgical or biopsy specimens. Nevertheless, for

early-stage lung adenocarcinoma patients who have not yet or

cannot receive surgical treatment and whose biopsy specimens

are difficult to obtain due to the size and location of GGNs, the

PD-L1 detection is a bottleneck in the ICI treatment.

Radiomics means the process of manually or automatically

extracting hundreds of quantitative features from medical

images, reducing the dimensionality of the features, and

ultimately using artificial intelligence methods such as

machine learning or deep learning to build models relevant to

clinical problems. Due to the panoramic analysis and dynamic

monitoring of lesions, radiomics is widely used in precision

medicine, especially in diagnosis, staging, treatment and

prognosis of malignant tumors (17, 18). In the field of lung

cancer, radiomics based on CT, positron emission tomography

(PET)/CT and even magnetic resonance imaging (MRI) can not

only contribute to the detection and identification of pulmonary

nodules, the judgment of metastasis, the monitoring of

treatment response and adverse events, and the assessment of

prognosis, but also make some achievements in the prediction

of mutated genes, immune microenvironment and even

molecular markers (19–23). These studies indicated that

microscopic changes at the histological and even molecular

levels were correlated with macroscopic changes in imaging

features. PD-1/PD-L1 pathway is an important immune

checkpoint in lung adenocarcinoma, and abnormal expression

of PD-L1 molecules would affect the tumor microenvironment

and then change the overall morphology of the tumor, which can

be captured by sophisticated imaging analysis. Several studies

have focused on the noninvasive prediction of PD-L1 expression

and have developed promising CT or PET/CT radiomic models;

however, the sample size of these literatures was small, and most

of the subjects were advanced NSCLC patients (24–26). So far,

noninvasive prediction of PD-L1 expression in early-stage lung

adenocarcinoma remains for further research. Considering chest

CT is the most common clinical screening and follow-up tool for

lung nodules, this study intends to analyze the PD-L1 expression
frontiersin.org
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in GGN-like lung adenocarcinomas, and explore the predicting

impact of CT-based radiomic features on PD-L1 expression,

thus facilitate the immunotherapy for these patients

and contribute to precision medicine for early-stage

lung adenocarcinoma.
Materials and methods

Patients

We retrospectively analyzed the clinicopathologic and CT

imaging data of lung adenocarcinoma patients pathologically

confirmed by resection surgery in the Department of Thoracic

Surgery, Chinese PLA General Hospital from December 2018 to

December 2020. Inclusion criteria: ①Chest CT examination is

performed within 1 month before surgery, and the CT image of

the lesion is presented as GGN; ②Postoperative pathological

diagnosis is lung adenocarcinoma; ③PD-L1 test result of surgical

specimen is available. Exclusion criteria: ①Solid nodule;

②Preoperative nonsurgical treatment of lung adenocarcinoma

or needle biopsy was performed; ③CT image is unclear. A total

of 839 patients were enrolled, including 280 males and 559

females. Their age ranged from 18 to 84 years, with an average of

55.7 ± 10.2 years. All patients were divided into negative group

(n=613) and positive group (n=226) based on PD-L1 expression.
PD-L1 expression

PD-L1 expression was detected on formalin-fixed paraffin-

embedded surgical specimen, and immunohistochemical test

was performed with PD-L1 IHC 22C3 pharmDx Kit (Dako

Omnis) (Agilent Cat# GE00621-2, RRID: AB_2833074). PD-L1

expression level was measured by tumor proportion score (TPS)

and positive PD-L1 expression was defined as TPS ≥ 1%.
Clinicopathologic information

By searching medical records, the following information was

collected: gender, age, body mass index (BMI), malignant tumor

history, lung benign disease history (including chronic bronchitis,

chronic obstructive pulmonary disease, bronchial asthma,

tuberculosis), smoking history, family lung cancer history and

other family malignant tumor history. Fasting venous blood was

drawn within one week before operation for determination of white

blood cell count (WBC), neutrophil percentage (NE), lymphocytes

percentage (LP), carcinoembryonic antigen (CEA) and cytokeratin-

19 fragment (CYFRA21-1), among which the white blood cell count

with its categorical count was taken by the blood analyzer

(SysmexXN9000, Sysmex), CEA and CYFRA21-1 level were

determined by electrochemiluminescence (Roche, Cobas e602).
Frontiers in Oncology 03
According to the World Health Organization (WHO)

