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Echinococcus multilocularis, a major cause of echinococcosis in human, is a parasitic sylvatic disease between two major hosts in
a predator-prey relation. A newmodel for the transmission dynamics of Echinococcus multilocularis in the population of red foxes
and voles with environment as a source of infection is formulated and rigorously analyzed.*e model is used to access the impact
of treatment on red foxes and environmental disinfection as control strategies on the disease dynamics. *e control reproduction
number is computed and is used to rigorously prove the local and global dynamics of models’ equilibria. Using available data on
Echinococcus, elasticity indices and partial rank correlation coefficients of control reproduction number and cumulative new cases
in red foxes and voles are computed. Parameters that have high influence locally and globally are identified. Numerical ex-
periments indicate that administering disinfection of environment only induces more positive impact than applying treatment
only on red foxes in controlling the infection. Generally, interventions towards treating red foxes and environmental disinfection
could be sufficient in tackling transmission of disease in the populations.

1. Introduction

Echinococcus multilocularis (EM) is a parasitic taeniid
tapeworm and one of the six species of the Echinococcus
genus. *e disease is sylvatic and has indirect life cycle
between two major hosts in a predator-prey interaction
[1–3]. Adult EM inhabits the small intestine of canines (such
as red foxes) which are regarded as definitive hosts and
produces eggs that are released to the environment, typically
through faeces. After oral ingestion of eggs by rodents (such
as voles), regarded as intermediate hosts, a larval stage
(metacestode) develops in any of the internal organs (liver,
kidney, heart, etc). *e mature metacestodes are capable of
producing numerous protoscoleces, each having the po-
tential to develop into an adult EM when a definitive host
preyed on an intermediate host, and the cycle continues
[1, 2, 4, 5]. In some parts of the world, other wild canids
(such as coyotes, raccoon dogs, and wolves) can also serve as
definitive hosts while other animals (like sheep, domestic

dogs, cats, and rats) can be regarded as intermediate hosts
[1, 4, 6]. *e parasite (EM) causes alveolar echinococcosis in
humans regarded as accidental hosts and is characterized
with a tumour-like, destructive growth with the potential of
causing high fatality rate [1, 4, 7]. *e disease was initially
confined to a certain part of the globe; however, as researches
indicated, it spread all over the globe especially in rural
nomadic communities that are economically less privileged,
geographically and/or behaviourally detached to certain
extent from healthcare systems [8–12]. Furthermore, the
disease has high prevalence in red foxes population (1%–
76.7%) [3, 5, 13–16] and low prevalence in rodents (voles)
(0.4%–30%) [3, 5, 13, 15]. Due to the prevalence of the
disease in intermediate hosts and the difficulties involved in
treating definitive hosts in a given community, control can
take longer times and in many cases may last indefinitely.

Modelling approaches, and in particular mathematical
modelling, can give an insight into the biology and epide-
miology of diseases in terms of revealing facts on data gaps,
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understanding the interaction between organisms, pre-
dicting future, control, and quantifying certain unmeasur-
able quantities such as force of infection, basic reproduction
number, etc [2]. Mathematical models of Echinococcus
multilocularis have been developed in literature to attend to
must of the above assertions. For instance, in [5], Ishikawa
et al. proposed a mathematical model that described the
transmission of Echinococcus multilocularis in both the
definitive (foxes) and intermediate host (voles) populations
in Hokkaido. *ey quantitatively studied seasonal transition
in the prevalence of EM in foxes and the risk of infection
with human alveolar echinococcosis. Roberts and Aubert [3]
developed a simple mathematical model in an attempt to
determine the likely effect of combining treatment for EM
infection in red foxes and voles in France with the existing
vaccination campaign against rabies. It was shown that if the
prevalence of the EM in foxes is low in a particular region,
the parasite can be eradicated or controlled. Wang et al. [17]
proposed a model for the transmission of echinococcosis in
dogs, livestock, and human populations to explore effective
control and preventive measures in Xianjing. Basic re-
production number, on which the dynamics of model was
completely determined, has been estimated, and sensitivity
analysis was carried out based on data relevant to the study
area. In [18], a model that took into account, the contri-
bution of domestic and stray dogs on the transmission of the
parasite in humans was proposed. *e global dynamics
revealed that, without disposing the stray dogs, the disease
became endemic even if the domestic dogs are controlled.

It is a known fact that environment aids the transmission
dynamics of Echinococcus multilocularis, as discussed in the
above reviews. However, this important component is
neglected in themodelling process of the disease. In this paper,
we establish a noble mathematical model for the transmission
dynamics of Echinococcus multiloculariswithin the population
of foxes as definitive hosts and the voles as intermediate hosts
with concentration of parasites in the environment as a source
of infection for intermediate hosts. Considering the high
prevalence of EM in red fox population (1–76.7%) compared
to rodent population as reported in previous studies, we in-
corporate treatment as control strategy on the infected red
foxes. As a result of the treatment, we assume that recovered
red foxes will acquire long-time immunity and as such will not
return to susceptible. Furthermore, disinfection or cleaning of
environment to reduce the concentration of the disease is also
incorporated as a second control strategy. We carry out rig-
orous analysis on the computation of the basic control re-
production number, a threshold quantity used, to determine
the existence and stability dynamics of equilibria. Further-
more, using data available from literature, we conduct elas-
ticity indices of parameters on the control reproduction
number and global sensitivity analysis using partial rank
correlation coefficients of control reproduction number and
cumulative new infections on the two hosts populations.
Numerical simulations are conducted to support analytic
results and effects of control strategies on the model. *is
paper is organized as follows. *e model formulation, equa-
tions, and flow diagram are presented in Section 2. Basic
properties of the model on existence, uniqueness, positivity,

and boundedness of solutions are discussed in Section 3.
Furthermore, existence and global stabilities with systematic
calculation of control reproduction number are presented in
Section 4. Numerics which comprise of elasticity index, global
sensitivity analysis, numerical simulations, and effects of
control strategies are presented in Section 5. Finally, we
present concluding remarks in Section 6.

2. Model Formulation

*e total population of red foxes, which is assumed constant
(birth and death rates, μf, are assumed equal) in the en-
vironment at time t, denoted by N∗f(t) is divided into
susceptible (Sf(t)), exposed (Ef(t)), infected (If(t)), and
recovered (Rf(t)) subpopulations so that

N
∗
f(t) � Sf(t) + Ef(t) + If(t) + Rf(t). (1)

*e susceptible population is increased by recruitment of
foxes by birth or immigration at rate μfN∗f and is decreased
when it preyed with searching efficiency s on an infected vole
containing protoscoleces in hydatid cysts [5] with proba-
bility p of becoming infectious. *e exposed fox population
is increasing by the number of susceptibles that preyed on
infected voles and is decreasing by progression to infected
population and natural deaths, at rates αf and μf, re-
spectively. *e infected fox population is increased by
progression of exposed foxes and decreased as a result of
treatment and natural deaths at rates ξf and μf, respectively.
*e population of recovered is increased by the treated
infected foxes and decreased by natural death at rates ξf and
μf, respectively. We assume here that treated red foxes have
either permanent or long-lasting immunity to the parasite
and hence will not return to susceptible population.

