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Abstract: The paper addresses the problem of fusing the measurements from multiple cameras
in order to estimate the position of fiducial markers. The objectives are to increase the precision
and to extend the working area of the system. The proposed fusion method employs an adaptive
Kalman algorithm which is used for calibrating the setup of cameras as well as for estimating the
pose of the marker. Special measures are taken in order to mitigate the effect of the measurement
noise. The proposed method is further tested in different scenarios using a Monte Carlo simulation,
whose qualitative precision results are determined and compared. The solution is designed for
specific positioning and alignment tasks in physics experiments, but also, has a degree of generality
that makes it suitable for a wider range of applications.

Keywords: critical infrastructures; positioning system; optical measurements; fiducial markers;
adaptive kalman; measurement fusion

1. Introduction

The evolution of technology has led to an increasing demand for solving complex problems
which may be viewed as attempts to control and direct system behaviours towards desired states.
The inherent complexity of problems and processes requires new approaches both in system modelling
and in defining the emergent interaction with a highly dynamical and sparsely defined environment.

Cognitive approaches are successfully used in contexts where the boundary between the systems
and the environment is fuzzy. However, they exhibit strong interrelation and interconnection,
assisted by specific perception mechanisms [1]. Advances in complex control applications can be
achieved only by considering adequate design approaches for sensory systems, especially in domains
like environmental applications [2], health [3], industrial control, agriculture, etc.

Although new technologies such as wireless sensor networks or Internet of Things (IoT) are
providing valuable solutions for appropriate perception mechanisms, complex issues are raised with
the inclusion of data fusion, reliability, flexibility, reconfigurability, and cost of the measurement system.
If some of these problems can be addressed during the modelling process, there are others (e.g., sensor
positioning and sensor dynamics) that have a bigger impact on the generality of the overall solution.
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These issues are specific in critical infrastructures, research institutes, power systems, e-health,
mining, and traffic control, where the multitude of concurrent dynamics generating a large amount
of information requires adequate solving methods that cover aspects such as relevance, efficiency,
and cost optimisation.

This paper follows the development of a measurement method used in a very precise and yet
flexible and portable positioning system. Firstly, the method is an answer to a specific application:
Automatic alignment with high precision of various instruments which have to be remotely operated
in highly flexible, open, and dynamic configurations for physics experiments. However, it can be used
in any application where high precision positioning over a large working area is required, where no
absolute reference can be defined, or when it is necessary to simultaneously align multiple features in
relative positions, with high reliability. Such applications include large scale construction sites where
multiple components need to be positioned in precise locations, manufacturing facilities where large
machines are assembled or spacecraft docking in zero gravity environments [4].

The article has the following structure. The specific application and context addressed in this
work are presented in Section 2. The theoretical context behind the proposed algorithm is described in
Section 3. It it then used to build two essential procedures for the positioning system. The precision of
the proposed method is assessed in the Section 4 using a Monte Carlo simulation. The conclusions and
future developments are detailed in Section 5.

2. Description of the Initial Problem

The large number of high repetition rate, ultrashort pulse, and high power laser facilities that will
come online all around the world will require state-of-the-art tools to allow the harnessing of their full
potential [5]. The high power lasers of the ELI-NP (Extreme Light Infrastructure-Nuclear Physics) user
facility will be employed for a wide range of research topics like studies of nuclear induced reactions,
dark matter search, material irradiation, or medical applications [6]. The development of the
experimental setups for studying these topics requires specific instrumentation, while also having
strict needs in terms of positioning and alignment, in order to ensure optimal experimental conditions.

As the setups are continuously changing, absolute position referencing is hard to achieve. This is
a necessity, as multiple instruments need to be precisely positioned relative to each other during the
experiment. Figure 1 displays an example of a setup for solid target alignment in which multiple optical
diagnostics are positioned using motorised manipulators that have 3 to 6 degrees of freedom (DOF).

