
International  Journal  of

Environmental Research

and Public Health

Article

Spatiotemporal Distribution Characteristics and Driving Forces
of PM2.5 in Three Urban Agglomerations of the Yangtze River
Economic Belt

Jin-Wei Yan 1 , Fei Tao 1,2,3,* , Shuai-Qian Zhang 1 , Shuang Lin 1 and Tong Zhou 1,*

����������
�������

Citation: Yan, J.-W.; Tao, F.; Zhang,

S.-Q.; Lin, S.; Zhou, T. Spatiotemporal

Distribution Characteristics and

Driving Forces of PM2.5 in Three

Urban Agglomerations of the Yangtze

River Economic Belt. Int. J. Environ.

Res. Public Health 2021, 18, 2222.

https://doi.org/10.3390/ijerph18052222

Academic Editors: Giacomo

Al. Gerosa and David Rojas

Received: 25 November 2020

Accepted: 19 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Geographical Sciences, Nantong University, Nantong 226007, China;
1822021022@stmail.ntu.edu.cn (J.-W.Y.); 1921110012@stmail.ntu.edu.cn (S.-Q.Z.);
1921110003@stmail.ntu.edu.cn (S.L.)

2 Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA
3 Key Laboratory of Virtual Geographical Environment, MOE, Nanjing Normal University,

Nanjing 210046, China
* Correspondence: taofei@ntu.edu.cn (F.T.); zhoutong@ntu.edu.cn (T.Z.); Tel.: +86-137-7692-3762 (F.T.);

+86-135-8521-7135 (T.Z.)

Abstract: As part of one of the five major national development strategies, the Yangtze River
Economic Belt (YREB), including the three national-level urban agglomerations (the Cheng-Yu urban
agglomeration (CY-UA), the Yangtze River Middle-Reach urban agglomeration (YRMR-UA), and
the Yangtze River Delta urban agglomeration (YRD-UA)), plays an important role in China’s urban
development and economic construction. However, the rapid economic growth of the past decades
has caused frequent regional air pollution incidents, as indicated by high levels of fine particulate
matter (PM2.5). Therefore, a driving force factor analysis based on the PM2.5 of the whole area
would provide more information. This paper focuses on the three urban agglomerations in the
YREB and uses exploratory data analysis and geostatistics methods to describe the spatiotemporal
distribution patterns of air quality based on long-term PM2.5 series data from 2015 to 2018. First,
the main driving factor of the spatial stratified heterogeneity of PM2.5 was determined through the
Geodetector model, and then the influence mechanism of the factors with strong explanatory power
was extrapolated using the Multiscale Geographically Weighted Regression (MGWR) models. The
results showed that the number of enterprises, social public vehicles, total precipitation, wind speed,
and green coverage in the built-up area had the most significant impacts on the distribution of PM2.5.
The regression by MGWR was found to be more efficient than that by traditional Geographically
Weighted Regression (GWR), further showing that the main factors varied significantly among the
three urban agglomerations in affecting the special and temporal features.

Keywords: urban agglomeration; PM2.5 concentrations; spatiotemporal distribution; geodetector;
geographically weighted regression

1. Introduction

Fine particulate matter (PM2.5) is a type of particulate matter with an aerodynamic
diameter of less than 2.5 µm. As the main source of air pollutants in urban areas [1], PM2.5
has taken a serious toll on human health. According to the report of the World Health
Organization, 4.2 million people die from exposure to ambient air pollution every year
worldwide [2]. Existing research showed that long-term exposure to high concentrations of
PM2.5 might be accountable for at least 64 serious diseases [3–5] and that there are definite
positive correlations between the concentration distribution of PM2.5 and the fatality rates
of certain diseases [6,7].

China is experiencing rapid urbanization and has achieved a high degree of urban
integration in the past two decades [8]. Several regions in the mainland of China have
developed into national-level urban agglomerations and become important carriers of
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economic development [9]. However, this rapid development of cities is accompanied by
serious burdens of air pollution and public health [10]. Comparative studies have shown
that air pollution emissions on an urban agglomeration scale are more serious than those on
an urban scale [11]. Therefore, studies on the spatiotemporal distribution characteristics of
PM2.5 concentrations at the urban agglomeration level and an understanding of the driving
factors will provide significant information to help improve urban air quality, reduce the
health risk of residents, and promote the sustainable development of urban agglomeration.

At present, studies on PM2.5 mainly rely on data acquisition and assessment of the
spatiotemporal distribution characteristics and driving factors. Data sources are mainly
derived from environmental monitoring sites [12] and aerosol optical depth (AOD) produc-
tion from remote sensing [13–17]. However, different data collection methods have also
led to obvious discrepancies between the two data sets. The advantage of site statistics is
its quick acquisition of high-precision, continuous-time, and temporal fine-grained PM2.5
data. Because of the discrete distribution of PM2.5 in the city built-up areas of the sites, site
statistics cannot show the continuous spatial distributions of PM2.5 concentrations. Remote
sensing technology can reflect spatial distribution characteristics of PM2.5, but accuracy
is often affected by several factors, such as meteorological conditions and the collection
sensors of the satellites. It is also difficult to obtain a continuous data set in a specific period,
and the original image data also need a series of data preprocessing operations, such as
atmospheric calibration and radiation correction, which is not a user-friendly process for
non-professionals.