Similarly, the total population of voles, also assume
constant (birth and death rates, μv, are assumed equal) in the
environment at time t, denoted by N∗v (t) is subdivided into
susceptible (Sv(t)), exposed (Ev(t)), and infected (Iv(t))
subpopulations so that

N
∗
v (t) � Sv(t) + Ev(t) + Iv(t). (2)

*e population of susceptible voles is increased by birth
at rate μvN∗v and decreased by infection from the concen-
tration of parasites in the environment at the rate βv and
natural deaths at rate μv, which is also applicable to all the
subpopulations of voles. Furthermore, the concentration of
Echinococcus in the environment B(t) is increased by
shedding of the parasites by infected foxes at rate ηf and
decreased by disinfection or cleaning of environment at rate
μb. Based on the above descriptions, the model can be de-
scribed completely by the following system of ordinary
differential equations, which follow from the schematic
diagram shown in Figure 1:

dSf

dt
� μfN

∗
f − spIvSf − μfSf, (3)

dEf

dt
� spIvSf − μf + αf􏼐 􏼑Ef, (4)
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dIf

dt
� αfEf − μf + ξf􏼐 􏼑If, (5)

dRf

dt
� ξfIf − μfRf, (6)

dSv

dt
� μvN

∗
v − βv

B

K + B
􏼒 􏼓Sv − μvSv, (7)

dEv

dt
� βv

B

K + B
􏼒 􏼓Sv − μv + αv( 􏼁Ev, (8)

dIv

dt
� αvEv − μvIv, (9)

dB

dt
� ηfIf − μbB, (10)

with initial conditions

Sf(0)> 0, Ef > 0, If(0)> 0, Rf(0)> 0, Sv(0)> 0,

Ev(0)> 0, Iv(0)> 0, B(0)> 0.
(11)

3. Basic Properties of the Model

*e model (3)–(10) monitors the dynamics of red foxes and
voles populations, and all its associated parameters are as-
sumed nonnegative. Hence, we now present the basic results
for the properties of the model.

Theorem 1. +e following region is positively invariant for the
model (3): Ω � Ωf ×Ωv ×Ωb ⊂ R4

+ × R3
+ × R+, where Ωf �

􏼈(Sf, Ef, If, Rf) ⊂ R4
+ : Sf + Ef + If + Rf � N∗f􏼉, Ωv �

􏼈(Sv, Ev, Iv) ⊂ R3
+ : Sv + Ev + Iv � N∗v 􏼉 and Ωb � 􏼈B ⊂ R+ :

B≤ (ηfN∗f/μb)􏼉.

Proof. *e detailed proof of *eorem 1 is presented in
Appendix A. □

Equations (A.14)–(A.18) establish the boundedness of
total populations for red foxes, voles, and concentration of
parasites, respectively, and by extension verifies the
boundedness of subpopulations. *us, regionΩ is positively
invariant. Hence, in this region, the model (3)–(10) is
considered to be mathematically and epidemiologically well
posed, and therefore, the dynamics of the model can be
studied in Ω.

4. Existence and Stability of Equilibria

4.1. Disease-Free Equilibrium (DFE). *e DFE of the model
is obtained by equating the right-hand sides of model
equations (3)–(10) to zero as follows:

E0 � S
0
f, E

0
f, I

0
f, R

0
f, S

0
v, E

0
v, I

0
v, B

0
􏼐 􏼑

� N
∗
f, 0, 0, 0, N

∗
v , 0, 0, 0􏼐 􏼑.

(12)

4.2. Calculation of Control Reproduction Number. *e basic
reproduction number in epidemic models is an important
threshold value that quantifies the infection risk in order to
effectively control the disease. Furthermore, it plays a vital
role in stability analysis of equilibria of the models. It can be
derived using the next-generation matrix approach [19].
However, when there is intervention, it is referred as the
control reproduction number. For detailed computation of
the control reproduction number, refer Appendix B.
*erefore, the basic control reproduction number, denoted
by Rc, is given by the following equation:

Rc � ρ FV
−1

􏼐 􏼑 �
N∗fspαf

αfξf

⎛⎝ ⎞⎠
N∗vβvαv

μvαv

􏼠 􏼡
ηf

Kμb

􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦

1/3

.

(13)

It is worth stating that Rc is the basic control re-
production number, which represents the number of sec-
ondary infection cases generated by introducing at least one

Sv Ev

βv Sv
B

B + K

μv Evμv Sv

μv N∗

v αv Ev Iv

μv Iv

Rf

μf Rf

ξf  Ifμf  N∗

f spSf  Iv

μf  Sf μf  Ef μf  If

αf  EfSf Ef If

B μBB

ηf If

Figure 1: Flow diagram of the transmission dynamics of models (3)–(10).

Computational and Mathematical Methods in Medicine 3



infective agent into the population that is assumed wholly
susceptible. *is number is obtained from the contribution
of average number of secondary infections through fox-to-
environment-to-vole transmission (Rf

c � N∗fspαf/αfξf),
voles-to-fox transmission (Rv

c � N∗vβvαv/μvαv), and envi-
ronment-to-voles transmission (Rb

c � ηf/Kμb) as a result of
one infectious subject during its infectious period.

4.2.1. Stability of DFE

Theorem 2. +e disease-free equilibrium is locally asymp-
totically stable when Rc < 1 and unstable if Rc > 1.

Proof. *e local asymptotic stability of DFE is established
using *eorem 2 in [19]. □

*e epidemiological implication of the result in*eorem
2 is that the Echinococcus m. can be eliminated from the
populations when Rc < 1 if the initial sizes of sub-
populations are within the basin of attraction of the DFE. In
order to guarantee the total elimination of the disease
irrespective of the initial population started with in Ω, it is
necessary to prove the global asymptotic stability (in Ω) of
the DFE, which is shown below. Here, we use the matrix-
theoretic method as described in [20].

Theorem 3. +e DFE of the model (3)–(10) given by (12) is
globally asymptotically stable (GAS) in Ω when Rc < 1. If
Rc > 1, the DFE is unstable, the system is uniformly persistent,
and there exists at least one endemic equilibrium in the in-
terior of Ω.