Figure 1. Solid target alignment setup example where multiple instruments are positioned using
motorised manipulators.
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Apart from the precision requirements, additional ones should be taken into consideration.
The alignment should be done remotely because the experiments take place inside vacuum chambers
and behind concrete walls used for radiation shielding. Moreover, to take advantage of the high
repetition rate of the lasers and to maximise the beam-time available for the users, the positioning
has to be performed in a limited amount time. In a previous work [7], we addressed this series of
requirements and constraints by developing an automatic alignment system that is based on relative
position measurements using imaging cameras and compact and flat fiducial markers, due to space
and visibility constraints. The alignment algorithm was based on a real-time optimisation procedure
which is the subject of a patent [8].

Although the fiducial markers were initially developed and used in augmented reality
applications [9], due to their versatility in determining their position in a non-invasive manner
(by imaging them with a camera), they were quickly adopted for a different range of applications.
These include kinematic calibration and visual servoing for industrial robots [10,11], robot localisation
and navigation [12–14], SLAM (simultaneous localisation and mapping) [15–17] and sensor
fusion [18–20].

The motivation behind this work is to combine the measurements from multiple cameras
in order to increase the working area of the system and to maximise the positioning precision.
Simultaneously, the main focus is to present and test the precision of the proposed methods and
algorithm, comparing the results with those recorded while using only one camera [21].

3. Method

The basic approach behind the proposed method is to use multiple cameras in order to improve
the precision of estimating the pose of fiducial markers and to extend the working area of the system.
It begins with the assumption that each camera provides measurements that are erroneous and
noisy. The problem can be conceived through an analogy with the GPS system where distance
measurements from multiple satellites are used to estimate the position of the receiver module with
high precision. The key ingredient in the GPS system is to know very precisely the position of the
satellites. The proposed positioning system needs to meet the same requirement for its cameras,
but wasting too much effort on this task diminishes its practicality. Consequently it is only assumed
that the cameras have unknown but fixed positions.

A related approach that has similar objectives can be found in [22]. The main benefit of the
method is the possibility to calibrate the setup of cameras using a 3D feature with fiducial markers
having unknown configuration. However, it is not meant for estimating the pose of single markers.
In order to achieve this, additional methods are required.

Our method is developed using the ArUco fiducial markers [23,24]. The ArUco library detects
and estimates the pose of the marker with respect to the camera using the solvepnp algorithm in
which the pinhole camera model is data fitted using a Levenberg–Marquardt non-linear optimisation
procedure. The output is represented by the extrinsic camera parameters which can be expressed in
terms of a homogenous transformation TM

C (the transformation between the camera attached reference
frame and the marker attached one) detailed in [7].

3.1. Adaptive Kalman Fusion Algorithm for Multiple Cameras and Fiducial Markers

The method consists of fusing noisy measurements from multiple cameras, in order to improve
the precision of estimating the exact position of the fiducial marker. In the scientific literature,
multiple sensor fusion and noise filtering methods have been developed over the years. Among them
there is the Kalman filter [25], which is the most widely used. The noise effect is mitigated by using a
dynamical model for the physical process involved and a statistical model (covariance matrix) for the
noise in the measurement process.
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For a discrete linear state-space dynamical model in Equation (1), the Kalman filter estimates the
value of the state vector x using noisy measurements for the input u and the output y.{

xk = A · xk−1 + B · uk−1 + qk−1

yk = C · xk + rk
. (1)

In standard data fusion applications that use the Kalman filter, the pose of various objects is
estimated using the input from accelerometer, gyroscope, and magnetometer sensors [26,27] and the
output from distance measurement devices [28,29]. Our application makes impossible to use any
type of attached sensors and, hence, we only rely on the “non-invasive” pose measurement using the
solvepnp algorithm and imaging cameras.

