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ABSTRACT: Recently, we developed a systems engineering model of the human cardiorespiratory system [Kurian et al. ACS
Omega 2023, 8 (23), 20524−20535. DOI: 10.1021/acsomega.3c00854] based on existing models of physiological processes and
adapted it for chronic obstructive pulmonary disease (COPD)�an inflammatory lung disease with multiple manifestations and one
of the leading causes of death in the world. This control engineering-based model is extended here to allow for variable metabolic
rates established at different levels of physical activity. This required several changes to the original model: the model of the
controller was enhanced to include the feedforward loop that is responsible for cardiorespiratory control under varying metabolic
rates (activity level, characterized as metabolic equivalent of the task�Rm�and normalized to one at rest). In addition, a few
refinements were made to the cardiorespiratory mechanics, primarily to introduce physiological processes that were not modeled
earlier but became important at high metabolic rates. The extended model is verified by analyzing the impact of exercise (Rm > 1) on
the cardiorespiratory system of healthy individuals. We further formally justify our previously proposed adaptation of the model for
COPD patients through sensitivity analysis and refine the parameter tuning through the use of a parallel tempering stochastic global
optimization method. The extended model successfully replicates experimentally observed abnormalities in COPD�the drop in
arterial oxygen tension and dynamic hyperinflation under high metabolic rates�without being explicitly trained on any related data.
It also supports the prospects of remote patient monitoring in COPD.

1. INTRODUCTION
Systems engineering tools�highly regarded for the unprece-
dented growth they have produced in manufacturing and
logistics�have recently catalyzed major advancements in the
healthcare industry.1−4 Through synchronizing and exploiting
the information available, these mathematical methods have
found immense applications in drug discovery and develop-
ment, therapeutic planning, diagnostics, pharmaceutical
manufacturing, and patient management.3,5−11 Furthermore,
they are being increasingly employed to generate novel insights
into the nature and function of biological systems�identifying
reaction and signaling pathways in living cells, deciphering the
interactions between organs and organ systems, homeostasis
within the organism, or sometimes even multiscale biological

phenomena.12−17 In this work, combining a systems engineer-
ing model of the human cardiorespiratory system with formal
methods for sensitivity analysis and parameter estimation, we
seek to improve our understanding of a widely prevalent
condition called chronic obstructive pulmonary disease
(COPD).
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COPD is an inflammatory lung disease characterized by
persistent airflow obstruction that is severe enough to interfere
with normal breathing function. The airflow limitation is a
result of bronchial or alveolar abnormalities or a combination
of them, usually caused by significant exposure to irritating
gases such as wood or cigarette smoke.18,19 The disease has an
estimated global prevalence of over 10% (in the population
aged ≥40 years) and is the third leading cause of death
worldwide.20 Consequently, the medical expenditures attrib-
uted to COPD are huge�the direct cost in the US alone is
projected to approach $40 billion per year in the next few
years, with similar expenses in the EU.19 At present, several
impediments exist to recognizing and assessing COPD
efficiently, including the globally prevalent underdiagnosis,
the limitations on differentiating COPD types, and the inability
to accurately predict and modify the course of the disease.21−23

COPD is an umbrella term grouping together multiple
manifestations of respiratory impairment occurring in varying
severity and combinations. Among the different COPD
symptoms, small airway disease and emphysema appear to
be the most common, followed by pulmonary hypertension
(PH).19 This heterogeneity in disease, coupled with the
limitations of diagnostic tools and our understanding of the
response to therapy makes it nearly impossible to predict the
patient’s health outcomes.23 Therefore, a personalized
approach that considers patient-specific data to assess the
condition and make future predictions is recommended for the
management of the condition.23,24 One method that can
transform the personalized care of patients with COPD is the
use of mathematical models, which describe the respiratory
system using standard engineering-based equations and
parameter values estimated from individual patient data.
Though several models of the human cardiovascular and
respiratory systems have been proposed in the past, most of
them are not designed to capture the physiology specific to
COPD.25−30 Hence, we recently proposed a model of COPD
from a systems engineering perspective, whereby the

cardiorespiratory system was represented as a control system
(sensor, controller, actuator, and process) and the disease state
was modeled as a malfunction of one or more components of
the system.24,31 In the present work, we improve upon this
model by including additional physiological phenomena,
formalizing the model adaptations for the disease state and
identifying optimal model parameters to analyze the patient
dynamics under varying activity levels.
Our earlier analysis of COPD24 was performed under the

assumption of constant metabolic rates�that of the body at
rest. This is a significant limitation, as those vary as a result of
any significant physical activity. At increased activity levels,
multiple modifications in the original model equations are
required to appropriately describe the underlying physiology.
For example, the cardiorespiratory control under high activity
is primarily realized by a feedforward control loop that is less
relevant while at rest.32 The role of stomach muscles in active
exhalation of air at high respiratory rates, the decreasing
dynamic compliance of the lung and the increasing dead space
at high tidal volume, and the multiple changes in
cardiovascular physiology that result in an increased cardiac
output are additional aspects of the system physiology that
become increasingly relevant as the metabolic rate increases.
As changes in the activity level of COPD patients are known to
drive responses that are of clinical interest�some of which we
lack a clear mechanistic understanding of�it becomes
imperative to introduce these features into the mathematical
model used in the analysis of COPD.33,34

In ref 24 we proposed multiple model adaptations to
represent the different manifestations of COPD. Small airway
disease was modeled as an increase in airway resistance,
emphysema was represented as a combined change in
unloaded lung volume and lung elastance, and PH was
characterized as a modification of the pulmonary arterial
resistance. The parameters for adaptation were chosen from
our understanding of disease pathophysiology. In the present
work, we formally justify the selection of the parameters to