Research on the concentration distribution of PM2.5 has been conducted mainly from
spatial and temporal perspectives. In the time dimension, according to statistical analyses
of data collected on the trends of PM2.5 concentrations, such as the daily peak moments of
PM2.5 in several different regions, conclusions such as the monthly mean PM2.5 typically
exhibited a characteristic “U” shape in a given year—i.e., “low in summer and autumn but
high in spring and winter in a yearly view” [18–21]. Other studies have paid attention to
the regression predictions of atmospheric pollutant concentration values at different time
granularities through machine learning models, such as the Back Propagation (BP) neural
network [22], random forest model [23], hybrid neural network [24], and Long Short-Term
Memory (LSTM) [25]. However, these studies only aimed at mining the statistical signifi-
cance of the data itself. They ignored the description of the spatial distribution patterns
of atmospheric pollutants and did not discuss the driving factors of PM2.5 production
and changes. In the spatial dimension, models have been built and used to analyze the
spatial distribution of air pollutants based on the Land-use Regression model (LUR) and
the Geographically Weighted Regression (GWR) model [26–28]. Recent advancements in
spatial robustness research have led to rapid developments in geostatistical models, such as
the GWR [29,30] and LUR [31] models based on improved strategies. Further, models such
as PCA-GWR, Multiscale Geographically Weighted Regression (MGWR), Geographically
and Temporally Weighted (GTWR), and the geostatistical model combined with machine
learning have produced more reliable regression results at spatiotemporal scales [32–35].
Due to the differences in their data sources, study areas, and influencing factor selection,
however, such models can result in inconsistent conclusions. Studies at different spatial
scales will also affect the model results. The large number of experiments studying the
driving factors of PM2.5 have proven that socio-economic factors and natural factors are the
main features that affect PM2.5 concentration level and spatial distribution [36]. Therefore,
determining how to screen the specific indicators of the two influential factors has become
particularly important, and researchers have been taking different approaches, such as
using the geographic detector model [4,37,38], principal component analysis [29], and the
correlation coefficient [39], to solve these problems. In the analysis of PM2.5 driving force
factors, statistical models based on GWR [1] and the Spatial Durbin Model (SDM) [40]
still play an important role. Li and Xu used the wavelet model [41] and the method of
constructing multi-scale buffer zones [36], respectively, to explore the influence of various
factors on air pollutants. However, the above studies often used a single model in the
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screening process of PM2.5 impact factors. In this paper, through the comprehensive use of
various models and methods, we gradually analyzed the main impact factors of PM2.5 in
the three major urban agglomerations of the Yangtze River Economic Belt, and improved
the universality of the conclusions.

With the increasing incidents of haze in China, calls for integrated atmospheric man-
agement have been frequently made and implemented when regional air pollution inci-
dents or severe air quality events occur. However, except for heavily polluted areas such
as Beijing, Tianjin, and Hebei, studies on the regional integration of air quality manage-
ment of factors affecting PM2.5 in other parts of China have not yet been conducted on a
comprehensive large-scale [42]. The Cheng-Yu urban agglomeration (CY-UA), the Yangtze
River Middle-Reach urban agglomeration (YRMR-UA), and the Yangtze River Delta urban
agglomeration (YRD-UA) are three national city groups in the Yangtze River Economic
Belt (YREB) that have an irreplaceable economic status in China. However, the long-term
extensive mode of economic growth in these areas has also yielded a large-scale discharge
of major air pollutants in the YREB. Although air quality has been improved in recent
years, the pressure of smog control is still present [43]. Most of the existing studies focus on
analysis within a certain urban agglomeration [37,44,45], while those covering the entire
YREB suffer from a short period of analysis [46] and single model selection [37,43]; this
results in poor interpretation ability of PM2.5 pollution in a long time series and a large
space in the Yangtze River Economic Belt. Therefore, a comprehensive study of PM2.5
based on a long-term multi-spatial scale, multi-impact index, and multi-analysis model of
the YREB is needed.

As discussed above, using a single perspective approach to study the spatiotemporal
properties of air pollutants cannot accurately and comprehensively describe the patterns of
changes in regional PM2.5 or the spatiotemporal distribution of PM2.5 and its driving forces.
In addition, limited by the cost of data acquisition and the choice of research methods, large-
scale PM2.5 studies are often influenced by the geographical environment, government
policies, and other factors. It is thus difficult to reach a unified conclusion regarding the
selection of factors affecting PM2.5. The present study employed the following approaches:

1. Data from 375 national environmental monitoring stations in the three major
urban agglomerations of the YREB from 2015 to 2018 was used, from which the spatial
autocorrelation of PM2.5 was summarized based on the perspective of urban agglomeration,
and the spatial distribution patterns of PM2.5 and variation rule of PM2.5 concentrations
at different time scales were described on a macro scale.

2. The main driving factors affecting the spatiotemporal differentiation of PM2.5 at a
large spatial scale were explored by combining the above data with meteorological and
socio-economic data of the same period and by using the exploratory data method and
geographical detector model.

3. GWR and MGWR models were constructed based on the five strong explanatory
power factors screened out to describe the driving force factors of the overall PM2.5
spatial distribution in the three urban agglomerations, and the change patterns of the most
important influencing factors were analyzed in each urban agglomeration.

2. Materials and Methods
2.1. Study Area

As the longest river in China, the Yangtze River is located between 90◦33′~122◦25′

eastern longitude and 24◦30′~35◦45′ northern latitude, traversing central China from west
to east. This river has played an extremely important role in promoting urban economic
development within the basin and is known as China’s golden waterway. The YREB is
formed along the river, spanning the three major regions of Eastern, Central, and Western
China. This area covers 11 provinces and cities including Shanghai, Jiangsu, Zhejiang,
Anhui, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, and Yunnan. Since the
release of the outline of Yangtze River Economic Belt development plan in September 2016,
the YREB has formed a new development pattern of “one axis, two wings, three poles,
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and multiple points”. We take the “three poles” in the YREB (namely, Cheng-Yu urban
agglomeration, Yangtze River Middle-Reach urban agglomeration, and Yangtze River
Delta urban agglomeration) as our study area and analyze the spatiotemporal distribution
characteristics and variation trends of PM2.5 and the driving factors of air pollution within
the research scope by combining meteorological, socio-economic, and demographic data.