Proof. Let F and V matrices be given as above. *e matrix
V−1F is computed to be

V
−1

F �

0 0 0 0
spN∗f

αf

0

0 0 0 0
αfspN∗f

αfξf

0

0 0 0 0
ξfαfspN∗f

αfξfμf

0

0 0 0 0 0
βvN∗v
αvK

0 0 0 0 0
αvβvN∗v
αvμvK

0
ηf

μb

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Observe that the matrix V−1F is reducible (second, fifth,
and sixth columns are the nonzero columns); hence, *e-
orem 2.2 of [20] is not applicable, and instead we use
the conditions of *eorem 2.1 in [20] to construct the

Lyapunov function. Define X � (Ef, If, Rf, Ev, Iv, B)T and
Y � (Sf, Sv) so that the dynamics of infected compartments
can be expressed as follows:

dX

dt
� (F−V)X−f(X, Y), (15)

where

f(X, Y) �

spIv S0f − Sf􏼐 􏼑

0

0

βvB

K(K + B)
S
0
vK + S

0
v − Sv􏼐 􏼑K􏼐 􏼑

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, (16)

since S0f ≥ Sf and S0v ≥ Sv inside Ω.
We define the Lyapunov function as L � uTV−1X, where

u is the left eigenvector of the matrix V−1F with respect to
the eigenvalue Rc. *us,

u1, u2, u3, u4, u5, u6( 􏼁V
−1

F � Rc u1, u2, u3, u4, u5, u6( 􏼁.

(17)

Multiplying and equating (17), we have

⎛⎝0,
u6ηf

μb

, 0, 0,
u1spN∗f

αf

+
u2αfspN∗f

αfξf

+
u3αfspN∗fξf

αfξfμf

,

u4βvN∗v
αvK

+
u5αvβvN∗v
αvμvK

⎞⎠ � Rc u1, u2, u3, u4, u5, u6( 􏼁.

(18)

Clearly, it can be seen that u1 � 0, u3 � 0, and u4 � 0,
and we can deduce that

u2αfspN∗f

αfξf

� Rcu5,

u5αvβvN∗v
αvμvK

� Rcu6,

u6ηf

μb

� Rcu2.

(19)

If we take u6 � 1, one solution of u is as follows:

u1, u2, u3, u4, u5, u6( 􏼁

� 0,
u5Rcαfξf

αfspN∗f
, 0, 0,

RcαvKμv

αvβvN∗v
, 1⎛⎝ ⎞⎠.

(20)
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*e Lyapunov function L is now given as

L � u1, u2, u3, u4, u5, u6( 􏼁V
−1

Ef, If, Rf, Ev, Iv, B􏼐 􏼑
T

�
u5Rc

spN∗f
Ef +

u5Rcαf

αfspN∗f
If +

RcK

βvN∗v
Ev +

RcαvK

αvβvN∗v
Iv +

1
μb

B⎛⎝ ⎞⎠≥ 0.

(21)

Differentiating L along the solutions of infected com-
partments in (3)–(10) gives

dL

dt
�

RcKBSv

(K + B)N∗v
+

u5RcIvSf

N∗f
−

u5RcαfξfIf

αfspN∗f

−
RcαvKμvIv

αvβvN∗v
+
ηfIf

μb

−B.

(22)

Using (13) and (21), simplifying and rearranging, we
have

dL

dt
� Rc − 1( 􏼁

u5RcαfξfIf

αfspN∗f
+
RcαvKμvIv

αvβvN∗v
+ B⎛⎝ ⎞⎠

+ RcB
K

K + B

Sv

N∗v
− 1􏼠 􏼡 +

R2
cαvKμvIv

αvβvN∗v

Sf

N∗f
− 1⎛⎝ ⎞⎠.

(23)

From (23), (K/(K + B))< 1 and (Sv/N∗v )≤ 1, and then
(K/(K + B))(Sv/N∗v )< 1 and (Sf/N∗f)≤ 1. *erefore, if
Rc < 1, it implies that (dL/dt)≤ 0. Furthermore, (dL/dt) � 0
implies either Ef � 0, If � 0, Rf � 0, Ev � 0, If � 0, or
B � 0. *us, the largest invariant set where (dL/dt) � 0 is
the singleton (E0). *erefore, by LaSalle’s invariance
principle [21], E0 is GAS in Ω if Rc < 1. Furthermore, if
Rc > 1 in (23), the first term is positive, while the second
and third terms will be zero in Ω when Iv � B � 0;
therefore, (dL/dt)> 0, and hence, E0 is unstable. Using the
argument in *eorem 2.2 of Shuai and van den Driessche
[20], it can be shown that the instability of E0 whenRc > 1
implies that the system is uniformly persistent in Ω, thus
implying the existence of at least one positive endemic
equilibrium. □

4.3. Existence and Global Stability of Endemic Equilibrium.
*e existence of endemic equilibrium follows from the
argument in *eorem 3. In the presence of disease in the
community, the endemic equilibrium E1 is obtained by
setting the right-hand sides of equations (3)–(10) to zero,
and thus,

E1 � S
∗
f, E
∗
f, I
∗
f, R
∗
f, S
∗
v , E
∗
v , I
∗
v , B
∗

􏼐 􏼑, (24)

where

S
∗
f �

μfN∗f

spI∗v + μf

,

E
∗
f �

spI∗v S∗f

αf

,

I
∗
f �

αfE∗f

ξf

,

R
∗
f �

ξfI∗f

μf

,

S
∗
v �

μvN∗v
βvB∗/ κ + B∗( )( 􏼁 + μv

,

E
∗
v � βv

B∗

κ + B∗
S∗v
αv

,

I
∗
v �

αvE∗v
μv

,

B
∗

�
ηfI∗f

μb

.

(25)

Theorem 4. If Rc > 1, then the unique endemic equilib-
rium E1 of model (3)–(10) is globally asymptotically stable
(GAS) in Ω.

Proof. To prove the uniqueness and global stability of E1,
we apply the method of graph-theoretic as described in
Section 3 of [20]. Detailed proof of the theorem is also given
in Appendix C. □

5. Numerics: Elasticity Indices, Numerical
Simulations, and Control Strategies

In this section, we use the parameter values in Table 1 with
the aim of illustrating the theoretical results and quantifying
the control measures for Echinococcus multilocularis.