Figure 1. (a) Schematic of the cardiorespiratory systems that shows ventilation, circulation, and their control. Adapted with permission from ref 24.
Copyright 2023, the authors. Image of the cardiorespiratory system: istockphoto.com. Copyright 2022, istockphoto.com/colematt. Image of the
brain: adapted with permission from Cancer Research UK; obtained via Wikimedia Commons. Copyright 2014, Cancer Research UK. (b)
Schematic of an industrial control system for regulating the flow of cooling water to an exothermic reactor that shows substantial resemblance to
cardiorespiratory control. VFD�variable frequency drive.
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adapt from our previous work with the help of sensitivity
analysis.
Most of the model equations and parameters used in ref 24

were obtained directly from the literature. Though the
response of the cardiovascular system was within acceptable
limits of the clinically observed values, there were minor
deviations, some of which could increase considerably as the
activity level of the individual increases. Therefore, in the
present work, we adaptively estimate a few selected parameters
of the cardiovascular system to match clinically observed
input−output data using a gradient-free optimizer called
parallel tempering.35 The algorithm uses a Monte Carlo-
based stochastic approach to converge on a near-optimum
parameter solution that is insensitive to the initial guess.
We arrange the rest of this article as follows: in Section 2, we

describe the model enhancements and methodologies used in
its analysis. In particular, the changes in the model involving
the respiratory system are described in Section 2.1, those
involving the cardiovascular system in Section 2.2, and the
adaptation of parameters to represent COPD are discussed in
Section 2.3. In the remaining two subsections of Section 2 (2.4
and 2.5), we present an outline of the formal sensitivity
analysis and of the parallel tempering, which is the stochastic
global optimization method used for parameter estimation. In
Section 3, we present the analysis and simulation results,
compare them with reports from past experiments, and provide
a related discussion. This includes simulation results of the
healthy state (3.1), and parameter adaptations and simulation
results of the disease state (3.2). The key conclusions of the
study are summarized in Section 4.

2. MODEL AND ANALYSIS METHODOLOGY
In earlier work, we presented a dynamical system model of the
human cardiorespiratory system developed through integrating
existing models of different subsystems.24 The system
comprised modules representing the physiological components
and functions involved in the processes of breathing, gas
exchange, blood circulation, and their control as shown

schematically in Figure 1a (see ref 24 and its Supporting
Information for details on the physiology and a summary of the
model). The approach followed standard process engineering
and control-based modeling, as, for example, shown in Figure
1b, for controlling the cooling of an exothermic reactor.
Mathematical equations (ordinary differential and algebraic)
representative of each module were taken from the existing
literature, and the parameter values were either directly
obtained or were computed from the input−output data.
The system comprising the process (cardiorespiratory system),
sensors (chemoreceptors), controller (neural control), and
actuators (chest and heart muscles) were simulated under
normal and anoxemic conditions to verify the predictive
capabilities of the model. The different manifestations of
COPD were represented within the physiological model as
parameter adaptations that were quantified based on changes
in clinically relevant systemic responses. For example, small
airway disease was represented by an increase in airway
resistance. The parameter value was chosen such that the
model response (spirometry test; see ref 24 and its Supporting
Information) was similar to that observed in a patient with the
condition. Though we did not explicitly perform a model order
reduction, the model itself was a reduced one with all
biological phenomena represented by simplified equations
derived from experimentally observed relationships between
biological variables. In this bottom-up approach, we produced
an engineering model that has the minimum number of
parameters and complexity rather than a pure first-principles-
based approach.
In ref 24, the modeling and simulations were performed

under the assumption that the metabolic rates remained
constant (the physical exertion in different activities is
quantified as the metabolic equivalent of tasks�Rm�based
on the oxygen consumed, where Rm=1 at resting conditions36).
In the present work, to understand the dynamics of
cardiovascular and respiratory variables of COPD patients
under varying metabolic rates, we extended the systems
engineering model of the human cardiorespiratory system to

Figure 2. Block diagram representation of the cardiorespiratory system shown in Figure 1. The green lines indicate the feedforward loop introduced
to the existing model in ref 24. Adapted with permission from ref 24. Copyright 2023, the authors.
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include a few additional physiological processes: a feedforward
loop in cardiorespiratory control, the role of stomach muscles
in active exhalation, the varying compliance of the lung at high
alveolar volumes, and the changes in cardiovascular parameters
to increase the cardiac output. The modular structure of the
process model allows us to efficiently implement these changes
without affecting the remaining model equations. A description
of the updates is provided below (Sections 2.1, 2.2, and 2.3)
and the complete set of model equations and parameter values
are available in the Supporting Information. It may be noted
that a few modifications of the base model (Rm=1) were also
required, as any errors there could amplify as the metabolic
rates increased. These changes do not negate the qualitative
insights given in the previous work, rather they improve it in a
quantitative sense.
2.1. Changes in the Respiratory System and Control.