The three major urban agglomerations of the YREB cover nine provinces and cities,
including Shanghai, Jiangsu, Zhejiang, Anhui, Hubei, Hunan, Jiangxi, Chongqing, and
Sichuan. The Cheng-Yu urban agglomeration with Chongqing and Chengdu as the center
includes 17 cities in total and is an important platform for the western development strategy.
The study area of Chongqing, Mianyang, Dazhou, and Ya’an does not cover the whole
city. However, due to the difficulty in obtaining data from some districts, we selected
the whole city data of Chongqing, Mianyang, Dazhou, and Ya’an for calculations (the
same below). Wuhan is the center of the urban agglomeration in the middle reaches of
the Yangtze River, which includes 31 cities in Hunan, Hubei, and Jiangxi provinces. Due
to the lack of data on county-level cities directly under Xiantao, Qianjiang, and Tianmen,
we do not study these cities. Shanghai is the core city of the YRD-UA, which includes
27 cities in the three provinces and one municipality including Jiangsu, Zhejiang, Anhui,
and Shanghai, covering an area of 225,000 square kilometers. Meanwhile, we selected data
from 375 research stations. Therefore, the newly added air quality monitoring stations
were not used in this study. The geographical locations of the three urban agglomerations
and the distribution of their internal air quality monitoring stations are shown in Figure 1.
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Figure 1. Location of the study area and spatial distribution of fine particulate matter (PM2.5) monitoring sites: (a) Cheng-Yu
urban agglomeration (CY-UA), (b) Yangtze River Middle-Reach urban agglomeration (YRMR-UA), and (c) Yangtze River
Delta urban agglomeration (YRD-UA).

2.2. Data Source and Description

The monthly, quarterly, and annual PM2.5 data were obtained from the China National
Environmental Monitoring Station (http://www.cnemc.cn, last accessed on 15 July 2020).
Hourly data from 375 air quality monitoring stations in the study area were used, and
data preprocessing was conducted according to the requirements of the Environmental
Air Quality Standard (GB3095-2012). Then, the monthly, and annual mean concentrations

http://www.cnemc.cn
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of each city were calculated based on hourly and daily data. Meteorological data were
obtained from the China meteorological data network (http://data.cma.cn/market/index.
html, last accessed on 20 July 2020) and the Hui-Ju data network (http://hz.zc12369.com/
home/meteorologicalData/dataDetailsThreeYear/, last accessed on 21 July 2020). The
hourly mean data of each city for 48 months were used in total, and the monthly mean
meteorological data of each city were also obtained through mathematical calculation. Data
on economics, traffic, city attributes, and education are collected from the National Bureau
of Statistics released by the China statistical yearbook (http://www.stats.gov.cn/tjsj/ndsj/,
last accessed on 18 July 2020). Other data are obtained from various statistical yearbooks.
Population density and green coverage in the built-up area were obtained from the National
Bureau of Statistics (http://www.stats.gov.cn/zjtj/gjtjj/201311/t20131108_457871.html,
last accessed on 18 July 2020) released by the China city statistical yearbook. The types of
data used in the study and their applications are outlined in Table 1.

Table 1. Research data and uses.

Theme Variable Name Unit Description Sampling Interval

PM2.5 (1) Y: fine particulate matter µg/m3 (1) Describes the main object
in the study Hour

Economics (1) X1: Gross domestic
product 100 million yuan (1) Describes the economic

development of the city Year

(2) X2: Proportion of
secondary industry % (2) Describes the level of city

industry Year

(3) X3: Enterprises count (3) Describes the pollution
level of urban enterprises Year

Traffic (1) X4: Road area 10,000 sq.m (1–2) Describes the level of
urban traffic pollution Year

(2) X5: Social public vehicles count Year

City attribute (1) X6: Population density people/km2 (1) Describes the distribution
of the urban population Year

(2) X7: Green coverage in the
built-up area % (2) Describes the greening

level of urban built-up areas Year

Education (1) X8: Middle school count (1) Describes the level of
basic urban education Year

Meteorological
factors

(1) X9: Minimum
temperature

◦C (1–7) Describes the weather
conditions of the city Hour

(2) X10: Maximum
temperature

◦C - Hour

(3) X11: Average temperature ◦C - Hour
(4) X12: Humidity % - Hour
(5) X13: Wind speed m/s - Hour
(6) X14: Pressure hPa - Hour
(7) X15: Total precipitation mm - Hour

In Table 1, the sampling interval of economy, traffic, urban attributes, education and
other data is yearly. The sampling interval of meteorological data and PM2.5 data is hourly.
According to the experimental requirements, different time scales are obtained through
mathematical calculations.

2.3. Methodology
2.3.1. Global and Local Spatial Autocorrelation Analysis

Tobler’s first law of geography states that objects are not distributed independently in
space but are always correlated. To quantitatively analyze the spatial autocorrelation of air

http://data.cma.cn/market/index.html
http://data.cma.cn/market/index.html
http://hz.zc12369.com/home/meteorologicalData/dataDetailsThreeYear/
http://hz.zc12369.com/home/meteorologicalData/dataDetailsThreeYear/
http://www.stats.gov.cn/tjsj/ndsj/
http://www.stats.gov.cn/zjtj/gjtjj/201311/t20131108_457871.html
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pollutants between adjacent areas, the Global Moran’s Index (Moran’s I) was calculated for
PM2.5 [47]. The calculation formula of Global Moran’s I is as follows:

I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2
(

∑n
i=1 ∑n

j=1 Wij

) , (i 6= j) (1)

where n is the number of research units—in this study, the number of cities in the research
sample area; xi and xj are the observed PM2.5 values of cities i and j, respectively; and
Wij is a custom space weight matrix. If city i is adjacent to city j, Wij will be recorded as 1,
otherwise it will be recorded as 0, thus the multidimensional spatial matrix is established.
The value range of Moran I is [−1, 1]. When I is greater than 0, there is a positive spatial
autocorrelation, and the larger the value is, the stronger the autocorrelation is. When I < 0,
the space is negatively correlated. Meanwhile, a significance test of the Z value of Moran’s
I value of the above results was carried out as follows:

Z(I) =
1− E(I)√

Var(I)
(2)

where E(I) = −1/(n− 1), and Var(I) is the variance of I. At a 95% confidence level,
ZI > 1.96 means that the autocorrelation of the positive space is significant, and ZI < −1.96
means that PM2.5 has significant negative spatial autocorrelation. This indicates that the
spatial autocorrelation is not obvious. When −1.96 < ZI < 1.96, the spatial autocorrelation
is not significant.