Our approach is to employ a state-space model with free dynamics (where u is zero) and with
an identity state matrix (A). In this respect, each measurement is made using only one snapshot
image from all the cameras that are synchronised with the help of an electrical trigger signal. In this
way, the position of the fiducial marker during the measurement is considered fixed. On the same
set of images, the solvepnp algorithm is applied multiple times and, thus, the evolution of the
measurement is caused only by the noise and not by the movement of the fiducial marker. Furthermore,
the measurements are used to iteratively estimate the real position using the proposed algorithm.

In order to improve the results, we propose a procedure designed to update the statistical model
of the noise. The Q and R covariance matrices (which are discussed below) are continuously adjusted
using the newly acquired data. Any change of the noise behaviour and any existing correlations are
captured and thus, the effect of the noise is mitigated more efficiently. Consequently, the proposed
algorithm is an adaptive Kalman version.

The homogeneous transformation representation (TM
C ) has numerous practical benefits, especially

for pose composition and inversion operations, but it is not suitable in this circumstance because it is
redundant (16 numerical values for expressing a 6 DOF pose). The solution is to use an equivalent
representation which is composed of the set of translation coordinates (X, Y, and Z) and the set of
Euler angles (AX, AY, and AZ).

In this particular case, the structure of the state vector is the real pose of the fiducial marker defined
in Equation (2), where the subscript k denotes the present discrete-time sample of the state vector.

xk =



Xk
Yk
Zk

AXk
AYk
AZk


. (2)

The output vector is composed of the pose elements measured using all the cameras available.
The structure of the output vector is defined in Equation (3), where the superscript i is indicating the
index of the camera considered.

yk =



X1
k

Y1
k

Z1
k

AX1
k

AY1
k

AZ1
k

...





...

Xi
k

Yi
k

Zi
k

AXi
k

AYi
k

AZi
k

...



. (3)



Sensors 2020, 20, 2746 5 of 17

The discrete-time state-space model considered is defined in Equation (4), where I6 is the identity
matrix of rank 6, qk−1 is a random noise signal with normal distribution (white noise) that is quantifying
the false evolution induced by the noisy measurement, the H is the measurement model matrix defined
in Equation (5), and rk is the measurement noise also considered white noise.{

xk = I6 · xk−1 + qk−1

yk = H · xk + rk
(4)

H =


I1
6
...
Ii
6
...

 . (5)

The equations that describe the Kalman filter are presented in Equation (6). The first two equations
give a rough state estimate using the dynamical model while the last 5 equations are used for improving
the estimate using the newly acquired output sample. P is a covariance matrix that expresses the
confidence degree of the state estimation, which is updated during the algorithm iterations, Q and R
are the covariance matrices associated with the noises q and r respectively, vk is the rough estimation
error (difference between the measured output and the predicted one using the first two equations),
Sk is the covariance matrix associated with the predicted output, and Kk is the Kalman state update.

Predict the state
1. x̂k|k−1 = A · x̂k−1|k−1
2. Pk|k−1 = A · Pk−1|k−1 · AT + Qk−1

Update the prediction
3. vk = yk − Hk · x̂k|k−1
4. Sk = Hk · Pk|k−1 · HT

k + Rk

5. Kk = Pk|k−1 · HT
k · S

−1
k

6. x̂k|k = x̂k|k−1 + Kk · vk

7. Pk|k = Pk|k−1 − Kk · Sk · KT
k

(6)

The filter requires good estimates for the initial state x0 and the covariance matrices Q and R.
In the proposed algorithm this is achieved using an initialisation procedure. The position of the
fiducial marker is measured for Ni number of sampling times. The result is the set of samples defined
in Equation (3) for k = 1, . . . , Ni (the length of the initialisation) and i = 1, . . . , n (the number of
cameras available).