Classification of Thoracic Neoplasms (Version 5, 2011), the

pathological types of lung adenocarcinoma include precursor

glandular lesions (PGL) and adenocarcinoma (AC). According to

postoperative pathological results, none of the patients had lymph

node infiltration, and their pathological staging was stage IA or IB.
CT scanning protocols

Chest CT examination was performed on Brilliance iCT

(Phillips Medical Systems). Scanning parameters: tube voltage

120kV, tube current 110mA, pitch 1, reconstruction layer

thickness 1.00mm, layer spacing 1.00mm, reconstruction

kernel iDose 3.
Determination of CT
morphological features

CT morphological features were evaluated by a radiologist with

5 years of experience and reviewed by a senior radiologist with 13

years of experience. Following features of GGNs were identified:

①type: pure groud-glass nodule (pGGN) and mGGN; ②diameter:

the longest diameter of the nodule in the transverse maximum

section; ③margin: clear or fuzzy; ④special signs: lobulation sign,

spiculation sign, vacuole sign, pleural pull/indentation sign, vascular

cluster sign, abnormal air bronchial sign.
Extraction of radiomic and
quantitative features

The entire workflow was done on the FDA-approved FACT

Medical Imaging System (Dexin Medical Imaging Technology

Company). Firstly, CT images in Digital Imaging and

Communications in Medicine (DICOM) format were

imported into the workstation, and images with thickness of

1.00mm were selected to enter the automatic processing mode

of pulmonary nodules, including nodule recognition and region

of interest (ROI) delineation. Then, under a fixed pulmonary

window (window width 1500HU, window position -500HU), a

respiratory physician with 5 years of clinical experience

identified the target nodule and modified the ROI boundary

layer by layer without knowing the patient’s pathological

diagnosis. The principle of manual segmentation was that the

ROI should cover as much of the nodule component area as

possible and avoid surrounding vascular and bronchial

structures. Next, a senior radiologist confirmed the ROI

segmentation results of 50 randomly selected nodules.

Eventually, the following parameters were automatically

calculated and exported: 779 radiomic features (14 shape

features, 24 first order features, 61 texture features and 680
frontiersin.org
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wavelet features) and 15 quantitative features (volume, three-

dimensional (3D) maximum diameter, 3D mean diameter, mean

density, non-consolidation ratio, mass, surface area, pleural

adhesion area, pleural proportion, fat proportion, surface area/

volume (SA/V), calcification volume, mean vascular density,

irregularity, and void volume ratio). In addition, we calculated

inter-class correlation coefficient (ICC) to test the stability of

radiomic features. The effect of different physician ROI

segmentation levels on the stability of radiomic features was

defined as inter-observer consistency, while the effect of ROI

segmentation levels of the same physician at different time

periods on the stability of radiomic features was defined as

intra-observer consistency. Firstly, ROI segmentation was

performed on 50 randomly selected CT images by WJS and

MHZ; then the radiomic features were extracted for consistency

analysis; lastly, radiomic features with ICC less than 0.75 were

considered as inter-observer unstable features. After an interval

of 1 month, WJS again performed ROI segmentation on

previous 50 CT images, extracted radiomic features and

performed consistency analysis. Radiomic features with ICC

less than 0.75 were also considered as intra-observer

unstable features.
Statistical analysis and model building

Data analysis was performed in IBM SPSS Statistics software

(V26, RRID: SCR_016479). Continuous variables were

compared using Mann-Whitney U test, and categorical

variables using Chi-square or Fisher’s exact test. Missing

values in laboratory results were supplemented by conditional

mean completer. Variables with a P value less than 0.05 were

considered statistically significant. R software (version 4.0.3) was

used to build the model. The following R packages of psych,
Frontiers in Oncology 04
pROC, glmnet and e1071 were used during the establishment