Because the global Moran’s I can only analyze the spatial autocorrelation of air pol-
lutants from a global perspective, it cannot accurately find the spatial outliers [20]. Local
autocorrelation analysis reflects the spatial agglomeration degree of similar attribute values
around a region. The calculation formula for the local Moran’s I is as follows:

I =
n(xi − x)∑m

j=1 Wij
(
xj − x

)
∑n

i=1(xi − x)2 , (i 6= j) (3)

where n is the number of cities; m is the number of cities adjacent to city i in geographical
space; xi and xj are the PM2.5 concentration value of city i and j, respectively; and Wij is a
custom space weight matrix. The local Moran’s I can also be tested using a standardized
statistic Z. In local autocorrelation, at a 95% confidence level, |Z| > 1.96 is significant, and
|Z| > 2.58 is extremely significant. At the same time, the local Moran can obtain four
distribution modes: high–high correlation (H–H), low–low correlation (L–L), high–low
correlation (H–L), and low–high correlation (L–H). If the PM2.5 concentration of city i
and its surrounding cities is higher than the mean values of region, it presents an H–H
correlation distribution, which is called a “hot zone”. If the PM2.5 concentration of city
i and surrounding cities is lower than the regional mean, it presents an L–L correlation
distribution, which is called a “cold zone”. When Z < 1.96, if the concentration of PM2.5 in
the city i is greater than or less than that in the surrounding city j, the concentration can be
divided into two spatial distribution modes: the H–L type and the L–H type.

2.3.2. Geodetector

Spatial stratification and heterogeneity are spatial manifestations of natural and socio-
economic processes. Geodetector is an advanced statistical method proposed by the Insti-
tute of Geographic Sciences and Natural Resources Research under the Chinese Academy
of Sciences, which is used to detect stratified heterogeneity in space and reveal the driving
factors behind that heterogeneity [48]. In this paper, based on the meteorological and
socio-economic data, we use the geodetector to screen and extract the most important
driving factors of PM2.5 distribution in the YREB. The principle of the geographic detector
is to divide the study area into several sub-regions. If the sum of the variances of each
sub-region is less than the total variance of this region, there are spatial differentiation
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characteristics in the region. The geodetector can effectively identify the influence of factor
variables on the spatial distribution of the results. In this paper, the Geodetector is used to
calculate the explanatory power of socio-economic, population, and traffic factors and mete-
orological factors on the spatial differentiation of PM2.5 in the three urban agglomerations
of the YREB. The calculation formula is as follows [49]:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 . (4)

where q represents the explanatory power of a probe factor on PM2.5 spatial differentia-
tion. The influencing factors are screened according to the q value. h is a count variable.
h = 1, 2, 3, . . . , L represents the number of layers of the detection factor; N is the number of
cities; Nh represents the number of cities in layer h of the detection factor; σ2 represents the
variance of PM2.5 in three urban agglomerations; and σh represents the variance of PM2.5
in layer h. The value range of q is [0, 1], where the larger the value of q is, the stronger the
explanatory power of this factor for PM2.5 differentiation will be. Since the study area
is bounded by the administrative region boundary, ArcGIS 10.2.2 is used to convert the
study area into 10 × 10 km grid points, and the data information was extracted as input.
Since geographical detectors are good at analyzing type quantities, discrete processing is
required for continuous data [50]. In this paper, the natural discontinuous method in the
ArcGIS10.2.2 software was used to divide the 11 detection factors collected into 8 categories.
Meanwhile, the three submodels of Geodetector, namely factor detector, ecological detector
and interaction detector, are used to explain the influence of driving force factors on the
PM2.5 distribution. Factor detector was used to calculate the explanatory power of each
impact factor on the spatial differentiation of PM2.5, which could quantitatively rank
and screen the importance of PM2.5 driving factors. The ecological detector was used to
compare if there is a significant difference in the influence of the two factors on the spatial
distribution of PM2.5, which can also find out the important driving factors affecting PM2.5
in the YREB. The Interaction Detector evaluates whether the combined effects of two factors
can increase or decrease the explanatory power of the dependent variable, or whether the
effects of these factors on the spatial distribution of attributes are independent.

2.3.3. GWR and MGWR Model

When analyzing the driving forces of PM2.5 distribution, it is necessary to fully
consider the spatial non-stationarity caused by changes in the geographical factors [51].
Traditional regression methods, such as ordinary least squares (OLS), are global statistics
that assume the studied relationships are constant over space. However, the GWR pro-
posed by Brunsdon and Fotheringham can accurately predict the relationship between the
dependent variables and the predictive variables of each location by constructing a local
regression equation and considering the local heterogeneity of the regression coefficient in
geographical space [52]. Therefore, we use this model to regress the spatial heterogeneity
of PM2.5. The formula is as follows:

yi = β0
(
µi, γj

)
+ β1

(
µi, γj

)
xi1 + β2

(
µi, γj

)
xi2 + · · ·+ βk

(
µi, γj

)
xik + εi (5)

where yi represents the explanatory value of the dependent variable of city i, which is the
PM2.5 concentration of the city in this study; (µi, γi) represents the geographic coordinates
of city i; and xi represents the independent variable explanatory value of city i. In this
paper, there is an economic factor, a trafficking factor, an urban attribute factor, and two
meteorological factors; βk(µi, γi) is the regression parameter at the center of mass of city
i. εi represents a random error term. Here, the Gauss function is selected as the weight
function, whose expression is as follows [52]:

Wij = exp

(
−
(dij

b

)2
)

(6)
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where Wij represents the weight influence between city i and city j, and b represents the
bandwidth. The larger the bandwidth b is, the slower the weight influence decreases with
an increase in distance dij; the smaller the bandwidth b is, the faster the weight influence
decreases with an increase of distance dij. In this paper, the AICc guidelines are used to
optimize bandwidth.