Averaging the samples gives a good estimate for the initial state, which is built according to
Equation (7), where E[·] is the mean operator (expected value). The Q and R matrices are computed
from the same set of samples, assuming that there is no correlation between the noises affecting
the measurements.
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x0 =



X0

Y0

Z0

AX0

AY0

AZ0


=



E
1≤k≤Ni
1≤i≤n

[
Xi

k
]

E
1≤k≤Ni
1≤i≤n

[
Yi

k
]

E
1≤k≤Ni
1≤i≤n

[
Zi

k
]

E
1≤k≤Ni
1≤i≤n

[
AXi

k
]

E
1≤k≤Ni
1≤i≤n

[
AYi

k
]

E
1≤k≤Ni
1≤i≤n

[
AZi

k
]



(7)

Q0 = diag

(
E

1≤i≤n

[
var

1≤k≤Ni

(
Xi

k

)]
, E

1≤i≤n

[
var

1≤k≤Ni

(
Yi

k

)]
, E

1≤i≤n

[
var

1≤k≤Ni

(
Zi

k

)]
,

E
1≤i≤n

[
var

1≤k≤Ni

(
AXi

k

)]
, E

1≤i≤n

[
var

1≤k≤Ni

(
AYi

k

)]
, E

1≤i≤n

[
var

1≤k≤Ni

(
AZi

k

)])
(8)

R0 = diag
(

R1
0, . . . , Ri

0, . . . , Rn
0

)
(9)

Ri
0 = diag

(
var

1≤k≤Ni

(
Xi

k

)
, var

1≤k≤Ni

(
Yi

k

)
, var

1≤k≤Ni

(
Zi

k

)
,

var
1≤k≤Ni

(
AXi

k

)
, var

1≤k≤Ni

(
AYi

k

)
, var

1≤k≤Ni

(
AZi

k

))
. (10)

Q is a diagonal matrix defined in Equation (8) built using the mean variance of the pose elements
(X, Y, Z, AX, AY, and AZ) along all the cameras. The R matrix is defined in Equation (9) where Ri is
defined in Equation (10), built using the variance for each pose element measured by each camera.

After the initialisation is finished, the Kalman algorithm is iterated for Ne number of sampling
times, while at each step, a new set of samples yk in the form of Equation (3) is measured and an
estimated state trajectory is built (x̂k|k for k = Ni + 1, . . . , Ni + Ne).

Newly measured system outputs can be used to improve the statistical models of the noises for
increased performance. Thereby, at each iteration, every new set is added to the initialisation set and
the covariance matrices Q and R are updated using Equations (11)–(13) for k = 1, . . . , Ne.

Qk = diag

(
E

1≤i≤n

[
var

1≤j≤Ni+k

(
Xi

j

)]
, E

1≤i≤n

[
var

1≤j≤Ni+k

(
Yi

j

)]
, E

1≤i≤n

[
var

1≤j≤Ni+k

(
Zi

j

)]
,

E
1≤i≤n

[
var

1≤j≤Ni+k

(
AXi

j

)]
, E

1≤i≤n

[
var

1≤j≤Ni+k

(
AYi

j

)]
, E

1≤i≤n

[
var

1≤j≤Ni+k

(
AZi

j

)])
(11)

Rk = diag
(

R1
k , . . . , Ri

k, . . . , Rn
k

)
(12)

Ri
k = diag

(
var

1≤j≤Ni+k

(
Xi

j

)
, var

1≤j≤Ni+k

(
Yi

j

)
, var

1≤j≤Ni+k

(
Zi

j

)
,

var
1≤j≤Ni+k

(
AXi

j

)
, var

1≤j≤Ni+k

(
AYi

j

)
, var

1≤j≤Ni+k

(
AZi

j

))
. (13)
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Considering that the estimated state trajectory (x̂k|k) belongs to a system with free dynamics where,
in the absence of the noise effects, the state should be constant, a final estimate with a better precision
can be achieved by averaging the values of the estimated state trajectory according to Equation (14).
The timeline of all the procedures that are involved in the proposed algorithm is presented in Figure 2.
In Algorithm 1 the proposed procedure is summarised.

x̂ = E
Ni+1≤k≤Ni+Ne

[
x̂k|k

]
(14)

[k]

1 2 Ni Ni+1 Ni+2 Ni+Ne
. . .. . .