and evaluation process of models. The establishment process of

radiomic model, clinical-radiomic combined model and

quantitative model was shown in Figure 1. Radiomic features

with ICC ≥ 0.75 were considered stable.
Results

Clinicopathologic characteristics of
the patients

A total of 839 GGN-like lung adenocarcinoma patients were

included, of which 226 (26.9%) patients showed positive PD-L1

expression, and 5 (0.6%) patients showed high PD-L1 expression

(TPS≥50%). Positive PD-L1 expression rate showed an

increasing trend from atypical adenomatous hyperplasia

(AAH) to invasive adenocarcinoma (IAC), and all high PD-L1

expression patients were pathologically diagnosed as IACs

(Figure 2). In the whole cohort, there was no correlation

between PD-L1 expression and pathological type, but the

positive PD-L1 expression rate in IB stage was higher than

that in IA stage (P < 0.01). The age difference between positive

group and negative group was statistically significant (P < 0.05),

and patients in the positive group were older. The NE and CEA

were positively correlated with PD-L1 expression, while the LP

and CYFRA21-1 were negatively correlated with TPS. Other

clinical characteristics, including gender, BMI, past history,

family history and WBC, showed no statistical difference

(Table 1). After randomization, there were statistically

significant differences in gender, age, smoking history,

pathological stage, CEA and CYFRA21-1 in the training

cohort, while only CYFRA21-1 was associated with PD-L1

expression in the test cohort (Table 2).
FIGURE 1

Flow charts of constructing radiomic model, combined model and quantitative model.
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CT morphological features of
the patients

The difference in nodule type between positive group and

negative group was statistically significant, and the proportion of

mGGN was larger in positive group (P < 0.01). The longer

nodule diameter was correlated with the positive PD-L1

expression (P < 0.01). There were no statistically significant

differences in nodule margin, peripheral features and internal

features between the two groups (Table 1).
Radiomic model

In the training cohort, 762 radiomics features were stable

(ICC ≥ 0.75) both inter- intra- observer (Figure 3). 301 features

were statistically significant in univariate analysis (P < 0.05). 9

features (Table 3) were eventually selected by least absolute

shrinkage and selection operator (LASSO) to establish radiomic

model (Figure 4). The area under the curve (AUC) values of the

radiomic models in the training cohort and the test cohort were

0.653 and 0.583 respectively (Figures 5, 6), and the negative

predictive values were 81.4% and 75.7%, the positive predictive
Frontiers in Oncology 05
values were 39.1% and 30.2%, the accuracies were 57.4% and

54.8%, the sensitivities were 58.9% and 51.5%, the specificities

were 66.2% and 56% in the training cohort and the test cohort.
Quantitative model

In the training cohort, univariate and multivariate analyses

identified that SA/V and irregularity were independent risk factors

for PD-L1 expression. Smaller SA/V and greater irregularity were

correlated with positive PD-L1 expression (P < 0.05) (Table 4). The

AUC values of the quantitative models were 0.588 and 0.545 in the

training cohort and the test cohort respectively (Figure 5).
Combined model

The clinical-radiomic combined model was constructed

from both 9 radiomic features and 7 clinical features, the latter

including statistically significant characteristics (age, NE, LP,

CEA and CYFRA21-1) in the whole cohort and clinically

significant characteristics (sex and smoking history). the AUC

values of the combined models were 0.693 and 0.598 in the
FIGURE 2

PD-L1 expression in different pathological types of lung adenocarcinoma. AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ;
MIA, microinvasive adenocarcinoma; IAC, invasive adenocarcinomas; TPS, tumor proportion score.
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TABLE 1 Comparison of clinicopathologic and CT morphological characteristics.

Total Negative group Positive group P value
(TPS<1%) (TPS≥1%)

Gender 0.081

Male 280 (33.4) 194 (31.6) 86 (38.1)

Female 559 (66.6) 419 (68.4) 140 (61.9)

Age (years) 56.0 (49.0,63.0) 55.0 (49.0, 62.0.) 57.0 (51.0, 64.3) 0.017

BMI (kg/m2) 24.1(22.0,26.1) 24.1 (22.1, 26.1) 24.0 (22.0, 26.1) 0.871

Smoking history 0.108

Yes 142 (16.9) 96 (15.7) 46 (20.4)

No 697 (83.1) 517 (84.3) 180 (79.6)

Malignant tumor history 0.790

Yes 49 (5.8) 35 (5.7) 14 (6.2)

No 790 (94.2) 578 (94.3) 212 (93.8)

Lung benign disease history 0.286

Yes 41 (4.9) 27 (4.4) 14 (6.2)

No 798 (95.1) 586 (95.6) 212 (93.8)

Family lung cancer history 0.515

Yes 103 (12.3) 78 (12.7) 25 (11.1)

No 736 (87.7) 535 (87.3) 201 (88.9)

Family malignant tumor history 0.951

Yes 131 (15.6) 96 (15.7) 35 (15.5)

No 708 (84.4) 517 (84.3) 191 (84.5)

Pathological type 0.098

PGL 18 (2.1) 16 (2.6) 2 (0.9)

AC 821 (97.9) 597 (97.4) 224 (99.1)

Pathological stage 0.003

IA 167 (19.9) 107 (17.5) 60 (26.5)