During strenuous exercise, the ventilatory requirements of the
human body increase due to the increased oxygen demands. As
a response to this, we observe an increased respiratory rate and
circulation of blood. One could potentially ascribe this
regulation to the feedback control loop that modifies the
heart and respiratory rates based on the gas concentrations in
the blood, as described in ref 24. However, on observing the
dynamics of the heart and respiratory variables in humans,
their exercise response is almost instantaneous, much before
there are any noticeable changes in the blood gas levels,
revealing the existence of an almost perfect feedforward control
loop triggered by the activity level of the individual. It is
therefore believed that the brain, upon initiating the motor
impulses for stimulating the muscles involved in the exercise,
also sends collateral impulses to the brainstem to excite the
cardiovascular and respiratory control centers, resulting in
increased respiratory drive and cardiac output.32 This
feedforward loop appears to be dominant in the regulation
of the cardiorespiratory systems during exercise, and the
chemoreceptor-based feedback loop merely fine-tunes the
variables over a much slower time scale. Hence, in the
mathematical model, we introduced a feedforward control loop
for the regulation of respiration and heart rate, as shown by the
green dashed lines in the block representation of the
cardiorespiratory system in Figure 2. The following subsections
describe the implementation of this feedforward loop and a few
other improvements in the model of the cardiorespiratory
system proposed earlier in ref 24

2.1.1. Feedforward Loop for Respiratory Control. In our
model, the respiratory control is primarily based on the model
by Ben-Tal and Smith37 which combines an oscillator with an
inspiratory pattern generator (leaky integration) to regulate the
depth and frequency of respiratory cycles (see Supporting
Information of ref 24). The associated chemoreceptor-based
feedback control system was designed to drive the controller
output signal, Rp depending on the available measurements of
arterial gases. Under varying activity levels, the feedback
controller we used would not be activated on time due to the
transport delay in circulation. This delay resulted in substantial
deviations of blood gas levels, sometimes even instability of the
system. This pointed to the necessity of an additional
feedforward loop�the existence of which is well documented
in textbooks on physiology32�in maintaining system stability.
In the present work, we included the exercise-dependent
feedforward loop as an additive term modifying the controller
variables gt (affecting the respiratory frequency) and Kctrl
(affecting the respiratory amplitude) as shown in Figure 3. It
may be noted that the two control loops while being designed
with the common goal of maintaining blood gas levels, worked
toward rejecting disturbances from different sources. Hence,
they were modeled as parallel loops rather than in cascade.
Existing data on the variations of alveolar ventilation as a

function of activity levels and arterial gas concentrations were
used to choose the values of the controller variables.32,38 That
is, for a given metabolic rate, the corresponding alveolar
ventilation required was determined through linear interpola-
tion of the data in a lookup table (Figure S5 in Supporting
Information). This was then added to the contributions from
the chemoreceptor-based feedback loop, which were also
obtained through linear interpolation of the available data on
blood gas levels and alveolar ventilation. Having identified the
total alveolar ventilation required, the next task would be to
choose the controller variables gt and Kctrl that would drive this
ventilatory response. It is unclear to us how the brain partitions
the increased requirements in alveolar ventilation between
depth and frequency of breathing.39 We, therefore, increased
the frequency and depth of the breathing process in the ratio
4:3, which is the average increase reported in ref 38. For this,
another table created from open-loop simulations of the
controller model at different values of gt and Kctrl was used. The
resultant controller was primarily of proportional type, with the
proportional gain being a function of the system state. A

Figure 3. Schematic of the respiratory control model. The model now considers the activity level (Rm, highlighted by the green arrow) in addition
to the arterial gas concentrations to give the electrical signal (Rp) to the lung/chest muscles. It also considers a more involved model of Rp,low.
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schematic showing this controller implementation is given in
Figure 3, and the input−output data used in this model are
provided in Figure S5. The fractional changes in ventilation
were used rather than the absolute values to enable
compatibility between data from multiple sources.

2.1.2. Role of the Stomach in Active Exhalation. The
model of lung mechanics in refs 24 and 37 introduces the
respiratory drive primarily through the contraction of the
diaphragm which is modeled as a dynamical system. The
exhalation is passive, brought about by the pressure existing in
the lungs on the relaxation of the diaphragm. At higher activity
levels, the respiratory rates increase, and the pressure in the
lungs is no longer sufficient to complete the exhalation within
the available time. Therefore, the muscles in the stomach
provide the additional pressure required to exhale the air.
Molkov et al.40 represented this role of the stomach as a
second dynamical system alongside the existing one for the
diaphragm. In the present work, we introduce this effect as an
additive term to the controller’s ramp output Rp as this
functional form was successfully used to simulate a deep breath
(which involves the stomach muscles) in ref 24. Rp,low, the
lower limit of Rp�which earlier equaled zero under all
conditions�is now modeled as described in eq 1.

l
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0, 15

( 15)
(37 15)

, 15p,low

1
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where Rp,low,db = −2 is the lower limit of Rp used in the
simulation of the deep breath (see Section S2 of Supporting
Information for details on spirometry), and rr−1 is the
respiratory rate calculated from the previous breath. To ensure
that respiration was completed within the available time, the
response time of the lung muscles (the actuator) also had to be
reduced. For this, the time constants of the dynamical system
were updated as given in eq S37.

2.1.3. Dynamic Compliance of the Lung as a Function of
Alveolar Volume. In ref 24, the compliance of the lung was
assumed to remain constant with the alveolar volume, as this
has been experimentally observed under normal conditions.41

However, under strenuous exercise, tidal volumes increase
substantially, and the dynamic compliance decreases as
described in ref 42. Therefore, in the extended mathematical
model, the lung compliance was retained for up to an alveolar
volume of 5 L (Vth), above which the dynamic compliance is
gradually reduced to zero�the resultant alveolar volume
converging to 7 L (Vmax). The static elastance (inverse of static
compliance) is given by eq 2, and the alveolar volume as a
function of transpulmonary pressure is shown in Figure 4. It
may be noted that this modification does not affect lung
volumes under normal breathing, as evident from Figure 4.
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2.1.4. Lung Dead Space as a Function of Tidal Volume.
The lung dead space refers to the volume of air in the lung that
fills the bronchial tubes and does not actively participate in gas
exchange. This quantity was assumed to be a constant in the

previous model.24 However, at high respiratory rates, as the
tidal volume increases, the dead space, VD, also increases.38,43