Measure yk

Compute x0 Q0 R0

Measure yk

Update Qk Rk

Estimate  xk|k Compute  x

Initialization Estimation

Acquire image

Figure 2. The sequence of procedures involved in the proposed algorithm.

Algorithm 1: The proposed algorithm for multi-camera pose fusion.

1 Acquire one image from all n available cameras;
2 Apply solvepnp algorithm on each image for Ni times and build the initialisation set from

Equation (3), where k = 1, . . . , Ni;
3 Compute x0 using Equation (7);
4 Compute Q0 using Equation (8);
5 Compute R0 using Equations (9) and (10);
6 for Ne times do
7 Compute x̂k|k−1 and Pk|k−1 using Equations (6).1 and (6).2 respectively;
8 Apply solvepnp algorithm on each image and append a new set from Equation (3) to the

initialisation set;
9 Update Q using Equation (11);

10 Update R using Equations (12) and (13);
11 Compute x̂k|k and Pk|k using Equations (6).3–7;
12 Add x̂k|k to the estimated state trajectory;

13 Compute x̂ using Equation (14);

3.2. Setup Calibration Procedure

Given a set of n cameras in a pre-defined fixed configuration, having unknown absolute positions,
the purpose of the setup calibration procedure is to determine, in a precise manner, their relative
positions. As depicted in Figure 3, the goal is to determine the set of homogenous transformations TCj

Ci
where i = 1, . . . , n and j = i + 1, . . . , n.
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C1

C2

C3

Cn

TC1
C2

TC1
C3

TC1
Cn

TC2
C3

TC2
Cn

TC3
Cn

Figure 3. The calibration of a set of n cameras requires to determine their relative positions TCj
Ci .

This requires the use of a precision gauge, which can be manufactured in the form of a cube of
fiducial markers like in [21] or in any 3D shape where the markers can be viewed all around. The gauge
needs to be manufactured or calibrated with increased precision. It can be seen as the absolute precision
reference used to calibrate the entire positioning system. In Figure 4, a conceptual diagram of a gauge
containing m fiducial markers is presented. The set of homogenous transformations between all the
markers (TMj

Mi where i = 1, . . . , m and j = i + 1, . . . , m) is precisely known.

M1 M2

Mk

Mm

. . .

. . .
. . .

TM1
M2

TM1
Mk

TM1
Mm

TM2
Mk

TM2
Mm

TM3
Mm

Figure 4. A setup of cameras is calibrated using a precision gauge. It is a manufactured feature having
m fiducial markers where all their relative positions are precisely known.

The camera setup calibration procedure is done simultaneously for all the camera pairs Ci, Cj
where i = 1, . . . , n and j = i + 1, . . . , n, with the goal of estimating the homogenous transformation
TCj

Ci (as presented in Figure 5). It starts with placing the precision gauge inside the environment.
Depending on the orientation, each camera sees a different portion of the gauge, i.e., from all n fiducial
markers, Ci can measure the position of ni markers and Cj can measure only nj, where ni ≤ n and
nj ≤ n. It is preferable that at least one fiducial marker Mk is seen by both cameras, otherwise, it can
be virtually determined using the gauge transformations.

The proposed algorithm estimates the TMk
Ci homogenous transformation using the noisy

measurements from all ni markers using the Ci camera. This transformation is expressed multiple times
in terms of TMl

Ci pose measurement (where l = 1, . . . , ni) using Equation (15). The TMk
Ml transformation

is precisely known from the gauge.

TMk
Ci ≈

ˆTMk
Ci l = TMl

Ci · T
Mk
Ml (15)

The resulting ˆTMk
Ci l pose is converted to translations and Euler angles which are used for building

the output measurement vector of Equation (3).
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C1

Cn

Ci

Cj
M1 M2

Mk

Mm

. . .

. . .
. . .