IB 672 (80.1) 506 (82.5) 166 (73.5)

WBC (*109) 5.55 (4.76, 6.21) 5.57 (4.76, 2.21) 5.55 (4.76, 6.10) 0.575

NE 0.556 (0.514, 0.609) 0.556 (0.514, 0.605) 0.567 (0.516, 0.623) 0.043

LP 0.347 (0.297, 0.390) 0.347 (0.301, 0.390) 0.335 (0.288, 0.390) 0.010

CEA (ug/L) 1.89 (1.43, 2.18) 1.89 (1.39, 1.97) 2.18 (1.55, 2.25) <0.001

CYFRA21-1 (ng/mL) 2.50 (2.03, 2.50) 2.50 (2.07, 2.53) 2.37 (1.94, 2.37) <0.001

Nodule type 0.005

pGGN 489(58.3) 375(61.2) 114(50.4)

mGGN 350(41.7) 238(38.8) 112(49.6)

Diameter (mm) 13.0(9.7,18.0) 12.0(9.0, 17.5) 14.0(10.0, 18.0) 0.003

Margin 0.188

Clear 791(94.3) 574(93.6) 217(96.0)

Fuzzy 48(5.7) 39(6.4) 9(4.0)

Lobulation sign 0.745

Yes 227(27.1) 164(26.8) 63(27.9)

No 612(72.9) 449(73.2) 163(72.1)

Spiculation sign 0.566

Yes 121(14.4) 91(14.8) 30(13.3)

No 718(85.8) 522(85.2) 196(86.7)

Vacuole sign 0.150

Yes 107(12.8) 72(11.7) 35(15.5)

No 732(87.2) 541(88.3) 191(84.5)

(Continued)
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training cohort and the test cohort respectively (Figure 6), and

the negative predictive values were 83.8% and 79.8%, the positive

predictive values were 39.2% and 32.6%, the accuracies were

63.0% and 54.0%, the sensitivities were 67.7% and 66.2%, the

specificities were 61.3% and 49.5% in the training cohort and the

test cohort.
Discussions

Our study unveiled the quite PD-L1 expression status in

GGN-like lung adenocarcinomas, and demonstrated that the

CT-based radiomic model could distinguish between negative

and positive PD-L1 expression.

Though immunotherapy has the advantages of lasting

efficacy and less serious adverse events, the spectrum of

patients suitable for ICI treatment is narrow, with only about

20% overall radiological response (ORR) rate in advanced-stage

lung cancer (27). MPR of neoadjuvant immunotherapy was also

dissatisfactory, ranging from 17% to 31% (28).

PD-L1 is the key molecule of immune checkpoint pathway,

making it a predictive biomarker for ICI treatment (29), and

positive PD-L1 expression is associated with higher ICI response

rates in both advanced and early lung cancer patients (30–32).

Thus, exploring the PD-L1 expression in GGN-like lung

adenocarcinoma is essential for confirming the feasibility of

immunotherapy and identifying eligible patients.

Th i s s t udy ind i c a t ed tha t i n GGN- l i k e l ung

adenocarcinomas, the positive PD-L1 expression rate was

about 26.9%, while those with high PD-L1 expression were

rare. Previous studies also investigated PD-L1 expression in

surgical specimen of NSCLC. Pan et al. discovered that the

positive PD-L1 patients accounted for only 4.1% in Chinese lung

adenocarcinoma patients, which might be attributed to their

grade criteria of PD-L1 expression (There are 0~3+ grades,

where 0 and 1+ means negative) to a large extent (33). A
Frontiers in Oncology 07
Japanese study showed that the positive PD-L1 rate was

21.9%, and the PD-L1 expression in adenocarcinoma in situ

(AIS), microinvasive adenocarcinoma (MIA) and lepidic

predominant adenocarcinoma (LPA) was all negative (34). In

our study, a larger sample size was included and more optimistic

PD-L1 expression results were obtained. The positive PD-L1 rate

in PGL was 11.1%, and that in AC was 27.3%. Another European

study observed that the positive PD-L1 rate was 30.8%, and the

high PD-L1 expression rate was 10.4%. Meanwhile, it uncovered

that the PD-L1 expression was correlated with gender and

smoking history, and was highly correlated with tumor grade

and lymph node invasion (35). In contrast, more GGN-like lung

adenocarcinoma patients in our study were female and non-

smokers, and all patients had no lymph node infiltration, which

may explain the lower positive PD-L1 rate. In general, the

positive PD-L1 rate of GGN-like lung adenocarcinomas was

comparable to other early-stage lung adenocarcinomas,

confirming that immune escape mechanism acted as a super-

early event in cancer development (36), thus laying the

foundation for the application of ICIs. Immunity,

inflammation and their interactions play an important role in

the occurrence, development and progression of cancer (37, 38).