Therefore, following what was reported in ref 38, in the
extended model, the dead space was made a linear function of
the tidal volume (eq 3), varying between 0.15 L at rest (tidal
volume, VT,min = 0.5 L) and 0.3375 L at peak exercise (tidal
volume, VT,max = 1.8 L)
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where VT,−1 is the tidal volume recorded in the previous breath
and VD0 is the tidal volume at rest (=0.15 L).
2.2. Changes in the Cardiovascular System and Its

Control. 2.2.1. Feedforward Loop for Cardiovascular
Control. The cardiac output in the human body almost
quadruples when an individual transitions from rest to peak
activity levels. The increased circulation is a result of changes
in heart rate, contractility, afterload, and preload.44 To
represent this in the mathematical model, the exercise-based
feedforward loop was designed to increase the heart rate, H,
linearly with the metabolic rate45 from a baseline value of 60 to
180 bpm at peak exercise (Rm = 10). This was introduced as an
additive term to the existing chemoreceptor-based feedback
loop, which is now responsible for removing any remaining
disturbances. The new term is given by HM in eq 4 (see
Supporting Information for a description of the terms
appearing in the chemoreceptor-based contribution, HOd2,COd2

).
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2.2.2. Changes in Other Cardiovascular Variables. A few
additional cardiovascular parameters were updated to obtain
systemic responses (cardiac output and arterial pressures) that
better resemble standard values at rest and exercise. Based on
the experimental data reported in refs 46 and 47, the arterial
resistances (Rs, systemic; Rp, pulmonary) and the systemic
compliance (Csa) were set to reduce by 60% and 50% from

Figure 4. Alveolar volume as a function of transpulmonary pressure.
At high pressures, the volume converges to a maximum of 7 L.
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their original values, respectively, as the heart rate increased
from 60 to 180. The remaining targeted parameters were
determined through a sensitivity analysis, such as pulmonary
arterial compliance (Cpa), heart valve resistance (Rv,o), left
ventricular elastance (systolic, Es,l), and right ventricular
elastance (diastolic, Ed,r). The optimal values for these chosen
parameters were identified by solving an estimation problem
using the parallel tempering algorithm, described later in
Section 2.5. This simulation-based optimization problem had
the objective of minimizing the deviation of the predicted
systolic and diastolic pressures, mean pulmonary arterial
pressures, and cardiac output from their respective standard
values, as given in eq 5. At a heart rate of 60 beats/min, the
targets were systolic and diastolic pressures of 120/80 mmHg,
cardiac output of 80 mL/s, and mean pulmonary arterial
pressure of 17 mmHg.32,48 At a heart rate of 180 beats/min
(higher activity level), the targets were systemic arterial
pressures of 180/80 mmHg, cardiac output of 360 mL/s,
and mean pulmonary arterial pressure of 25 mmHg.38,48 The
squared deviations were scaled using the respective standard
values to give weights similar to those of all terms in the
objective function. Though this step also modified some of the
parameter values at rest, the changes were minor causing little
or no qualitative changes in the results reported earlier in ref
24.
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where yi,pred are the model responses (systemic arterial
pressures; mean pulmonary arterial pressure ⟨Ppa⟩, and cardiac
output qsa) that we desire to make equal to their respective
clinically observed values (yi,target), and Fc denotes the
mathematical model of the cardiovascular system.
The updates made in the respiratory and cardiovascular

systems are summarized in Table 1.

2.3. Model Adaptations in COPD. To adapt the model
for COPD, a few parameters with the largest effect on COPD
manifestations viz. small airway disease, emphysema, and PH
were chosen through a sensitivity analysis. The specific
parameter perturbations that resulted in COPD-like responses
were identified by solving simulation-based optimization
problems using the parallel tempering algorithm described
later in Section 2.5. The cost function for these estimation

problems (eq 6) used target values of FEV1 ratio (0.7; the
ratio of air expired out in 1 s to that of the total air expired out
in a spirometry test), total lung capacity (6.6 L; TLC),
functional residual capacity (4 L; FRC), and mean pulmonary
arterial pressure (35 mmHg) to guide the optimization.19,49,50

These values were selected based on their use in diagnosing
COPD. The airway resistance was the decision variable to
meet the targeted FEV1 ratio; the chest elastance and
unloaded lung volume were perturbed to meet the TLC and
FRC targets, and the pulmonary resistance was adjusted to
meet the targeted pulmonary arterial pressures. The objective
function was the squared deviation of the model response from
the targets.

i

k
jjjjjjj

y

{
zzzzzzz

=

y y

y

y F

min

s.t. ( )

i

i i

i

,pred ,target

,target

2

pred r (6)

where yi are the systemic responses and Fr denotes the
mathematical model of the respiratory system. The subscripts
pred indicate model predictions and target indicate the
standard values observed in COPD patients. The decision
variables (θ), the systemic responses, and their target values in
different COPD manifestations are given in Table 2.

Previously, in ref 24 the parameters were chosen based on
our understanding of the disease pathophysiology. The present
work uses a more systematic approach, first with the sensitivity
analysis,51,52 then using a parallel tempering algorithm, a
multiparameter optimization tool that is known to be efficient
in solving parameter estimation problems involving dynamical
systems.35

2.4. Sensitivity Analysis. To understand the relative
contribution of each cardiorespiratory parameter to the overall
systemic behavior and disease states related to COPD, we
performed a global sensitivity analysis. Here, the objective was
to identify parameters to which the systemic responses
(cardiorespiratory variables of clinical significance) were
sensitive.
A density-based global sensitivity analysis approach known

as PAWN53 was selected because the underlying distribution of
the outputs of interest was unknown and because it has been
used to analyze the parametric sensitivity of other cardiovas-
cular system models.54,55 To determine the underlying
distribution, PAWN utilizes cumulative density functions
(CDFs) to characterize model outputs of interest one at a
time. The first set of simulations varies all parameter inputs
simultaneously to produce unconditional CDFs. A second set
of simulations varies all inputs except for the parameter of
interest to produce conditional CDFs. To determine the