Although GWR considers the influence of local regression in the spatial analysis
compared with other statistical methods, it still sets all the relationships involved as con-
stant at a spatial scale and does not allow the analysis of the relationships of geographical
phenomena at different scales [33]. However, this constant analysis at a spatial scale is not
reasonable to study air quality. Therefore, this paper further uses the MGWR model to
analyze the spatial heterogeneity of PM2.5, and discusses the change process of the main
influencing factors on PM2.5 in the three major urban agglomerations of the YREB based
on the experimental results.

MGWR is an extension of GWR that allows one to study relationships at varying
spatial scales and achieves this goal by using a varying bandwidth as opposed to single,
constant bandwidth for the entire study area [53]. MGWR can be formulated as:

yi = ∑n
j=1 ajxij + ∑m

j=n+1 β j(µi, γi)xij + εi (7)

where
(
µi, γj

)
represents the geographical coordinates of i city, j represents the number of

cities, xi represents the independent variable explanatory value of city i, Xij represents the
observation of the j independent variable at location i; aj is the regression coefficient of
the global variable, β j is the regression coefficient of the local variables, and εi represents
a random error term. Similarly, the Gauss function is selected as the weight function in
MGWR. The specific introduction is the same as above. We used the MGWR2.2 software
which was presented by the School of Geography and Urban Planning, Arizona State
University to undertake all calibrations (https://sgsup.asu.edu/sparc/mgwr last accessed
on 18 July 2020).

3. Results
3.1. Spatial and Temporal Distribution of PM2.5
3.1.1. Statistical Analysis

Compared with cities, the contradiction between economic development and envi-
ronmental protection in urban agglomerations is more prominent, and the problem of
air pollution is more complicated [19]. Therefore, it is necessary to conduct a statistical
analysis of the changes in PM2.5 in the three urban agglomerations over four years. This
paper uses hourly PM2.5 statistics from monitoring stations in each city to calculate the
overall annual average changes in the urban agglomeration. Year by year, the PM2.5 total
concentration in the three urban agglomerations showed a trend of decline during the
past four years, with a cumulative decrease of more than 10 µg/m3(Figure 2). The annual
mean concentration of PM2.5 is sufficient to meet the second level defined by Chinese
standards

(
35 µg/m3 < PM2.5 < 75 µg/m3) but falls to the third tier under the stricter

American standards for sensitive groups
(
35 µg/m3 < PM2.5 < 55 µg/m3); thus, the air

quality situation needs to be further improved.
Through comparison, we analyzed the changing trend of PM2.5 concentration in three

urban agglomerations. The declining trend of CY-UA was divided into two stages before
and after 2016. The PM2.5 concentration of YRMR-UA decreased the most significantly, and
the decreasing trend of PM2.5 concentrations in YRD-UA was relatively stable over the four
years. Notably, since 2016, the PM2.5 concentration of CY-UA has decreased significantly
overall; the total PM2.5 concentration of the YRMR-UA also dropped significantly in
2018. The phenomenon of PM2.5 concentration decline is related to the time and place of
the two speeches of General Secretary Xi Jinping at the symposium on promoting YREB
development (the first is Chongqing in 2016 and the second is Wuhan in 2018). This speech
noted that the restoration of the ecological environment in the Yangtze River should be

https://sgsup.asu.edu/sparc/mgwr
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overwhelmingly prioritized. At the same time, the Ten Atmospheric Policies, Outline
of YREB Development Plan, Plan for the Ecological and Environmental Protection of the
Yangtze Economic Belt, and Working Memorandum on Strengthening Cooperation between
Sichuan Province and Chongqing Province in Building Cheng-Yu Urban Agglomeration
all indicate that the environmental policies formulated by national or local government
departments play a guiding role in improving air quality.
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After annual PM2.5 concentrations analysis, we describe the monthly variation of
PM2.5. Figure 3 shows the monthly change trend of PM2.5. It can be concluded from the
figure that (1) the PM2.5 concentration shows a cyclical downward trend as a whole. (2) The
fluctuation trends of PM2.5 concentrations in the three urban agglomerations are basically
the same, Moreover, the temporal variation trend of PM2.5 over a year also conforms to the
U-shaped variation law proposed by previous scholars [54]. This means that the air quality
is better in summer and autumn, and the PM2.5 concentration is the lowest in autumn.
This characteristic is also reflected by the fewer months in 2015 with good air quality(

PM2.5 < 35 µg/m3) (June, August, and September in CY-UA and July in YRD-UA). In
the following three years, the air quality in summer and autumn was mostly excellent with
proper environmental governance, and the monthly average PM2.5 concentration also kept
decreasing. (3) Although the overall trend indicates a decline, there are also abnormal
phenomena showing rising concentrations. From the winter of 2016 to the spring of 2017,
the PM2.5 concentrations of YRMR-UA and CY-UA were both higher than those during
the same period in the previous year and the next year.

To further analyze the reasons for the emergence of this special situation, in Figure 4, a
box chart of the monthly mean data of all cities in the three urban agglomerations from 2015
to 2018 is illustrated by month to capture the PM2.5 concentration anomaly in the urban
agglomeration. In Figure 4, the YRMR-UA and CY-UA in December 2016 and January
2017 contain obvious high-pollution cities; the median and upper limits of the data as a
whole were also much higher than the levels of the two years prior and following the same
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period. This explains the abnormal rise in PM2.5 concentrations for YRMR-UA and CY-UA
from the winter of 2016 to the spring of 2017. According to the median line of each urban
agglomeration in the box chart, we clearly confirmed that the PM2.5 concentration in a year
showed a U-shaped pattern. The minimum concentrations of CY-UA and YRMR-UA were
in July, while that of YRD-UA was delayed by one month. We found that the highest value
of the median line of the box graph appeared in January of CY-UA, followed by January
of YRMR-UA. This reflected that the pollution concentration of CY-UA and YRMR-UA
changed greatly, while the pollution concentration of YRD-UA PM2.5 changed slightly.
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The numerical dispersion of PM2.5 in three urban agglomerations over four years
was analyzed month by month, and the following conclusions were obtained: (1) In the
Cheng-Yu urban agglomeration, the PM2.5 concentration is evenly distributed in June,
July, and August in summer and in December, January, and February in winter. The
more severe outlier points in the remaining months are Neijiang in May 2015 and Zigong
in October of the same year, Chongqing in September 2016, and Zigong and Chengdu
in November 2016. Most of these cities are located in the east-central part of CY-UA.
Relevant departments should pay more attention to this phenomenon and formulate
targeted regional joint prevention and control policies for air pollution. (2) For YRD-UA,
the time of the occurrence of PM2.5 concentration outliers is opposite to that of CY-UA—
mostly near the bottom of the U-shaped curve. The median PM2.5 concentration in these
months remained at a low level, and local PM2.5 pollution incidents led to a small number
of urban outliers. (3) In the three urban agglomerations, the greatest number of outliers in
PM2.5 concentration occurred in the YRMR-UA. A large number of extreme values were
found for February, June, and October. This phenomenon indicates that the regional PM2.5
pollution during those months was relatively significant and that there were several places
with high PM2.5 pollution values at the same time.
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3.1.2. PM2.5 Spatial Distribution