Studies have shown that both neutrophil-to-lymphocyte ratio

(NLR) and absolute lymphocyte count (ALC) can predict the

prognosis of nivolumab-treated NSCLC patients (39, 40). Our

study also proved that higher NE and lower LP were associated

with positive PD-L1 expression. Moreover, we discovered that

higher baseline CEA level and lower baseline CYFRA21-1 level

might be potential markers of PD-L1 expression, whereas other

studies had come to conflicting conclusions (41, 42). The

relationship between tumor marker levels and PD-L1

expression in early-stage lung adenocarcinomas has not been

extensively studied yet, and more data are needed for further

confirmation. Univariate analysis of clinical characteristics in the

whole cohort and the training cohort showed that gender, age,

smoking history, NE, LP, CEA and CYFRA21-1 might be
TABLE 1 Continued

Total Negative group Positive group P value
(TPS<1%) (TPS≥1%)

Pleural pull/indentation sign 0.257

Yes 143(17.0) 99(16.2) 44(19.5)

No 696(83.0) 514(83.4) 182(80.5)

Vascular cluster sign 0.361

Yes 127(15.1) 97(15.8) 30(13.3)

No 712(84.9) 516(84.2) 196(86.7)

Abnormal air bronchial sign 0.363

Yes 87(10.4) 60(9.8) 27(11.9)

No 752(89.6) 553(90.2) 199(88.1)
front
TPS, tumor proportion score; BMI, body mass index; PGL, precursor glandular lesions; AC, adenocarcinoma; WBC, white blood cell count; NE, neutrophil percentage; LP, lymphocytes
percentage; CEA, carcinoembryonic antigen; CYFRA21-1, cytokeratin-19 fragment; pGGN, pure ground-glass nodule; mGGN, mixed ground-glass nodule.
Bold values indicate that the P-value of this feature is less than 0.05, which is statistically significant.
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associated with the PD-L1 expression, which was also recognized

in previous studies. Therefore, above clinical features were added

into the clinical-radiomic combined model. It can be seen from

Table 2 that few clinical features were statistically different in the

test cohort, resulting in a modest improvement in the AUC value

of the combined model, which suggested that the correlation

between clinical features and PD-L1 expression in GGN-like

lung adenocarcinoma needed to be further verified.

PD-L1 expression was associated with nodule type and

diameter in this study. In addition to these two CT

morphological features, other studies also found that irregular

shape, pleural indentation sign, air bronchogram sign, the

convergence sign and cavitation sign were correlated with
Frontiers in Oncology 08
PD-L1 expression (43, 44). These associations of radiological

features with PD-L1 expression suggested that pathological and

even molecular discrepancy in tumors can be externalized in

imaging. The lack of significant CT morphological features in

this study might be attributed to the fact that TPS=5% was used

as a threshold in above two studies, magnifying the radiological

feature difference between groups. Since PD-L1 expression level

in early-stage lung adenocarcinoma was relatively low and there

were only 9.3% (78/839) GGNs with TPS≥5% in this study, it is

statistically difficult to further explore the relationship between

CT morphological features and PD-L1 expression by increasing

the cut-off value. On the other hand, due to the limitation of

volume and density, the internal and peripheral features of GGN
TABLE 2 Comparison of clinicopathologic features in training cohort and test cohort.

Training cohort Test cohort

Negative group Positive group P value Negative group Positive group P value

Total 429 158 184 68

Gender 0.027 0.870

Male 127 (29.6) 62 (39.2) 67 (36.4) 24 (35.3)

Female 302 (70.4) 96 (60.8) 117 (63.6) 44 (64.7)

Age (years) 55.0 (49.0, 62.0) 58.0 (51.0, 65.0) 0.003 57.0 (51.0, 63.0) 55.5 (50.0, 64.0) 0.885

BMI (kg/m2) 23.9 (22.0, 26.0) 24.2 (22.3, 26.3) 0.295 24.5 (22.3, 26.2) 23.6 (21.8, 26.0) 0.203

Smoking history 0.016 0.639

Yes 53 (12.4) 32 (20.3) 43 (23.4) 14 (20.6)