TCi
M1

TCj
M2

TCj
Mm

TCj
Mk

TCi
Mk

TCi
Cj

Figure 5. The process of calibrating all the pairs of n cameras, which illustrates all the homogenous
transformations involved in finding the relative position of Ci and Cj cameras.

The proposed algorithm is further applied and the result is an estimation of TMk
Ci having a higher

degree of precision and being closer to the real value. For the Cj camera, TMk
Cj is estimated in a similar

manner. Consequently, TCj
Ci transformation is computed using Equation (16).

TCj
Ci = TMk

Ci ·
(

TCj
Mk

)−1
(16)

3.3. Position Estimation Procedure

Having a calibrated camera setup, the aim of this procedure is to estimate the position of a fiducial
marker attached to a specific instrument, according to the application.

In Figure 6, the conceptual diagram of this procedure is depicted. Depending on the configuration,
the M marker can be seen only by a number of nm out of n cameras (nm ≤ n). An arbitrary camera (Cr)
is chosen, which is considered the positioning reference.

C1

C2

Cr

CnmTCr
M

M

TC2
M

TC1
M

TCnm
M

Cn

. . .

Figure 6. The homogenous transformations involved in estimating the position of a fiducial marker
placed in the environment of a calibrated camera setup.

The proposed algorithm is estimating the TM
Cr homogenous transformation using the noisy

measurements from each of the nm cameras. In a similar manner to the setup calibration
procedure, the TM

Cr transformation is expressed multiple times in terms of TM
Ck pose measurement

(where k = 1, . . . , nm) using Equation (17). The TCk
Cr is precisely known from the setup calibration.

TM
Cr ≈

ˆTM
Cr k = TCk

Cr · TM
Ck. (17)
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The resulting ˆTM
Cr k pose is converted to translations and Euler angles and used for building the

output measurement vector of Equation (3). The proposed algorithm is further applied and the result
is an estimation of TM

Cr which has a higher degree of precision and is closer to the real value.
This approach can be used in a similar manner for measuring the relative position of multiple

fiducial markers in the environment, which is very useful in alignment tasks as presented in [7].

4. Simulation Results

4.1. Monte Carlo Setup

There are two factors that contribute and affect the precision of estimating the pose of the
fiducial marker. First, there are the physical and environment-related aspects, which include the
optical specifications of the imaging system (the sensor and optical resolution, the focal length,
the depth of field, and the field of view), the environment illumination conditions (how strong,
uniform, and consistent the lighting is) and if the cameras are optimally positioned so as to achieve
good viewing angles and maintain consistent accuracy along the working area. Secondly, there are
factors related to the algorithms regarding how precise the pose can be estimated and how much the
effect of the noise can be mitigated during the data fusion. In this paper we decouple the two types
of factors and only consider the behaviour of our proposed method, so as to have a first qualitative
assessment regarding the precision.

Consequently, we developed a simulation environment that aims to replicate how our method
performs in a real setup, considering the noisy pose estimations it receives from the solvepnp
algorithm. For an increased confidence in the results, we adopted a Monte Carlo approach in which we
statistically analysed how the noise is propagated through our method and how the precision is affected.
The simulation is implemented in MATLAB where positions of multiple cameras, precision gauges,
and fiducial markers are virtually defined. In order to simulate the noisy input from the solvepnp,
each position (that is supposed to be measured in the real environment) is disturbed with additive
random noise having normal distribution. The noise is configured considering the precision limits
we determined experimentally for one camera in our previous work [21]: for X and Y, 75µm, for Z,
300µm, and for AX, AY and AZ, 0.02◦. The mean value of the noise is 0 while the standard deviation
(σ) was configured in such a way that 95.45% of the noise values are within the experimental limits
(inside [−2σ, 2σ]).

The simulation puts in place three scenarios which are additionally used to assess the different
contributions between the number of cameras and the number of the fiducial markers from the gauge:

1. 3 cameras, a precision gauge with 5 markers, and one marker whose position must be estimated;
2. 5 cameras, a precision gauge with 3 markers, and one marker whose position must be estimated;
3. 5 cameras, a precision gauge with 5 markers, and one marker whose position must be estimated.