This section mainly analyzes the spatial distribution characteristics of PM2.5 and
its variation trends. Figure 5 shows the main characteristics of PM2.5 concentrations in
the three urban agglomerations of the YERB from 2015 to 2018. The major observations
were as follows: (1) The PM2.5 concentration in the provincial capitals and municipalities
directly under the central government decreased more significantly than those in other
prefecture-level cities. (2) PM2.5 pollution in the middle reaches of the Yangtze River is
more serious than in the upper and lower reaches. PM2.5 pollution on the north bank
of the Yangtze River is more severe than that on the south bank. (3) In the three urban
agglomerations, PM2.5 is mainly distributed in five regions, but the causes are different.
In the urban agglomeration of northwest Anhui and the Chang-Zhu-Tan, due to the
economic development structure, the proportion of secondary industry is relatively high,
which makes PM2.5 pollution centration higher However, the high PM2.5 distribution in
the Wuhan metropolitan area and the Chengdu and Chongqing areas is closely related
to economic activities and population density [41]. The terrain of Zigong area is low
mountains and hills, which is located in the center of southern Sichuan airflow. In this
area, the air mobility is poor, and pollutants can easily gather and become difficult to
diffuse, resulting in a higher PM2.5 concentration than in the surrounding areas. (4) The
distribution characteristics of PM2.5 also vary significantly between different provinces.
The distribution of Wenzhou, Taizhou, Ningbo, and Zhoushan in Zhejiang province are
mainly affected by natural factors such as weather and topography. The cities are located in
coastal areas with more rainfall [55], so the air quality has remained at a good level for four
years. In Jiangxi Province, the economic development in the northwest is better than that
in the southeast, which leads to the difference in PM2.5 concentration distribution. Due to
the adjustment of economic development structure, the improvement of green coverage in
the built-up area, the increase of government spending on environmental protection, and
good education foundation, Jiangsu has not experienced long-term and large-scale PM2.5
pollution during economic development [56].
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By calculating the seasonal average value, the variation trend of PM2.5 in three urban
agglomerations is deeply discussed. Each season is divided into three months: spring
(March, April, and May), summer (June, July, and August), autumn (September, October,
and November), and winter (December, January, and February of the following year).
The spatiotemporal distribution of each season in four years is shown in Figure 6. Some
conclusions can be drawn as follows. (1) The PM2.5 distribution in all agglomerations has
a specific directionality, showing a diagonal distribution that is low in the southeast and
high in the northwest, although this phenomenon only gradually manifested in CY-UA
after 2017 and 2018. (2) From a seasonal perspective, it is found that the air quality of
the three urban agglomerations was better in summer and autumn, and worse in spring
and winter, and the air quality was improved year by year as a whole. (3) Finally, the
seasonal variation of PM2.5 in each urban agglomeration was discussed on a time scale.
In spring, the regions with high CY-UA pollution were concentrated in several cities in
the central region, and high pollution decreased from north to south. The high pollution
level of YRMR-UA decreased gradually from northwest Hubei province and central Hunan
province to southeast Hubei Province. The PM2.5 pollution of the YRMR-UA was mainly
distributed in Anhui province and northwest Jiangsu Province. In the four-year change
process, there was a spatial process moving from west to east with high pollution. By
2018, areas with high PM2.5 pollution remained in Yangzhou, Taizhou, Zhenjiang, and
Changzhou.

In summer, with Suining as the center, the CY-UA assumed a cross-shape and im-
proved year by year; the distribution of PM2.5 in the YRMR-UA along both sides of the
Yangtze River was also improved year by year. The PM2.5 concentration of YRD-UA
was divided into north and south distribution with Xuancheng, Huzhou, and Jiaxing as
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boundary lines. In autumn, CY-UA and YRMR-UA experienced more random pollution in
the four years, among which the PM2.5 concentration in Xiangyang, Yichang, and Jingmen
in northwest Hubei province dropped the most obvious. Air quality in the northeast
improved significantly in CY-UA during the fall of 2017. In 2015 and 2018, the PM2.5 con-
centration in the YRD-UA showed a spatial distribution trend of a gradual decrease from
northwest to southeast and could be roughly divided into Zhejiang Province, with the best
air quality according to administrative provinces; Jiangsu with medium air quality; and
Anhui with the worst air quality. For 2016 and 2017, the PM2.5 concentration distribution
in YRD-UA from east to west can be divided using Hangzhou, Huzhou, Suzhou, Nantong,
and Yancheng as the boundary; individual cities did not affect the overall distribution.
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In winter, PM2.5 pollution reached its peak, at which point its distribution became
more diversified, and its classification in urban agglomerations became more complicated.
The PM2.5 pollution of CY-UA was found to be the most serious among the three urban
agglomerations. A large area of severe pollution occurred in the southwest in 2016 and
continued into 2017, at which point the spatial distribution of Yibin in Mianyang was still
the most polluted area. In 2015 and 2018, the most polluted areas were scattered. High and
medium-concentrations of pollution in the YRMR-UA were mostly distributed in the three
provinces with the most serious pollution areas in northern Hubei province. However,
unlike the various characteristics in autumn, the air quality in the region did not show
obvious improvement over the four years. With the Yangtze River as the boundary, the
PM2.5 pollution in the south of Jiangxi province was significantly better than that in the
north. The most seriously polluted area of the YRD-UA was dominated by Hefei in 2015
and distributed in Anhui and northern Jiangsu. By 2018, the most severely polluted area
was reduced to only Anhui. Although the PM2.5 concentration in Anhui province is also
gradually decreasing, its air pollution control remains a challenging task.