No 376 (87.6) 126 (79.7) 141 (76.6) 54 (79.4)

Malignant tumor history 0.785 1.000

Yes 22 (5.1) 9 (5.7) 13 (7.1) 5 (7.4)

No 407 (94.9) 149 (94.3) 171 (92.9) 63 (92.6)

Lung benign disease history 0.328 0.706

Yes 21 (4.9) 11 (7.0) 6 (3.3) 3 (4.4)

No 408 (95.1) 147 (93.0) 178 (96.7) 65 (95.6)

Family lung cancer history 0.914 0.307

Yes 53 (12.4) 19 (12.0) 25 (13.6) 6 (8.8)

No 376 (87.6) 139 (88.0) 159 (86.4) 62 (91.2)

Family tumor history 0.885 0.908

Yes 70 (16.3) 25 (15.8) 26 (14.1) 10 (14.7)

No 359 (83.7) 133 (84.2) 158 (85.9) 58 (85.3)

Pathological type 0.529 0.195

PGL 10 (2.3) 2 (1.3) 6 (3.3) 0 (0.0)

AC 419 (97.7) 156 (98.7) 178 (96.7) 68 (100.0)

Pathological stage 0.007 0.227

IA 353 (82.3) 114 (72.2) 153 (83.2) 52 (76.5)

IB 76 (17.7) 44 (27.8) 31 (16.8) 16 (23.5)0

WBC (*109) 5.44 (4.75, 6.11) 5.44 (4.70, 6.10) 0.899 5.44 (4.82, 6.35) 5.44 (4.80, 6.22) 0.665

NE 0.557 (0.510, 0.601) 0.557 (0.513, 0.612) 0.277 0.557 (0.517, 0.617) 0.565 (0.533, 0.636) 0.313

LP 0.342 (0.306, 0.394) 0.342 (0.294, 0.391) 0.089 0.342 (0.294, 0.388) 0.336 (0.285, 0.364) 0.450

CEA (ug/L) 1.89 (1.36, 1.89) 2.18 (1.57, 2.40) <0.001 1.89 (1.41, 2.11) 2.13 (1.51, 2.18) 0.067

CYFRA21-1 (ng/mL) 2.50 (2.09, 2.50) 2.37 (2.00, 2.44) <0.001 2.50 (2.04, 2.71) 2.37 (1.82, 2.37) <0.001
front
BMI, body mass index; PGL, precursor glandular lesions; AC, adenocarcinoma; WBC, white blood cell count; NE, neutrophil percentage; LP, lymphocytes percentage; CEA,
carcinoembryonic antigen; CYFRA21-1, cytokeratin-19 fragment.
Bold values indicate that the P-value of this feature is less than 0.05, which is statistically significant.
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FIGURE 3

Inter-class correlation coefficient (ICC) of inter-observers (A) and intra-observer (B).
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were not clear enough to be accurately distinguished by naked

eyes. Hence, further evaluation of radiological features in GGN-

like lung adenocarcinoma is conducive to the evaluation of PD-

L1 expression.

Quantitative CT objectively and quantitatively depict the

size, shape and special signs of nodules, which is more

dependable than clinician’s determination; it has been applied

in the diagnosis, evaluation and prediction of lung diseases (45–

47). As shown in Table 4, most quantitative features were

correlated with the PD-L1 expression in the training cohort,

nevertheless, the quantitative model established by SA/V and

irregularity had poor prediction efficiency for PD-L1 expression.

It can be concluded that the image information extracted by

mere quantitative CT is limited.

Radiomics extracts massive quantitative features from

different angles of original images and transformed images,

excavating as much image information as possible, thus is more

effective than quantitative CT. At present, radiomic method

has been fully developed, and its application in lung cancer has

progressed from qualitative diagnosis and histological

identification to the present level of gene or molecular

detection (48–51). Recent studies on noninvasive prediction

of PD-L1 expression mainly focus on advanced NSCLC, and

the PET/CT-based radiomic model has achieved good

prediction effect (52). Due to the low sensitivity of PET/CT

in the diagnosis of GGN-like lung adenocarcinomas, thin-layer

CT is mostly used for the detection and follow-up of

pulmonary nodules. We established a CT-based radiomic

model in GGN-like lung adenocarcinoma and found that it

had the potential of noninvasive prediction for PD-L1

expression (AUC were 0.653 versus 0.583 in training cohort

and test cohort). Several studies have also attempted to

establish CT-based PD-L1 expression prediction models in

advanced NSCLC, but yielded inconsistent results. Bracci et

al. created two radiomic models based on 48 texture features:

one model determining whether TPS ≥1% achieved AUC

values of 0.763 and 0.806 in the training cohort (n=48) and

the validation cohort (n=24), and the other for TPS≥50% got

AUC values of 0.811 and 0.789 respectively (25). Sun et al. built
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a radiomic model for PD-L1 expression≥50% on a much larger

data set (390 patients, 200 texture features), and achieved the

similar predictive effect (AUC: 0786 and 0.807) (42). The above

two favorable results might be attributed to the higher PD-L1

expression level in advanced NSCLC, and the greater

differentiation between groups with the TPS cut-off of 50%.

However, another study did not seem to support this

hypothesis: Yoon et al. extracted 58 radiomic features in 153

advanced adenocarcinoma patients, established a clinical-

radiomic combined model for TPS≥50%, and came up with

an AUC of 0.667 (24). In fact, the proportion of squamous cell

carcinoma in the positive group was higher in the first two

studies; since positive PD-L1 expression rate in lung squamous

cell carcinoma was significantly higher than that in lung

adenocarcinoma (53), better discrimination ability of models

could be partly explained by differences in histological types

between groups. In addition, due to the smaller sample size and

radiomic feature number of the above three studies, the

robustness of the models needs to be further verified. Our

study focused on the noninvasive prediction of PD-L1

expression in early-stage GGN-like lung adenocarcinoma,

and obtained meaningful radiomic models. Firstly, the

radiomic features showed good robustness, and 97.8% of

them reached the preset ICC. A study revealed that the

accuracy of lesion segmentation was less affected by the

training level and clinical experience of physicians (54). It

might be concluded that regular shape and clear boundary of

most GGNs facilitated the ROI segmentation process.

Secondly, it is reported that wavelet features have better

repeatability and reproducibility (55). Our study covered 680

wavelet features, and over half radiomic features ultimately

applied to the prediction model were wavelet features. Thirdly,

neither the single radiomic model nor the clinical model had

better predictive efficacy than the combined model (24, 56–58),

indicating that the combination of radiomic and clinical

features was more conducive to accurate prediction of PD-L1

expression. Our study also confirmed that the clinical-radiomic

combined model was indeed superior to the radiomic model.

Despite this, the prediction performance of either radiomic
TABLE 3 Selected radiomic features in training cohort.

Number

1 0riginal firstorder 75 Percentile

2 0riginal Shape Maximum 2D Diameter Slice

3 0riginal glcm Correlation

4 0riginal glszm Large Area High Gray Level Emphasis

5 wavelet-LHH glcm Maximal correlation coefficient

6 wavelet-LHH ngtdm Busyness

7 wavelet-HLL glrlm Long Run Low Gray Level Emphasis

8 wavelet-LLL firstorder Interquartile Range

9 wavelet-LLL glszm Large Area Low Gray Level Emphasis
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FIGURE 4

Least absolute shrinkage and selection operator (LASSO) coefficient profiles (A) and determining the parameter Lambda (l) in the LASSO model
with 10-fold cross-validation (B).
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FIGURE 5

ROC curves of the radiomic model and quantitative model in the training cohort (A) and the test cohort (B).
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FIGURE 6

ROC curves of the combined model and radiomic model in the training cohort (A) and the test cohort (B).
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model or combined model remained not ideal and the

discrimination error of positive PD-L1 expression were large.

The lower PD-L1 expression level in GGN-like lung

adenocarcinoma patients and more patients with negative

PD-L1 expression included in this study might be one of the

reasons. Besides, 1% was used as the cutoff value of PD-L1

expression in this paper, which also resulted in the

imperceptible image difference between the negative group

and the positive group. Furthermore, the radiomic features

included in our and other PD-L1 expression prediction models

were different from each other, and these studies lacked

external validation data. Though the traditional radiomics

method has a relatively mature operation process, there is

poor consistency among different studies due to the diversity of

original medical image protocols, image segmentation

platforms, radiomic feature categories and machine learning

algorithms. so we need to expand the patient population and

adopt more advanced radiomic methods such as convolutional

neural networks to achieve the clinical application of PD-L1

non-invasive prediction. Also, since the predictive efficacy of a

single biomarker is limited, PD-L1 could combine genomics,

proteomics and so on to construct multi-omics biomarkers.