Table 1. Summary of Model Updates

component update references

control of heart
and respiratory
rates

included a feedforward loop based on
metabolic rates

32 and 38

respiratory
muscles

included the role of the stomach in active
exhalation at high activity levels

40

lung compliance reduced dynamic compliance of the lung at
high alveolar volume

42

lung dead space lung dead space increases with tidal volume 38 and 43
cardiovascular
parameters

adjusted to be better representative of
system dynamics at low and high activity
levels

32,38,
and
46−48

Table 2. Decision Variables, Model Responses, and Their
Target Values in Different COPD Manifestations

manifestation θ
systemic response

(yi)
target value
(yi,target)

small airways airway resistance (R) FEV1 ratio 0.7
emphysema lung elastance (ET),

unloaded lung
volume (V0)

TLC, FRC 6.6 L; 4.0 L

pulmonary
hypertension

pulmonary arterial
resistance (Rpa)

mean pulmonary
arterial pressure
(⟨Ppa⟩)

35 mmHg
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parametric sensitivity index for the i-th input factor, the
Kolmogorov−Smirnoff (KS) statistic (S) is used to quantify
the distance between the unconditional and conditional CDFs
(F), as given by eq 7.

= | | ||S F y F y xstatmax ( ) ( )i
x y

y y x i
i

i (7)

Because the KS statistic depends on the value of the
constant parameter, the PAWN method calculates the KS
statistic for multiple values. We combine these statistics using a
summary statistic (e.g., median) to characterize the distribu-
tion of the KS statistic. This summary statistic (PAWN index)
varies from 0 to 1, with a value closer to 1 indicating a greater
parametric influence on the output. To determine a threshold
value for significant PAWN indices, the PAWN method
introduces a dummy parameter that has no effect on the
output. If the PAWN index of a parameter is greater than this
value, then it is likely that the output is sensitive to that input
parameter.
In the analyses reported here, the parameters were varied

over a [x/1.25, x × 1.25] range from the nominal value. We
performed 2000 simulations with six conditioning intervals and
checked for convergence. The PAWN method also includes
bootstrapping to determine 95% confidence intervals for each
sensitivity index. Sensitivity indices were determined separately
for the cardiovascular and respiratory systems. Each system
was isolated from the rest of the model for all sensitivity
analysis simulations because it was assumed that cardiovascular
system parameters have a limited effect on respiratory function
and vice versa. Respiratory system outputs were measured
during a simulated deep breath once the system reached a
time-periodic stationary state (TPSS) after a 38 s period.
Cardiovascular system outputs were measured as the average
over a 60 s period, once the system reached TPSS after a 30 s
equilibration period.
2.5. Optimization Routine�Parallel Tempering. To

solve the mathematical problems for identifying optimal
parameter values, we used a gradient-free optimizer. We
chose to use the stochastic annealing-based optimizer called
parallel tempering due to its robust design and insensitivity to
the initial guess.35 The algorithm is an improvement to the
well-known simulated annealing56 based on a scientific
formulation as described in ref 57. Parallel Tempering has
proven convergence to the optimum if one waits long enough.
From an engineering perspective, we waited until the changes
in the objective function were below a certain threshold. The
use of different initial guesses showed that the sensitivity and
the final solution were not sensitive to the initial guesses.
The algorithm directs a biased random walk through the

parameter space to converge toward a minimum value of the
cost function. At each instance of the random walk, a new cost
function is computed with a new set of parameters. The new
parameters are accepted based on the Metropolis acceptance
probability35,58 (eq 8)
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where Paccept is the probability that the new set of parameters
will be accepted, Fcost,new is the cost function value for the new
set of parameters, Fcost,old is the cost function value for the old

set of parameters, and EB is the Boltzmann energy level. This
probability equation allows a chance for the new parameter set
to be accepted, despite producing a worse cost function value.
The probability of accepting a worse parameter set scales with
the Boltzmann energy. At lower EB, the chance of making a
random move toward a higher cost function value is minimal.
At higher EB values, random jumps to higher cost function
values are more likely, which allows the algorithm to escape
local minima. In the standard simulated annealing, there is an
annealing schedule, which determines how fast the system
moves from high temperature (high EB) to low (low EB), and
the final parameter set can be highly dependent on the
annealing schedule.59 In parallel tempering, the annealing
schedule is removed. Parallel tempering takes advantage of the
benefits from both high and low Boltzmann energies and uses
parallel runs, each with different constant Boltzmann energy
levels. Occasionally these parallel runs exchange information
with their closest Boltzmann level so that good cost function
values are held at the low energies and new minima are found
at the high energies. A schematic of the parallel tempering
procedure is shown in Figure 5. This method allows the
optimization to search the space both broadly in the hot
sections and conservatively in the cold sections. The cost
function evaluations are done with parallel processing to
improve computational efficiency and the method for
implementing the parallel tempering algorithm from ref 35 is
followed.

3. RESULTS AND DISCUSSION
3.1. Results for Healthy Individuals. Here, we report the

results obtained from an analysis and simulations involving the
model of the cardiorespiratory systems applied to healthy
individuals. All simulations were performed by using
MATLAB/Simulink R2020b.