5.1. Elasticity Indices. As evident from the expression of
basic control reproduction number, Rc1 in (13), it is in-
teresting to know qualitatively and estimate quantitatively
how perturbations of associated parameters have influence
onRc. In order to achieve this, we determine the normalized
forward sensitivity index as introduced in Chitnis et al. [22],
otherwise called elasticity indices [23] of parameters on Rc.
*is quantity Υ for Rc with respect to a parameter p is
defined as follows:

ΥRc

p �
zRc

zp
×

p

Rc

. (26)
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In Table 2, we compute the elasticity indices of Rc with
respect to the parameters at static baseline values as in-
dicated in Table 1 and arranged in the descending order of
magnitudes. *e computations indicate equal influence of
six parameters associated with incidences for transmission
of the parasites (βv, s, p, ηf), disinfection rate (μb), and
concentration of Echinococcus in the environment (K). Most
importantly, treatment of red foxes (ξf) has the second
largest value followed by incubation rates of voles and foxes
in that order.

5.2. Global Sensitivity Analysis. From our result in Section
5.1, it is obvious that the local sensitivity analysis on Rc

could not explicitly differentiate the most influential pa-
rameters and thus the need for global sensitivity analysis. We
adapt the approach in [24] to analyze the global sensitivity of
the parameters on both Rc and cumulative new cases in
rodents and red foxes, respectively. Using the method of
partial rank correlation coefficients (PRCC), as described
and implemented in [25], we carry out the global sensitivity
analysis of 9 parameters on the control reproduction
number Rc and cumulative new infections in the pop-
ulations of both red foxes and rodents. *e main objective is
to determine the most influential parameters for the purpose
of control and extent of infectivity in the two populations. To
compute the PRCC values, we used the MatLab R2017b with
ranges of parameters in Table 2 divided into 1000 sample
sizes, and the results are displayed in Figure 2.*e parameter
with the PRCC value far away from zero indicates the more
influential parameter is on both Rc and cumulative new
cases.

In Figure 2(a), the global sensitivity of parameters onRc

is depicted. It can be seen that the rates of cleaning/dis-
infecting the environment (μb) and rate of treating red foxes
(ξf) have the most global influence on Rc, followed by rate
of red foxes contribution of E. multilocularis to the envi-
ronment (ηf). *e global sensitivity of parameters on the
cumulative number of new cases for red foxes is also dis-
played in Figure 2(b) which indicates that the incubation
rate in red foxes (αf) has the highest global influence, fol-
lowed by the rate of searching efficiency of red foxes (s) and

probability that an infected vole preyed on infects a red fox
(p) in that order. Lastly, in Figure 2(c), the global sensitivity
of parameters on cumulative new infection cases in rodents
indicates that the transmission rate from environment to
rodents (βv) is the most global influential parameter, fol-
lowed by the incubation rate in rodents (αv). From the global
sensitivity analysis, for control purposes, it can be suggested
that more emphasis should be given to cleaning/disinfecting
the environment, for example, by removing carcass and
administering praziquantel to red foxes.

5.3. Numerical Simulations. Figure 3 depicts the global
stability of disease-free equilibrium as proved in *eorem 3
with different initial conditions, where the numbers of foxes,
voles, and concentration of E. multilocularis converges as-
ymptotically to the equilibrium point using different initial
conditions. *e parameter values in Table 1 are used so
that the control reproduction number Rc � 0.97< 1. It
can be seen that all disease compartments (E∗f, I∗f, R∗f,

E∗v , I∗v , andB∗) converge asymptotically to zero while the
noninfected compartments (S∗f and S∗v ) converge to their
respective total populations.

In Figure 4, the time evolution for number of red foxes,
voles, and the concentration of Echinococcus multilocularis
for model (3)–(10) is illustrated using the parameter values
in Table 1, except for ηf � 0.2 depicting GAS of endemic
equilibrium as proved in *eorem 4. It can be observed that
populations of foxes, voles, and concentration of parasite
converge asymptotically to their respective endemic equi-
librium points irrespective of the initial population started
with. Here, the control reproduction numberRc � 1.94> 1.
Hence, the disease will persist in the community.

5.4. Effects of Control Strategies on Rc. In this section, the
effects of treating red foxes (ξf) and the cleaning or dis-
infecting the environment (μb) are going to be explored. So
here it will be interesting to see how values of infectious red
foxes and/or the Rc will change as these parameters are
varied when other parameters are fixed at the baseline
values.

Table 1: Description of model parameters, indicating baselines, ranges, and references.

Parameter Description Baseline value Value range with time unit 1 day
μv Vole per-capita birth rate� death rate 1/(30 × 6) 5−7 months [3]
ξf Rate of treatment for red fox 0.01 Assumed
βv Transmission rate from environment to voles 0.004 Assumed
s Searching efficiency of red fox 0.00002 Assumed
μf Red fox per-capita birth rate� death rate 1/(365 × 3.5) 2−5 years [3]

p
Probability that an infected vole preyed on infects

a red fox 0.07 [5]

αv Incubation rate in voles 1/28 25−31 days [15]
αf Incubation rate in red fox 1/75 60−90 days [15]
μb Rate of cleaning/disinfection of environment 1/31 Assumed

ηf

Rate of red fox contribution of E. multilocularis to
environment 0.02 Assumed

K Concentration of E. multilocularis in the feaces that
yields 50% chance of catching Echinococcus 52 Assumed
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*e effect of treatment-only on red foxes is illustrated in
Figure 5(a) using the baseline parameter values in Table 1
except for μb � 0. *e value of ξf is varied from
ξf � 0.01/102 to ξf � 0.01; as a result, the number of in-
fectious red foxes is reduced from 126 to 19, respectively, as
displayed by the graphs. Similarly, the effect of controlling
the red foxes by cleaning and/or disinfecting environment-
only is shown in Figure 5(b) with fixed parameter values
except ξf � 0, and the value of μb varied from
μb � (1/31)/102 to μb � (1/31). It can be seen that the cu-
mulative number of infectious red foxes decrease from 134
with Rc � 10.01 to 8, Rc � 2.16, respectively. It is evident
that the implementation of either of the two control

strategies may not be adequate in eradicating the parasite
completely from the community. *erefore, when the
control strategies are administered simultaneously, as
depicted in Figure 5(c), the cumulative number of infectious
red foxes decreases from 125 with Rc � 9.60 to 0, with
Rc � 0.80, respectively. Hence, combining the two control
strategies is more effectively followed by environmental
cleaning/disinfection and treatment of red foxes. *e later
results agree with our elasticity indices in Section 5.1 for the
two parameters (ξf and μb).

Given that ξf and μb are the control parameters in the
model, it is important to see how Rc varies as the two
parameters are varied with others fixed using contour plots.

Table 2: Elasticity indices of Rc relative to model parameters and ranges.