Our study had several limitations: First, this was a single-

center retrospective study with intrinsic bias, patients

undergoing thoracic surgery in the hospital were not generally

representative and the prediction model was not externally

validated; Second, the semi-automatic ROI segmentation was

performed by respiratory physicians, though the radiologist

confirmed the results of 50 randomly selected nodules the
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objectivity and reproducibility of the radiomic features still

needed to be further verified; Third, the absence of follow-up

and prognostic assessment of patients made it impossible to

establish an association between radiomic and recurrence or

survival for improving the individualized treatment of early-

stage lung adenocarcinoma.

In conclusion, early-stage lung adenocarcinomas

manifesting as GGNs had a fairly high positive PD-L1

expression rate. Due to the advantages of noninvasiveness and

repeatability, the radiomic-based model could better predict the

PD-L1 expression of GGNs, thus paves the way of a more

accurate diagnosis and treatment scheme for the

indiv idua l ized treatment of ear ly-s tage GGN-l ike

lung adenocarcinoma.
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TABLE 4 Data analysis of quantitative features in training cohort.

univariate analysis multivariate analysis

Negative group Positive group P value P value b OR (95%CI)
(TPS<1%) (TPS≥1%)

Volume (ml) 0.88 (0.42, 2.31) 1.31 (0.61, 2.94) 0.001 0.419

3D maximum diameter(mm) 1.60 (1.19, 2.32) 1.93 (1.30, 2.43) 0.005 0.268

3D mean diameter(mm) 1.16 (0.91, 1.62) 1.30 (1.04, 1.72) 0.003 0.764

Mean density (HU) 566.57 (480.53, 641.61) 541.19 (443.40, 637.90) 0.101

Non-consolidation ratio 0.37 (0.24, 0.51) 0.36 (0.22, 0.54) 0.815

Mass(g) 0.21 (0.09, 0.55) 0.33 (0.13, 0.74) 0.003 0.507

Surface area(cm2) 5.56 (3.20, 12.28) 7.76 (4.05, 14.19) 0.002 0.276

Pleural adhesion area (cm2) 0.27 (0.13, 0.60) 0.37 (0.17, 0.79) 0.016 0.796

Pleural proportion 0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 0.947

Fat proportion 0.02 (0.01, 0.04) 0.02 (0.01, 0.05) 0.051

Surface area/volume ratio 6.36 (5.22, 7.58) 5.87 (4.90, 7.07) 0.002 0.009 -0.348 0.706 (0.544, 0.917)

Calcification volume(mm3) 14.65 (4.27, 32.09) 16.66 6.83, 44.98) 0.001 0.078

Mean vascular density (HU) 0.20 (0.09, 0.53) 0.30 (0.13, 0.72) 0.002 0.508

Irregularity 0.58 (0.34, 0.82) 0.68 (0.42, 0.92) 0.008 0.015 1.864 6.449 (1.438, 28.915)

Void volume ratio 0.09 (0.05, 0.14) 0.09 (0.05, 0.16) 0.395
TPS, tumor proportion score; 3D, three-dimensional.
Bold values indicate that the P-value of this feature is less than 0.05, which is statistically significant.
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Glossary

GGN Ground-glass nodule

CT computed tomography

RFS recurrence-free survival

mGGN mixed ground-glass nodule

ICI immune checkpoint inhibitor

PD-1/PD-L1 programmed cell death-1/programmed cell death-ligand 1

NSCLC non-small cell lung cancer

FDA Food and Drug Administration

MPR major pathological response

PCR pathological complete response

OS overall survival

DFS disease-free survival

PET positron emission tomography

MRI magnetic resonance imaging

TPS tumor proportion score

BMI body mass index

WBC white blood cell count

CEA carcinoembryonic antigen

CYFRA21-1 cytokeratin-19 fragment

WHO World Health Organization

PGL precursor glandular lesions

AC adenocarcinoma

pGGN pure groud-glass nodule

DICOM Digital Imaging and Communications in Medicine

ROI region of interest

3D three-dimensional

SA/V surface area/volume

ICC inter-class correlation coefficient

AAH atypical adenomatous hyperplasia

AIS adenocarcinoma <italic>in situ</italic>

MIA microinvasive adenocarcinoma

IAC invasive adenocarcinomas

NE neutrophil percentage

LP lymphocytes percentage

LASSO least absolute shrinkage and selection operator

AUC Area under the curve

NLR neutrophil-to-lymphocyte ratio

ALC absolute lymphocyte count

ORR overall radiological response

LPA lepidic predominant adenocarcinoma

ROC receiver operating characteristic
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