Figure 5. Schematic representation of the parallel tempering
algorithm. Stochastic Monte Carlo routines are run in parallel at
different constant Boltzmann energy levels. The hotter (red) runs are
more likely to accept parameters with a poorer cost function value to
exit the local minimum as shown. The colder (blue) runs are more
likely to slowly proceed to the nearest minimum, as shown in the
graph.
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3.1.1. Sensitivity Analysis of the Cardiovascular System.
Parameters to estimate for tuning the cardiovascular system
were selected by using a global sensitivity analysis. The
response variables�mean pulmonary arterial pressure, systolic
pressure, diastolic pressure, and pulmonary arteries flow rate�
were selected for their clinical significance (Figure 6). The
parameters pulmonary resistance, right ventricular elastance
(diastolic), systemic arterial resistance, left ventricular
elastance (systolic), left ventricular elastance (diastolic),
systemic arterial compliance, and brain artery resistance were
found to have a significant effect on at least one of the
cardiovascular response variables of interest. Systemic arterial
resistance and right ventricular elastance (diastolic) were the
only two parameters that affected all four response variables
significantly. Pulmonary resistance was the most significant
parameter affecting mean arterial pressure and did not
significantly affect the other cardiovascular response variables.

3.1.2. Critical Parameter Estimation of the Cardiovascular
System. The optimal values of the critical cardiovascular
parameters identified by the sensitivity analysis were found by
solving the mathematical problem described in Section 2.2.2.
The optimal parameter values are listed in Table 3. The
corresponding cardiac output and arterial pressures at the
optimal parameter values are shown in Figure 7. On increasing
the heart rate from 60 to 180, the cardiac output�indicated by
the flow rate in the pulmonary arteries�increased from 86 to
320 mL/s. Systolic pressure increased linearly from 115 to 186
mmHg, a trend consistent with experimental observations.60

This baseline systolic blood pressure at a heart rate (60−70

bpm) is consistent with other cardiovascular models54,55 and is
within one standard deviation of the average systolic blood
pressure (123 ± 11) measured in healthy women.61 In
comparison, the diastolic and mean pulmonary arterial
pressures had only a minor increase, as observed clinically
(Table 3).

Figure 6. Global sensitivity analysis of cardiovascular parameters: mean pulmonary arterial pressure (a), systolic blood pressure (b), diastolic blood
pressure (c), and pulmonary arterial flow (d). Sensitivity index varies from zero to one. Values closer to one have a larger effect on the output of
interest. Parameters with a sensitivity index above the red line are significant. Cpv, pulmonary venous compliance; Rp, pulmonary resistance; Rv,o,
heart valve resistance, open; Rv,c, heart value resistance, closed; Ed,l, left ventricular elastance, diastolic; Es,l, left ventricular elastance, systolic; Ed,r,
right ventricular elastance, diastolic; Es,r, right ventricular elastance, systolic; Csa, systemic arteries compliance; Rs, systemic arteries resistance; Csv,
systemic venous compliance; Cpa, pulmonary artery compliance; Rba, brain arteries resistance; Rbv, brain veins resistance; and Cbv, brain veins
compliance.

Table 3. Optimal Parameter Values of the Cardiovascular
System

parameter name
parameter

symbol and unit
existing
value

optimal
values,

HR = 60

optimal
values,

HR = 180

systemic arterial
resistance

Rs
[mmHg s/mL]

1.08 1.24 0.52

pulmonary
arterial
resistance

Rp
[mmHg s/mL]

0.198 0.145 0.060

systemic arterial
compliance

Csa [mL/mmHg] 2.4 1.2 0.6

pulmonary
arterial
compliance

Cpa
[mL/mmHg]

4.52 4.52 3.62

resistance at
valves (open)

Rv,o
[mmHg s/mL]

0.0010 0.0017 0.0017

right ventricular
elastance
(diastolic)

Ed,r
[mmHg/mL]

0.0667 0.0786 0.0336

left ventricular
elastance
(systolic)

Es,l [mmHg/mL] 0.849 1.698 2.851
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3.1.3. Model Verification�Effect of Exercise on Blood Gas
Levels. To verify the predictive capabilities of the model, we
replicated a case reported in the literature by Holmgren and
Linderholm.62 Here, the authors recorded the heart rates and
blood gas levels of a few healthy individuals under varying
levels of activity. To replicate this, the model was simulated
under five different metabolic rates, varying from the rest to
peak exercise. The first 1000 s of the model simulations were
discarded to allow the model to reach TPSS. After this, the
model was simulated for 700 s under each activity level, of
which the last 200 s was chosen for reporting (the remaining
time was for the model to reach TPSS). Figure 8 shows the
heart rate and minute ventilation values predicted by the
mathematical model. The heart rates measured by Holmgren
and Linderholm62 are also added for comparison. Figure 9
shows the partial pressures of oxygen and carbon dioxide in the
systemic arteries predicted by the model and those recorded by
Holmgren and Linderholm62 in their experiments. The
predictions are in good agreement with the decreasing oxygen
and carbon dioxide tensions measured in the experiments. The
decrease in oxygen levels stimulated increased ventilation and
perfusion, which in turn improved the exchange of carbon
dioxide, resulting in lowered carbon dioxide tension. It may be
noted that while the heart and respiratory rates were trained on
data similar to those in ref 62, the blood gas levels were
predictions made by the model with no related training data.

3.1.4. Model Verification�Effect of Exercise on the
Expiratory Flow-Volume Loops. Respiratory flow-volume

loops are commonly used in the analysis of respiratory health.
These plots report the expiratory air flow rates (y-axis) against
the volume of gas expired (x-axis). In Figure 10, we plot the
expiratory flow-volume loops at all activity levels considered in
Section 3.1.3 and during a spirometry test (see Section S2 for a
description of the test). As the metabolic rate increased from
rest to that of peak activity level, the tidal volume increased
from 0.45 to 1.83 L. The expiratory reserve volume (ERV;
indicated by the right end of the flow-volume loops) and the
FRC (the sum of the ERV and unloaded lung volume)
decreased as the metabolic rates increased. The fractional drop
in FRC (26%) was comparable to the drop recorded in
measurements by ref 63 (∼20%). The spirometry plot showed
a peak expiratory flow rate (PEFR) of ∼7 L/s and an FEV1
ratio of 0.88.