Parameter Formula ((zRc/zp)(p/Rc)) Baseline value Range Elasticity index

βv 1/3 0.004 0.00040−0.008 0.33333
s −(1/3) 0.00002 (2 × 10−6)−(4 × 10−5) −0.33333
μb −(1/3) 1/31 (1/62)−(1/3.1) −0.33333
ηf 1/3 0.02 0.002−0.04 0.33333
p −(1/3) 0.07 0.007, 0.14 −0.33333
K −(1/3) 52 26−78 −0.33333
ξf −(1/3)(ξf/(μf + ξf)) 0.01 0.001−0.02 −0.30913
αv (1/3)(μv/(μv + αv)) 1/28 (1/56)−(1/2.8) 0.044872
αf (1/3)(μf/(μf + αf)) 1/75 (1/75 × 2)−(1/7.5) 0.018484
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Figure 2: Global sensitivity analysis displaying the partial rank correlation coefficients (PRCC) of (a) control reproduction number Rc,
(b) cumulative new cases in red foxes, and (c) cumulative new cases in voles populations.
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*e objective is to estimate values of ξf and μb that will ensure
disease eradication (making Rc < 1) as stated in *eorem 2.
*e results are displayed as contour curves ofRc as a function
of treatment on red foxes (ξf) and cleaning/disinfection of
environment (μb) at fixed baseline values in Figure 6(a). *e
least values of ξf and μb that will ensure parasites eradication
are estimated to be 0.025 and 0.01 so thatRc � 0.99 or 0.005
and 0.05 withRc � 0.95, respectively. Furthermore, to access
the impact of combined treatment and reduced contribution
of parasite to environment by red foxes, contour plots of Rc

as function of the control strategies with varying rate of
contribution by red foxes to the environment (ηf) are dis-
played in Figures 6(b)–6(d). *e figures show remarkable
increase in the associated control reproduction number with
increase in rate of contribution of parasites to environment by
red foxes. In Figure 6(b), low control strategies are needed if
the rate of contribution (ηf � 0.001) is very small to ensure
almost total eradication of the parasites, with range of
Rc ∈ [0.17, 1.17] and mean � 0.67. In Figure 6(c), with high
contribution rate (ηf � 0.2), the control strategies must also
be high to lower the value of Rc ∈ [0.99, 6.84] with
mean � 3.92. However, when the rate of contribution
(ηf � 0.1) is moderate, in Figure 6(b), the control strategies
must be in reciprocal combinations (low treatment rate versus
high disinfection rate and vice versa) putting the range of
Rc ∈ [0.79, 5.43] with mean � 3.11.

6. Concluding Remarks

A new global deterministic model for the transmission of
Echinococcus multilocularis in the population of red foxes and
voles with environment as a source of infection is formulated
and used to access the impact of control strategies on the
disease dynamics. Moreover, sensitivity analysis is carried out
to determine the parameters that have influence on the control
reproduction number and cumulative new infectious cases of
red foxes and rodents. We start by investigating the basic
properties of the model to ascertain its worthiness mathe-
matically and epidemiologically. *e major findings of the
study are outlined as follows:

(1) *e disease-free equilibrium of the model is obtained
and used to systematically determine the basic
control reproduction number (Rc). Furthermore,
using a matrix-theoretic method, the DFE is globally
asymptotically stable wheneverRc is less than unity.
*e implication of this result is that infection of the
parasite can be control in the community if Rc can
be reduced and maintain below unity.

(2) When the control reproduction number exceeds
unity, a unique endemic equilibrium exists, and
using a graph-theoretic method, it is shown to be
globally asymptotically stable if Rc is greater than
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Figure 3: Time evolution of (a) red foxes, (b) voles, and (c) concentration of E. multilocularis using different initial conditions when there is
no infection with parameter values in Table 1, which gives the control reproduction number Rc � 0.97.
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Figure 4: Time evolution of (a) red foxes, (b) voles, and (c) concentration of E. multilocularis with different initial conditions when there is
infection using parameter values in Table 1, except for ξf � 0.2 with control reproduction number Rc � 1.94.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (days)

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e n

ew
 ca

se
s

Effect of treatment on foxes

ξf = 0.01/102

ξf = 0.01/10
ξf = 0.01/5
ξf = 0.01

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (days)

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e n

ew
 ca

se
s

Effect of cleaning environment

μb = (1/31)/102

μb = (1/31)/10
μb = (1/31)/5
μb = 1/31

(b)

Figure 5: Continued.
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unity. Hence, the infection will persist in the com-
munity when the control strategies fail to reduceRc

below unity.

(3) Elasticity indices of Rc on key parameters are
computed, and the results indicate equal influence of
six parameters associated with incidence for
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Figure 6: Contour curves of Rc as a function of ξf and μb using three different rates of red foxes contribution to environment (ηf), with
(a) parameter values in Table 1, in (b) ηf � 0.001, (c) ηf � 0.10, and (d) ηf � 0.20.
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Figure 5: Numerical simulations displaying effects of control strategies on the cumulative number of infectious red foxes, using parameter
values in Table 1 with varying values of μb and ξf, except in (a) effect of treating red foxes only (μb � 0), (b) effect of environmental cleaning
only (ξf � 0), and (c) effect of combining controls.
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transmission of the disease (βv, s, p, and ηf), clean-
ing/disinfection (μb), and concentration of parasite
in the environment (K), followed by rate of treatment
on foxes (ξf) and incubation rates of voles (αv) and
foxes (αf) in that order.

(4) Having noticed that the local sensitivity analysis on
Rc could not differentiate explicitly the most in-
fluential parameter(s) of the model, a global sen-
sitivity using PRCC is conducted. From the
simulations, the two control parameters: rate of
cleaning/disinfecting the environment (μb) and rate
of treating red foxes have the most global influence
onRc, followed by rate of red foxes contribution of
E. multilocularis to the environment (ηf). *e
global sensitivity of parameters on the cumulative
number of new cases for red foxes indicates that the
incubation rate in red foxes (αf) has the highest
global influence, followed by rate of searching ef-
ficiency of red foxes (s) and probability that an
infected vole preyed on infects a red fox (p) in that
order. On the contrary, the global sensitivity of
parameters on cumulative new infection cases in
rodents shows that the transmission rate from
environment to rodents (βv) is the most global
influential parameter, followed by incubation rate
in rodents (αv).

(5) Numerical simulations with baseline values and
varying ξf and μb, have indicated that administering
disinfection of environment only induce more
positive control impact (leaving only 8 infected red
foxes) compared to applying treatment only on red
foxes (leaving about 19 infected red foxes). However,
administering the two control strategies induce the
most positive impact by treating all the infected red
foxes.