3.1.3. PM2.5 Spatial Correlation Analysis

From the view of time series, the positive spatial correlation of YRD-UA became
more and more obvious in four years, while definite laws did not be found of YRMR-
UA and CY-UA at the same time. From the perspective of urban agglomerations, the
spatial autocorrelation of PM2.5 in the three urban agglomerations was different, and the
significance level was inversely proportional to the PM2.5 concentration value [40]. In
the significance test of global Moran’s Index, the results of CY-UA were the worst, while
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more than half of the YRMR-UA passed the test, and almost all of YRD-UA reached 0.001,
showing the correlation on a significant level.

The spatial autocorrelation of PM2.5 in YRD-UA was analyzed in Table 2. On the
annual scale. In the case of |Z| > 1.96, YRD-UA’s Moran’s I index values are 0.285, 0.430,
0.573, and 0.610. These values indicate that the PM2.5 of YRD-UA tends to be more
concentrated, which requires regional unified coordination and comprehensive treatment.
At a seasonal scale, the spatial autocorrelation of PM2.5 decreased first and then increased.
On a monthly scale, Moran’s I index values of YRD-UA are still high in January to March
and October to December.

Table 2. Global Moran’s Index of the PM2.5 concentrations of YRD-UA and its significance tests.

Time Moran’s I Z(I) p Time Moran’s I Z(I) p

Average 0.517 4.821 <0.01 January 0.590 5.379 <0.01
2015 0.285 2.788 <0.01 February 0.539 4.865 <0.01
2016 0.430 4.126 <0.01 March 0.505 4.707 <0.01
2017 0.573 5.116 <0.01 April 0.304 3.038 <0.01
2018 0.610 5.424 <0.01 May 0.430 3.981 <0.01

Spring 0.647 5.744 <0.01 June 0.443 4.070 <0.01
Summer 0.429 4.101 <0.01 July 0.427 3.855 <0.01
Autumn 0.363 3.391 <0.01 August 0.206 2.068 0.04
Winter 0.481 4.475 <0.01 September 0.291 2.871 <0.01

- - - - October 0.511 4.634 <0.01
- - - - November 0.545 4.986 <0.01
- - - - December 0.539 4.936 <0.01

According to Table 3, the annual Moran’s I index value of YRMR-UA first decreased
and then increased, indicating that the spatial autocorrelation of PM2.5 in this region first
weakened and then increased. On the seasonal scale, the concentration trend of pollutants
in spring and winter was more obvious, while p of summer didn’t pass the significance
test. On the monthly scale, only the values of Moran’s I index of January, February, March
and December are larger, showing a strong spatial autocorrelation of PM2.5.

Table 3. Global Moran’s Index for the PM2.5 concentrations of YMRM-UA and its significance tests.

Time Moran’s I Z(I) p Time Moran’s I Z(I) p

Average 0.634 5.420 <0.01 January 0.718 6.198 <0.01
2015 0.745 6.238 <0.01 February 0.696 5.910 <0.01
2016 0.614 5.225 <0.01 March 0.722 6.147 <0.01
2017 0.335 3.073 <0.01 April 0.333 2.997 <0.01
2018 0.502 4.413 <0.01 May 0.435 3.950 <0.01

Spring 0.604 5.143 <0.01 June 0.390 3.497 <0.01
Summer 0.172 1.726 0.08 July −0.017 0.163 0.87
Autumn 0.374 3.363 <0.01 August 0.037 0.615 0.54
Winter 0.694 6.012 <0.01 September 0.262 2.437 0.02

- - - - October 0.119 1.272 0.20
- - - - November 0.498 4.443 <0.01
- - - - December 0.626 5.438 <0.01

This part focuses on analyzing the global Moran’s I for CY-UA. At an annual scale,
CY-UA only passed the 0.001 significance test in 2017, and the Moran’s I index value
was only 0.286 in the case of |Z| > 1.96. At a seasonal scale, only summer passed the
0.05 significance test, indicating that the CY-UA spatial clustering characteristics were not
significant. In the spring, summer, and autumn of 2017 and the summer season of all four
years, the spatial differences in the PM2.5 concentration between CY-UA cities were small.
On a monthly scale, the CY-UA values in March, April, and May were significant at a level
of 0.05 and presented a certain positive spatial correlation; November presented a better
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spatial positive correlation at a 0.001 level of confidence, which is also verified the temporal
characteristics of PM2.5. The significance tests for the remaining months are not discussed
(Table 4).

Table 4. Global Moran’s Index for the PM2.5 concentrations of CY-UA and its significance test.

Time Moran’s I Z(I) p Time Moran’s I Z(I) p

Average 0.126 1.425 0.15 January 0.123 1.314 0.19
2015 −0.074 −0.081 0.94 February 0.178 1.802 0.07
2016 0.164 1.622 0.10 March 0.277 2.427 0.02
2017 0.286 2.618 <0.01 April 0.209 1.962 0.05
2018 0.010 0.552 0.58 May 0.207 2.007 0.04

Spring 0.125 1.331 0.18 June −0.043 0.135 0.89
Summer 0.248 2.282 0.02 July −0.196 −0.940 0.35
Autumn −0.108 −0.323 0.75 August −0.089 −0.188 0.85
Winter 0.149 1.583 0.11 September −0.028 0.235 0.81

- - - - October 0.099 1.225 0.22
- - - - November 0.372 3.145 <0.01
- - - - December 0.002 0.442 0.66