The results are compared against estimating the pose using only one camera in the same
environment. The Monte Carlo simulation performs 5000 iterations where, in each run and for
each of the scenarios, the setup is calibrated using the gauge. The calibration is further used to
estimate the pose of the fiducial marker which is compared with the true, predefined one. The Ni
and Ne parameters are configured to 20 and 50 respectively. In a real application, the choice of these
two parameters is a matter of cost optimisation, considering the computational effort, the resources
available, and the required measuring frequency.

Compared with a real setup, we adopted one simplifying hypothesis. The angle of incidence of
the marker relative to the camera, as we showed in [21], has an influence on the precision. Close to
normal angles of incidence tend to bring more noise in the estimation. In this study, we only consider
that the precision of the solvepnp algorithm to be consistent, regardless of the angle. However, in other
respects, the simulation is considering the worst case scenario because of the following arguments:
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• Noises from different cameras and from different elements of the pose (X, Y, Z, AX, AY,
and AZ) are considered completely uncorrelated. In real circumstances this might not be the case
(e.g., the noise induced by the environment illumination which affects all the measurements in
a similar manner) thus, any relaxed conditions are contributing to an increased precision of the
estimation. This additional information is harnessed using the update procedure for Q and R
covariance matrices (which in this case would no longer be diagonal);

• The precision of one camera measurement along the Z axis is 5 times lower compared with
the X and Y axis. In the simulation this is taken as it is, but in a real situation, this effect
can be diminished by placing the camera setup in an optimal configuration. For instance,
the measurement along the Z axis from one camera can be replaced by measurements from
two cameras placed in lateral positions, for which the Z axis motion is decomposed in X and Y
components that have a higher precision.

4.2. Results

Figures 7–12 presents the simulation results for estimating X, Y, and Z coordinates and AX, AY,
and AZ orientation angles, which are given in terms of the probability density function (PDF) and
the standard deviation (SD) of the error. The first plot from each Figure depicts the estimation error
achieved using only one camera. The following three plots give the results achieved using the setups
from each of the above-mentioned scenarios.

The results show that the proposed algorithm achieves an increase in precision which is close to
an order of magnitude. It can also be observed that it is of greater importance to have more fiducial
markers in the precision gauge instead of more cameras. In scenario #3, a slight decrease of precision
is experienced in comparison to the #1 scenario. This is to be expected as each added camera is an
additional noise source. However, the benefit of achieving a larger working area is far more important.
In Table 1 the results are summarised and compared with regards to the limits of the variation interval
[−2σ, 2σ] where it is expected that 95.45% of the errors will occur. This can be considered the precision
that the positioning system is expected to achieve when using th proposed method.
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Figure 7. The probability density function (PDF) and the standard deviation (SD) of the error for
estimating the X coordinate.
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Figure 8. The probability density function (PDF) and the standard deviation (SD) of the error for
estimating the Y coordinate.
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Figure 9. The probability density function (PDF) and the standard deviation (SD) of the error for
estimating the Z coordinate.
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Figure 11. The probability density function (PDF) and the standard deviation (SD) of the error for
estimating the AY angle.
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Figure 12. The probability density function (PDF) and the standard deviation (SD) of the error for
estimating the AZ angle.

Table 1. The simulation results for estimating the pose using only one camera and multiple cameras in
three scenarios. The value is the boundary of the error variation interval (2σ).