(6) Contour curves are used to estimate the least values
of two control parameters that will ensure disease
eradication, i.e., the value of Rc to be reduced and
kept below unity with baseline values of other pa-
rameters fixed. *ese values of ξf and μb are esti-
mated at 0.025 and 0.01 so that Rc � 0.99 or 0.005
and 0.05 with Rc � 0.95, respectively. Moreover,
contour plots of Rc as function of the control
strategies with the varying rate of contribution by red

foxes to the environment (ηf) are computed. *e
results show remarkable increase in the associated
control reproduction number with increase in rate of
contribution of parasites to environment by red
foxes.

It is worth remarking that amongst the seven most in-
fluential parameters globally (βv, s, μb, ηf, ξf, p, and αv), five
are associated directly with the red foxes, and this justifies
our choice of treatment on the population.*is also explains
the high prevalence of the disease on red foxes as reported in
literature.

Appendix

A. Proof of Theorem 1

A.1. Existence and Uniqueness of Solutions. Let X � (Sf,

Ef, If, Rf, Sv, Ev, Iv, B)T be a column vector in R8
+ so that

x1 � Sf, x2 � Ef, x3 � If, . . . , x8 � B. Define f(X) �

(f1(X), f2(X), . . . , f8(X))T to be the vector valued func-
tion in R8

+, where f1(X), f2(X), . . . , f8(X) are the right-
hand sides of model (3)–(10). *e model system with initial
conditions can therefore be expressed as follows:

dX
dt

� f(X), X(0) � X0, whereX: [0,∞)⟶ R
8
+,

f: R
8
+⟶ R

8
+.

(A.1)

*erefore, using a standard theorem of the dynamical
system [26], f is the Lipschitz continuous in X. Hence, there
exist a unique solution of (3)–(10) for all times t> 0.

A.2. Positivity of Solutions. Here, we prove that any solution
with the nonnegative initial condition that start in R8

+ will
remain there (i.e., it is positive at all times t> 0).

Let (Sf(t), Ef(t), If(t), Rf(t), Sv(t), Ev(t), Iv(t), B(t))

be any solution of model (3)–(10) with initial conditions
(11).

Consider equation (1):
dSf

dt
≥− spIv + μf􏼐 􏼑Sf, (A.2)

and using the variable separable method, we have
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Figure 7: Weighted digraph (G, A) constructed for models (3)–(10).
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Sf(t)≥ Sf(0) exp −􏽚
​ t

0
spIv + μf􏼐 􏼑du􏼨 􏼩. (A.3)

From (A.3), it can be seen that

Sf(t)> 0. (A.4)

From (7),
dSv

dt
≥− βv

B

K + B
􏼒 􏼓 + μv􏼒 􏼓Sv, (A.5)

so that using the same method as above, we get

Sv(t)≥ Sv(0) exp −􏽚
​ t

0
βv

B

K + B
􏼒 􏼓 + μv􏼒 􏼓du􏼨 􏼩. (A.6)

Hence,

Sv(t)> 0. (A.7)

For the positivity of other variables, we proceed by the
method of contradiction as follows: Suppose by contra-
diction that the conclusion is not true, then there exists
a time t such that

min Ef(t), If(t), Rf(t), Ev(t), Iv(t), B(t)􏽮 􏽯 � 0,

min Ef(t), If(t), Rf(t), Ev(t), Iv(t), B(t)􏽮 􏽯> 0,

for all t ∈ [0, t ].

(A.8)

Suppose min Ef(t), If(t), Rf(t), Ev(t), Iv(t), B(t)􏽮 􏽯 �

Ef(t) � 0, then from (4), we have
dEf(t)

dt
≥− μf + αf􏼐 􏼑Ef(t), for all t ∈ [0, t ], (A.9)

so that

Ef(t)≥Ef(0) exp −􏽚​
t

0
μf + αf􏼐 􏼑ds􏼠 􏼡> 0, (A.10)

which contradicts our earlier assumption. Hence, no such t

exists. *erefore, Ef(t)> 0 for all t> 0. Suppose also that
min Ef(t), If(t), Rf(t), Ev(t), Iv(t), B(t)􏽮 􏽯 � If(t) � 0,
from (5), it implies

dIf(t)

dt
≥− μf + ξf􏼐 􏼑If(t), for any t ∈ [0, t ]. (A.11)

Hence,

If(t)> If(0) exp −􏽚​
t

0
μf + ξf􏼐 􏼑ds􏼠 􏼡> 0, (A.12)

which leads to contradiction. *erefore, If(t)> 0 for all
t> 0.

Similar approaches can be followed to show that
Rf(t)> 0, Ev(t)> 0, Iv(t)> 0, and B(t)> 0 for all
t ∈ (0,∞). *is completes the proof. *erefore, all solutions
of the model (3)–(10) are nonnegative for all t> 0.

A.3. Boundedness of Solutions. Here, we prove that the so-
lutions are bounded. For the red foxes population, we add
equations (3)–(6), and thus,

dNf

dt
� μfN

∗
f − μf Sf + Ef + If + Rf􏼐 􏼑,

� μfN
∗
f − μfN

∗
f � 0.

(A.13)

Since (dNf/dt) � 0, this implies that

Nf(t) � N
∗
f, (A.14)

and hence bounded.
From the voles population, also adding equations (7)–

(9), we will get

dNv

dt
� μvN

∗
v − μv Sv + Ev + Iv( 􏼁Nv,

� μvN
∗
v − μvN

∗
v � 0.

(A.15)

Again, since (dNv/dt) � 0, this gives

Nv(t) � N
∗
v . (A.16)

and hence bounded above.
Lastly, for the concentration of Echinococcus, since

If(t)≤Nf(t)≤N∗f, from (10), we have

dB

dt
≤ ηfN

∗
f − μbB. (A.17)

Hence,

B(t)≤
ηfN∗f

μb

. (A.18)

B. Calculation of Control
Reproduction Number

Using the approach in [19], we define the matrix F as the
generation of secondary infectious cases and V as the matrix
of transition rates between the infected compartments. *e
infected compartments are listed in order for easy appli-
cation of the method as (Ef, If, Rf, Ev, Iv, B). Hence, F and
V are calculated as follows:
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F �

0 0 0 0 spN∗f 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
βvN∗v

K

0 0 0 0 0 0

0 ηf 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

αf 0 0 0 0 0

−αf ξf 0 0 0 0

0 ξf μf 0 0 0

0 0 0 αv 0 0

0 0 0 −αv μv 0

0 0 0 0 0 μb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B.1)

where αf � μf + αf, ξf � μf + ξf and αv � αv + μv.
*e inverse of V is obtained as follows:

V
−1

�

1
αf

0 0 0 0 0

αf

αfξf

1
ξf

0 0 0 0

αfξf

αfξfμf

1
μf

0 0 0

0 0 0
1
αv

0 0

0 0 0
αv

μvαv

1
μv

0

0 0 0 0 0
1
μb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.2)

and hence,

FV−1 �

0 0 0
spN∗fαv

αvμv

spN∗f

μv

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0
βvN∗v
μbK

0 0 0 0 0 0

ηfαf

αfξf

ηf

ξf

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.3)

*erefore, the basic control reproduction number,
denoted by Rc, is obtained by taking the spectral radius of
the FV−1 matrix, and thus,

Rc � ρ FV
−1

􏼐 􏼑 �
N∗fspαf

αfξf

⎛⎝ ⎞⎠
N∗vβvαv

μvαv

􏼠 􏼡
ηf

Kμb

􏼠 􏼡⎡⎢⎢⎣ ⎤⎥⎥⎦

1/3

.