3.2. Results for COPD Patients. 3.2.1. Sensitivity Results
of the Respiratory System and Parameter Adaptation for
COPD. In the next step, the model parameters were adapted to
represent the COPD patients. A similar step was performed in
refs 19 and 63. However, the parameters were chosen based on
knowledge of human anatomy and disease pathophysiology.
Here, we report the results of a systematic global sensitivity

Figure 7. Arterial flow rates and pressures predicted by the model at
varying heart rates.

Figure 8. TPSS values of heart rate and minute ventilation at different
activity levels (Rm). Reference data obtained with permission from
Holmgren and Linderholm.62 Copyright 2008, John Wiley and Sons.

Figure 9. Arterial gas tensions in healthy individuals at different
activity levels compared with the measurements made by Holmgren
and Linderholm.62 Reference data obtained with permission from
Holmgren and Linderholm.62 Copyright 2008, John Wiley and Sons.

Figure 10. Expiratory flow-volume loops at different activity levels
(Rm). Here, the y-axis shows the flow rate of expired air and the x-axis
shows the volume of air left in the lung. The outermost loop shows
the flow rates during a spirometry test.
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analysis for choosing the parameters and optimal parametric
adaptations resulting in COPD-like responses.

3.2.1.1. Small Airway Disease. Small airway disease is a
cardinal manifestation of COPD in which the thickening of
airways leads to an increased resistance to the flow of air. The
model responses representative of small airways are the PEFR
and the FEV1 ratio.19,64 The PAWN global sensitivity analysis
was used to identify the selection of parameters for which the
responses were sensitive (Figure 11). The relative contribu-
tions of respiratory parameters to the clinically diagnostic
measurements of PEFR and FEV1 were evaluated. Lung
elastance (Et) and airway resistance (R) contribute signifi-
cantly to the changes in FEV1. The muscle constant (k2),
pleural pressure constant (kp), airway resistance, and recoil
constant (k1) contributed significantly to PEFR. Airway
resistance was the only common parameter that both outputs
were sensitive to, supporting its selection as a parameter

representative of physiological changes occurring in small
airway disease. The physiological manifestation of small airway
disease as a decrease in airway size that restricts airflow
reinforces the selection of airway resistance as a parameter
representing the disease state. The optimal parameter
adaptation for small airway disease was the one that resulted
in an FEV1 ratio of 0.7,64 realized at α = 0.27.

3.2.1.2. Emphysema. Emphysema is a COPD manifestation
caused by damage to the alveolar walls, resulting in air
entrapment and breathlessness. The agglomeration of alveoli
and changes in lung elastance result in increased lung volumes.
To model the adaptations for emphysema, a sensitivity analysis
was performed to identify a selection of parameters that the
lung volumes were sensitive to (Figure 12). The relative
contributions of respiratory parameters to the clinically
relevant respiratory metrics, TLC, FRC, and ERV were
assessed. The common parameters that significantly affected

Figure 11. Global sensitivity analysis for model outputs used in clinical diagnosis of small airway disease. VD, dead volume of lungs; R, airway
resistance; pw, vapor pressure, water; DOd2

, diffusion capacity, O2; DCOd2
, diffusion capacity, CO2; Vcap, capillaries volume; Et, lung elastance; V0,

unloaded volume of lung; Pm, mouth pressure; PL0, difference between atmospheric and pleural pressure; k1, recoil constant of muscle; k2, constant
in equation of muscle; kp, constant in equation of pleural pressure.

Figure 12. Global sensitivity analysis for model outputs used in the clinical diagnosis of emphysema. See Figure 8 for the variable names and
abbreviations.
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all three metrics were lung elastance (Et), unloaded lung
volume (V0), and the atmospheric and pleural pressure
difference (Pl0). Based on this analysis, lung elastance and
unloaded lung volume were selected for tuning to represent
COPD adaptations for emphysema. The selection of these
parameters is reinforced by the decreased elastic recoil seen in
the lungs of emphysema patients.65 The difference between
atmospheric and pleural pressure was not selected because it is
more constrained physiologically and any effect it has is merely
an addition to that of V0 as evident from eqs S4 and S38. The
optimal parameter values that were symptomatic of COPD
were Et = 1.9 mmHg/L and an unloaded V0 = 1.63 L to meet
the response variables (FRC and TLC) reported in ref 50.

3.2.1.3. Pulmonary Hypertension. PH is a common
condition in COPD in which the mean pressure of the
pulmonary artery rises because of modifications in lung
capillaries, causing stress on the right side of the heart. The
global sensitivity analysis was repeated to identify the
parameters resulting in increased pulmonary arterial pressure
(Figure 6a). Pulmonary resistance (Rp) was found to have the
highest effect on the response variable�mean pulmonary
arterial pressure. The optimal parameter value of 0.422
mmHg.s/mL resulted in the targeted mean pulmonary arterial
pressure (⟨Ppa⟩) of 35 mmHg.65

With the parameter adaptations to represent different
COPD manifestations, the model was used in simulations at
varying levels of exercise. The results are described in the
following subsections.

3.2.2. Effect of Exercise on Blood Gas Levels. The models
(with different COPD adaptations) were simulated under
varying activity levels for the same duration as those used for
the healthy individuals presented in Section 3.1.3. The
corresponding model predictions and measured literature for
the arterial gas concentrations at the TPSS are given in Figure
13. In the experimental observations reported in ref 66, the
arterial oxygen levels were lower and the carbon dioxide levels
were higher in COPD patients as compared with those of
healthy individuals. These results are reproduced well by our
model. On comparing the different manifestations individually
(Figure 14), all manifestations result in lower oxygen levels.
However, the CO2 levels remain close to normal in PH and
emphysema potentially due to the increased respiratory rates.