Scenario
Pose Element UM One Camera #1 #2 #3

X (µm) 75.68 11.1 21.04 17.4
Y (µm) 75.1 11.14 12.7 11.88
Z (µm) 298.68 30.74 30.01 28.28

AX (deg) 0.019 0.0016 0.0014 0.0013
AY (deg) 0.019 0.0022 0.0024 0.0022
AZ (deg) 0.019 0.0019 0.0018 0.0016

In order to further emphasise the simulation results achieved by the proposed method,
Figures 13–18 depict a set of examples from the 3rd scenario which show how the estimation of
the state vector elements is evolving. Each of the figures presents: The noisy measurement from the
five cameras, the value of the state vector computed after the initialisation procedure, the evolution of
the state vector during the Kalman estimation, and the final state estimation which falls close to the
true value. Although the noise in the measurements is amplified because the reconstruction of the
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position of the marker in different cameras, the evolution of the Kalman estimation shows a clear noise
damping effect.
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Figure 13. The evolution of the estimation of X.
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Figure 14. The evolution of the estimation of Y.
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Figure 15. The evolution of the estimation of Z.
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Figure 16. The evolution of the estimation of AX.
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Figure 17. The evolution of the estimation of AY.
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Figure 18. The evolution of the estimation of AZ.

5. Conclusions

With respect to the considered case study, the results show that the proposed method and
algorithm have managed to successfully meet the objectives. The working area could be increased in
accordance with the number of cameras in the setup. This is a decision-making procedure that needs
to take into account the cost relative to the working area and the precision required. For our simulation
scenarios, the precision increase was close to an order of magnitude, which was around 10–15 µm for
X and Y coordinates, 30 µm for Z and 0.002◦ for AX, AY, and AZ orientation angles.

The cost is an important benefit of the system compared to other solutions like laser trackers
which tend to be extremely expensive. In addition to that, our proposed method could achieve
relative and simultaneous positioning of multiple fiducial markers, which supports the development
of advanced applications.
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Future work will include a complete analysis of the method in a real environment where all
physical and algorithm-related factors are considered, and a precision comparison against other
methods presented in the literature.
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8. Popescu, D.C.; Cernăianu, M.O. Method and System for Automatic Positioning of Elements for Configurations
of Experiments with High-Power Lasers; Romanian patent RO132327B1; Library Catalog: ESpacenet; OSIM:
Bucharest, Romania, 2019.

9. Fiala, M. ARTag, a fiducial marker system using digital techniques. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
20–25 June 2005; Volume 2, pp. 590–596, ISSN: 1063-6919, doi:10.1109/CVPR.2005.74. [CrossRef]

10. Boby, R.A.; Saha, S.K. Single image based camera calibration and pose estimation of the end-effector of
a robot. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 16–21 May 2016; pp. 2435–2440. [CrossRef]

11. Cai, C.; Dean-León, E.; Somani, N.; Knoll, A. 6D image-based visual servoing for robot manipulators
with uncalibrated stereo cameras. In Proceedings of the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 736–742, ISSN: 2153-0866,
doi:10.1109/IROS.2014.6942640. [CrossRef]

12. Chen, D.; Peng, Z.; Ling, X. A low-cost localization system based on artificial landmarks with two degree
of freedom platform camera. In Proceedings of the 2014 IEEE International Conference on Robotics and
Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014; pp. 625–630. [CrossRef]

http://dx.doi.org/10.1016/S1474-6670(17)31942-0
https://doi.org/10.1016/j.radonc.2018.12.016
http://dx.doi.org/10.1016/j.radonc.2018.12.016
http://dx.doi.org/10.1088/1361-6633/aacfe8
http://www.ncbi.nlm.nih.gov/pubmed/29952755
https://doi.org/10.1063/1.5093535
http://dx.doi.org/10.1063/1.5093535
https://doi.org/10.1088/1742-6596/1079/1/012013
http://dx.doi.org/10.1088/1742-6596/1079/1/012013
https://doi.org/10.1109/CVPR.2005.74
http://dx.doi.org/10.1109/CVPR.2005.74
http://dx.doi.org/10.1109/ICRA.2016.7487395
https://doi.org/10.1109/IROS.2014.6942640
http://dx.doi.org/10.1109/IROS.2014.6942640
http://dx.doi.org/10.1109/ROBIO.2014.7090400


Sensors 2020, 20, 2746 17 of 17
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