(B.4)

C. Proof of Theorem 4

Proof. At equilibrium, equations of system (1) can be
expressed as follows:

μfN
∗
f � spI

∗
v S
∗
f + μfS

∗
f, (C.1)

αf �
spI∗v S∗f

E∗f
, (C.2)

ξf �
αfE∗f

I∗f
, (C.3)

μf �
ξfI∗f

R∗f
, (C.4)

μvN
∗
v � βv

B∗

κ + B∗
S
∗
v + μvS

∗
v, (C.5)

αv � βv

B∗

κ + B∗
S∗v
E∗v

, (C.6)

μv �
αvE∗v

I∗v
, (C.7)

μb �
ηfI∗f

B∗
. (C.8)
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Let

L1 � Sf − S
∗
f − S
∗
f ln

Sf

S∗f
,

L2 � Ef −E
∗
f −E
∗
f ln

Ef

E∗f
,

L3 � If − I
∗
f − I
∗
f ln

If

I∗f
,

L4 � Rf −R
∗
f −R
∗
f ln

Rf

R∗f
,

L5 � Sv − S
∗
v − S
∗
v ln

Sv

S∗v
,

L6 � Ev −E
∗
v −E
∗
v ln

Ev

E∗v
,

L7 � Iv − I
∗
v − I
∗
v ln

Iv

I∗v
,

L8 � B−B
∗ −B
∗ ln

B

B∗
.

(C.9)

Differentiating Li for i � 1, 2, . . . , 8 along solutions of
system (3)–(10) and using the inequality 1−y + lny≤ 0 for
y> 0 with equality only if y � 0, we have

L1′ � 1−
S∗f

Sf

􏼠 􏼡Sf
′

� 1−
S∗f

Sf

􏼠 􏼡 μfN
∗
f − spIvSf − μfSf􏼐 􏼑

� 1−
S∗f

Sf

􏼠 􏼡 spI
∗
v S
∗
f + μfS

∗
f − spIvSf − μfSf􏼐 􏼑,

from (C.1)

� spI
∗
v S
∗
f 1−

S∗f

Sf

􏼠 􏼡 1−
IvSf

I∗v S∗f

⎛⎝ ⎞⎠

+ μfS
∗
f 1−

S∗f

Sf

􏼠 􏼡 1−
Sf

S∗f

⎛⎝ ⎞⎠

� spI
∗
v S
∗
f 1−

IvSf

I∗v S∗f
−

S∗f

Sf

+
Iv

I∗v

⎛⎝ ⎞⎠ + μfS
∗
f 1−

Sf

S∗f
−

S∗f

Sf

+ 1⎛⎝ ⎞⎠

� spI
∗
v S
∗
f ln

S∗f

Sf

􏼠 􏼡−
S∗f

Sf

+
Iv

I∗v
− ln

Iv

I∗v
􏼠 􏼡􏼢 􏼣

+ μfS
∗
f 2−

Sf

S∗f
−

S∗f

Sf

⎛⎝ ⎞⎠

≤ spI
∗
v S
∗
f ln

S∗f

Sf

􏼠 􏼡−
S∗f

Sf

+
Iv

I∗v
− ln

Iv

I∗v
􏼠 􏼡􏼢 􏼣

:� a71G71, where a71 � spI
∗
v S
∗
f,

L2′ � 1−
E∗f

Ef

􏼠 􏼡Ef
′

� 1−
E∗f

Ef

􏼠 􏼡 spIvSf − αfEf􏼐 􏼑

� 1−
E∗f

Ef

􏼠 􏼡 spIvSf −
spI∗v S∗fEf

E∗f

⎛⎝ ⎞⎠,

from (C.2)

� spI
∗
v S
∗
f

IvSf

I∗v S∗f
−

Ef

E∗f
−

IvSfE∗f

I∗v S∗fEf

+ 1⎛⎝ ⎞⎠

≤ spI
∗
v S
∗
f

IvSf

I∗v S∗f
− ln

IvSf

I∗v S∗f

⎛⎝ ⎞⎠−
Ef

E∗f
+ ln

Ef

E∗f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ spI
∗
v S
∗
f

IvSf

I∗v S∗f
− ln

IvSf

I∗v S∗f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + spI
∗
v S
∗
f −

Ef

E∗f
+ ln

Ef

E∗f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

:� a21G21 + a27G27, where a21 � a27 � spI
∗
v S
∗
f,

L3′ � 1−
I∗f

If

􏼠 􏼡If
′ � 1−

I∗f

If

􏼠 􏼡 αfEf − ξfIf􏼐 􏼑

� 1−
I∗f

If

􏼠 􏼡 αfEf −
αfE∗fIf

I∗f

⎛⎝ ⎞⎠,

from (C.3)

� αfEf −
αfE∗fIf

I∗f
−
αfEfI∗f

If

+ αfE
∗
f

� αfE
∗
f

Ef

E∗f
−

If

I∗f
−

I∗fEf

IfE∗f
+ 1⎛⎝ ⎞⎠

� αfE
∗
f

Ef

E∗f
− ln

Ef

E∗f

⎛⎝ ⎞⎠−
If

I∗f
+ ln

If

I∗f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

:� a32G32, where a32 � αfE
∗
f,

L4′ � 1−
R∗f

Rf

􏼠 􏼡Rf
′ � 1−

R∗f

Rf

􏼠 􏼡 ξfIf − μfRf􏼐 􏼑

� 1−
R∗f

Rf

􏼠 􏼡 ξfIf −
ξfI∗fRf

R∗f

⎛⎝ ⎞⎠,

from (C.4)
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� ξfIf −
ξfI∗fRf

R∗f
−
ξfIfR∗f

Rf

+ ξfI
∗
f

� ξfI
∗
f

If

I∗f
−

Rf

R∗f
−

R∗fIf

RfI∗f
+ 1⎛⎝ ⎞⎠

≤ ξfI
∗
f

If

I∗f
− ln

If

I∗f

⎛⎝ ⎞⎠−
Rf

R∗f
+ ln

Rf

R∗f

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

:� a43G43, where a43 � ξfI
∗
f,

L5′ � 1−
S∗v
SV

􏼠 􏼡Sv
′ � 1−

S∗v
SV

􏼠 􏼡 μvN
∗
v − βv

B

K + B
􏼒 􏼓Sv − μvSv􏼒 􏼓

� 1−
S∗v
Sv

􏼠 􏼡 βv

B∗

K + B∗
S
∗
v + μvS

∗
v − βv

B

K + B
Sv − μvSv􏼠 􏼡,

from (C.5)