3.2.3. Effect of Exercise on the Expiratory Flow-Volume
Loops�Dynamic Hyperinflation. Figure 15 shows the
expiratory flow-volume loops of the COPD patients. A drop
in PEFR and an inward curvature at the terminal part of the
spirometry plot (where the expiratory flow rate decreases from
PEFR to zero) are observed, as expected in COPD.64,67 In
comparison with healthy individuals (Figure 10), the FRC
does not decrease as much with an increase in activity levels. In
fact, at high activity levels (Rm = 9.4), the FRC is larger than
that at rest�a phenomenon commonly observed in COPD
patients and referred to as dynamic hyperinflation
(DH).34,68,69 The plot of alveolar volumes at rest and peak
activity levels (Figure 16) shows the DH more clearly on the
volume−time axis. The effect of individual COPD manifes-
tations on expiratory flow rates is shown in Figure 17 (PH was
not considered as that was a cardiovascular change with a
limited effect on respiratory mechanics). It is observed that
small airway disease contributes more to DH than emphysema
because, at higher activity levels, it is the airflow resistance that
primarily prevents the lung from returning to its equilibrium
position. It may be noted that these are not the features on
which the model is explicitly trained, but rather are a result of
the model adaptations for COPD described in Section 2.3.

Figure 13. O2 and CO2 tensions in the systemic arteries of the COPD
model (adaptations for all manifestations considered simultaneously).
Reference data obtained with permission from Christensen et al.,66

Copyright 2004, Elsevier Science and Technology Journals.

Figure 14. Arterial gas concentrations in the COPD model when
adaptations of different COPD manifestations are considered
individually. Reference data obtained with permission from
Christensen et al.,66 Copyright 2004, Elsevier Science and Technology
Journals.

Figure 15. Expiratory flow volume loop in COPD patients when all
parameter adaptations are included.
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3.2.4. Prospects for Remote Patient Monitoring. In Figure
18, we plot the heart and respiratory rates of healthy
individuals and COPD patients at rest and moderately high
activity levels. It is observed that the differences between the
responses of the models are more pronounced at higher
activity levels, indicating that these variables, in conjunction
with the activity levels, contain information about the state of
the disease. One could come up with an inverse relationship
that determines the state of the patient from these measure-
ments, which can easily be obtained from a wearable device.
The results reinforce the possibility of completely automated
remote patient monitoring (RPM) of COPD patients, as
COPD exacerbations are expected to make these deviations
even more pronounced. However, the hypothesis needs to be
confirmed using personalized models and real patient
monitoring data.

3.3. Model Limitations. While the model we proposed
here can replicate and predict several clinically relevant aspects
of COPD, there are avenues for improvements. One part of the
model that could benefit from additional details is the neural
controller. At present, the respiratory controller is represented
using an oscillator followed by a pattern generator.40 The
models used in refs 51, 54, and 69 for respiratory and
cardiovascular control include finer details of the structure of
the control system. The advantage of including such details is
that it could allow for modeling neural adaptations in COPD
patients. It is natural that stress caused by a decline in lung
function would lead to adaptations in the control system.
Analyzing the effect of such adaptations on the disease
prognosis and the patients’ quality of life could pave new paths
for managing the condition�an aspect that we have not
considered in this work.
The other important feature that is missing is the

personalization of the model for individual patients. Given
sufficient patient data, one could estimate the critical
parameters identified in Sections 3.1.1 and 3.2.1 from the
data rather than the population averages used in the present
work.51,70 This identification step may require improving
computational performance using simpler models. In this
context, it is worth exploring the development of hybrid
modeling approaches�that combine data-driven and first-
principles-based models�that are simple enough for param-
eter estimation while capturing the essential physics
involved.71−73

4. CONCLUSIONS
In this work, we extended a previously developed control
engineering model of the human cardiorespiratory system for
healthy individuals and adapted it for COPD to accommodate
variations in metabolic rates at different exercise levels. Several
model improvements have also been implemented to
accommodate the large variations in clinically important
response variables observed at different levels of exercise. A
sensitivity analysis was used to justify the selection of a set of
critical parameters, the variations of which would fit the model
predictions to experimental findings in healthy and disease
states. Moreover, the optimal parameter values were
determined using an in-house-developed stochastic global
optimization algorithm.
The arterial gas levels of COPD patients predicted by the

model at different activity levels were in good agreement with

Figure 16. Plot of the variations in alveolar volume (healthy and
COPD) under rest (Rm = 1) and peak exercise (Rm = 9.4). DH is
shown by the shift in the equilibrium lung position.

Figure 17. Expiratory flow-volume loops in (a) small airways and (b)
emphysema.

Figure 18. Heart and respiratory rates in healthy individuals and
COPD patients (including adaptations for all manifestations) under
rest and high activity levels.
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the experimental observations reported in the literature. The
model effectively replicated the shift in equilibrium lung
positions observed in COPD patients (DH) and could
distinguish between the disease manifestations that made
patients more susceptible to DH, which, to the best of our
knowledge, is the first instance of a dynamical system model
capturing the physiology in DH. Furthermore, the simulation
results reinforced the prospects of RPM in COPD patients�
an aspect that has been attempted by multiple researchers in
the recent past, but rarely in the light of the underlying
physics.33,74,75 In addition to aiding the development of RPM
strategies, we believe the model will help elucidate the
principles of gas exchange in COPD patients, particularly in
DH, thereby guiding the selection of optimal intervention
strategies such as noninvasive ventilation.76
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