� 1−
S∗v
Sv

􏼠 􏼡 βv

B∗

K + B∗
S
∗
v − βv

B

K + B
Sv􏼠 􏼡

+ 1−
S∗v
Sv

􏼠 􏼡 μvS
∗
v − μvSv( 􏼁

�
βvB∗S∗v
K + B∗

1−
S∗v
Sv

􏼠 􏼡 1−
BSv

K + B

B∗S∗v
K + B∗

􏼠 􏼡

+ μvS
∗
v 1−

S∗v
Sv

􏼠 􏼡 1−
Sv

S∗v
􏼠 􏼡

�
βvB∗S∗v
K + B∗

1−
BSvB∗S∗v

(K + B) K + B∗( )
−

S∗v
Sv

+
B K + B∗( )

B∗(K + B)
􏼠 􏼡

+ μvS
∗
v 1−

Sv

S∗v
−

S∗v
Sv

+ 1􏼠 􏼡

≤
βvB∗S∗v
K + B∗

B K + B∗( )

B∗(K + B)
− ln

B K + B∗( )

B∗(K + B)
􏼠 􏼡−

S∗v
Sv

+ ln
S∗v
Sv

􏼠 􏼡􏼢 􏼣

:� a58G58, where a58 �
βvB∗S∗v
K + B∗

,

L6′ � 1−
E∗v
EV

􏼠 􏼡Ev
′ � βv

B

K + B
􏼒 􏼓Sv − αvEv􏼒 􏼓

� 1−
E∗v
Ev

􏼠 􏼡
βvBSv

K + B
−

βvB∗S∗v Ev

K + B∗( )E∗v
􏼠 􏼡,

from (C.6)

�
βvBSv

(K + B)
−

βvB∗S∗v Ev

K + B∗( )E∗v
−

βvBSvE∗v
(K + B)Ev

+
βvB∗S∗v
K + B∗( )

�
βvB∗S∗v
K + B∗

BSv K + B∗( )

(K + B)B∗S∗v
−

Ev

E∗v
−

BSvE∗v K + B∗( )

B∗S∗v Ev(K + B)
+ 1􏼢 􏼣

≤
βvB∗S∗v
K + B∗

BSv K + B∗( )

B∗S∗v (K + B)
− ln

BSv K + B∗( )

B∗S∗v (K + B)
􏼠 􏼡−

Ev

E∗v
+ ln

Ev

E∗v
􏼠 􏼡􏼢 􏼣

:� a68G68 + a65G65, where a65 � a68 �
βvB∗S∗v
K + B∗

,

L7′ � 1−
I∗v
Iv

􏼠 􏼡Iv
′ � 1−

I∗v
Iv

􏼠 􏼡 αvEv − μvIv( 􏼁

� 1−
I∗v
Iv

􏼠 􏼡 αvEv −
αvE∗v Iv

I∗v
􏼠 􏼡,

from (C.7)

� αvEv −
αvE∗v Iv

I∗v
−
αvEvI∗v

Iv

+ αvE
∗
v

� αvE
∗
v

Ev

E∗v
+

Iv

I∗v
−

I∗v Ev

IvE∗v
+ 1􏼠 􏼡

≤ αvE
∗
v

Ev

E∗v
− ln

Ev

E∗v
􏼠 􏼡−

Iv

I∗v
+ ln

Iv

I∗v
􏼠 􏼡􏼢 􏼣

:� a76G76, where a76 � αvE
∗
v,

L8′ � 1−
B∗

B
􏼠 􏼡B′ � 1−

B∗

B
􏼠 􏼡 ηfIf − μbB􏼐 􏼑

� 1−
B∗

B
􏼠 􏼡 ηfIf −

ηfI∗fB

B∗
􏼠 􏼡,

from (C.8)

� ηfIf −
ηfI∗fB

B∗
−
ηfIfB∗

B
+ ηfI

∗
f

� ηfI
∗
f

If

I∗f
−

B

B∗
−

IfB∗

I∗fB
+ 1⎛⎝ ⎞⎠

≤ ηfI
∗
f

If

I∗f
− ln

If

I∗f

⎛⎝ ⎞⎠−
B

B∗
+ ln

B

B∗
􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦

:� a83G83, where a83 � ηfI
∗
f. (C.10)

From the derivatives of Li for i � 1, 2, 3, . . . , 8, it can be
seen that all ai ≥ 0 and the digraph does not have any cycle, as
shown in Figure 7. Using the application of *eorems 3.3
and 3.5 of [20], ∃ci, 1≤ i≤ 8 so that L � 􏽐

8
i�1ciLi gives

a Lyapunov function for system (3)–(10), where ci’s can be
determined as follows:
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Since d−(5) � 1, c5a58 � c6a65⟹ c6 � (a65/a58)c5.
Given d+(6) � 1, c7a76 � c6a65 + c6a68⟹ c7 � ((a65

(a65 + a68))/a58a76).
From d+(1) � 1, c7a17 � c2a27⟹ c2 � (a17/a21)c7 �

((a65a71(a65 + a68))/a21a58a76).
From d−(7) � 1, c7a76 � c1a17 + c2a27 � c1a17+

c1a17 � 2c1a17

⟹ c1 �
a76

2a17
c7. (C.11)

*erefore,

c2 �
a76a65 a65 + a68( 􏼁

a58a76
c5. (C.12)

From d+(2) � 1,

c2a27 + c2a21 � c3a32⟹ c3 �
a27 + a21( 􏼁

a32

�
a76a65 a65 + a68( 􏼁

a58a76
c5

a27 + a21( 􏼁

a32
.

(C.13)

And when d−(8) � 1,

c8a83 � c5a58 + c6a68⟹ c8 �
a58 + a65/a58( 􏼁

a83
􏼠 􏼡c5.

(C.14)

It can easily be verified that {E∗} is the only invariant set
in the interior of Ω that can satisfy L′ � 0 and thus the
uniqueness of E∗. Using this Lyapunov function in com-
bination with LaSalle’s invariance principle [21] completes
the proof that E∗ is unique and globally asymptotically
stable in Ω if Rc > 1. □
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