Since global spatial autocorrelation cannot reflect regional differences, the local spatial
correlation method was used to explore the local concentrations of PM2.5 in the three
urban agglomerations. Figure 7 shows the positive correlation cluster patterns of “high–
high” and “low–low” in the three urban agglomerations within four years, indicating
obvious changes and shifts in spatial distribution. In 2015, the Wuhan metropolitan area
showed an obviously high concentration of PM2.5, while a low concentration of PM2.5
occurred in Jiangxi province. By 2016, Xiangyang and Yichang were still among the
places with high concentration values, and Luzhou, Yibin, and Zigong in the Cheng-Yu
urban agglomeration also showed a high concentration. Shangrao of Jiangxi province
remains a low-value gathering place, and YRD-UA also has two low-value gathering
places: Zhoushan, Taizhou, and Wenzhou. The local spatial concentrations of PM2.5 in
2017 were roughly similar to those in 2016. By 2018, a new high concentration area was
added to Zhenjiang, while the high concentration area of CY-UA disappeared.
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Two typical concentrations of PM2.5 were analyzed. The Wuhan metropolitan area
has a strong positive correlation in PM2.5 space, while Xiangyang has always appeared in
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the “high–high” aggregation model as a PM2.5 pollution center that affects the air quality
of the surrounding cities. According to the time series analysis, the concentration of PM2.5
clustering in the Wuhan metropolitan area gradually decreased in the first three years,
and the correlation between cities weakened, but this trend rebounded in 2018. Since
2016, Taizhou, Zhoushan, and other coastal cities have experienced low concentration
levels, reflecting the strong positive correlation of PM2.5 at a lower level in the region.
However, in terms of time series, such low-concentration PM2.5 clustering in Taizhou and
Zhoushan was still present in 2017 and 2018, indicating more stable performance in the
local correlation.

3.2. Analysis of Driving Force Factors of PM2.5

This section mainly discusses which factors have the strongest correlation with PM2.5
in the time series and which factors affect the spatial distribution of PM2.5. In previous
studies, GDP, industrial production, built-up areas, use of energy, population density, and
other factors were often selected as social influencing factors [37,57], while temperature,
humidity, precipitation, and other meteorological conditions were selected as natural
factors [58]. However, in most of these articles, the selection of driving factors was more
dependent on the conclusions of other scholars than on experimental explanations. This
strongly restricts the subsequent analysis results and may lead to inappropriate factors
entering the analysis model. In the present study, the seven natural factors and eleven
social factors that we collected were analyzed and screened step by step. In this way,
we obtained a comprehensive selection of impact factors suitable for large-scale spatial
research and providing scientific guidance for subsequent research.

3.2.1. Analysis of Meteorological Factors

As a natural factor, meteorological conditions play an important role in the propaga-
tion of particulate matter and the concentration of atmospheric pollutants [29,59]. However,
the present study found that the same meteorological factors are affected by objective fac-
tors, such as the different climatic zones, geographical locations, and spatial scopes of
the study area, and had certain differences in their ability to influence PM2.5 in different
regions. In this study, we used the meteorological data of the three major urban agglomera-
tions over 48 months to explore the correlation between various meteorological factors and
PM2.5 concentration.

Through the thermal diagram (Figure 8), we found that except for the positive correla-
tion between air pressure and PM2.5, the other six indexes all showed a negative correlation
with PM2.5 concentration. The correlation between temperature and PM2.5 concentration
was the strongest, followed by that between pressure and precipitation. The influence of
humidity and wind speed on PM2.5 was relatively weak. However, when the minimum
distance clustering method was used for the hierarchical clustering of each factor, it was
found that minimum temperature and average temperature could easily be grouped due
to their strong data correlation, so they were removed in the subsequent analysis.

Qualitative cluster analysis showed that there was a certain correlation between
meteorological factors. If the meteorological factors directly participated in the subsequent
modeling process without screening, the GWR model could be affected by multicollinearity,
producing errors or offering no results in the analysis results [60]. Therefore, the experiment
further calculated the variance inflation factors (VIFs) of each meteorological factor to
test the multicollinearity of the data [61]. Previous studies have pointed out that it was
appropriate to set the VIF value between 2.5 and 10 [62], but the higher the VIF value, the
stronger the collinearity between the influence factors. The above research has found that
the high collinearity between the influence factors will have a certain impact on the GWR
Model results. [63] In the results, we set the VIFs value to no more than 5 [64] for each
factor. As shown in Table 5, only three meteorological factors—humidity, wind speed, and
precipitation—passed the multicollinearity test.



Int. J. Environ. Res. Public Health 2021, 18, 2222 17 of 25

Int. J. Environ. Res. Public Health 2021, 18, x 17 of 25 
 

 

agglomerations over 48 months to explore the correlation between various meteorological 
factors and PM2.5 concentration. 

Through the thermal diagram (Figure 8), we found that except for the positive corre-
lation between air pressure and PM2.5, the other six indexes all showed a negative corre-
lation with PM2.5 concentration. The correlation between temperature and PM2.5 concen-
tration was the strongest, followed by that between pressure and precipitation. The influ-
ence of humidity and wind speed on PM2.5 was relatively weak. However, when the min-
imum distance clustering method was used for the hierarchical clustering of each factor, 
it was found that minimum temperature and average temperature could easily be 
grouped due to their strong data correlation, so they were removed in the subsequent 
analysis. 

 
Figure 8. Cluster thermograph. The correlation between various meteorological factors and PM2.5 
and the autocorrelation between the factors based on clustering. 

Qualitative cluster analysis showed that there was a certain correlation between me-
teorological factors. If the meteorological factors directly participated in the subsequent 
modeling process without screening, the GWR model could be affected by multicolline-
arity, producing errors or offering no results in the analysis results [60]. Therefore, the 
experiment further calculated the variance inflation factors (VIFs) of each meteorological 
factor to test the multicollinearity of the data [61]. Previous studies have pointed out that 
it was appropriate to set the VIF value between 2.5 and 10 [62], but the higher the VIF 
value, the stronger the collinearity between the influence factors. The above research has 
found that the high collinearity between the influence factors will have a certain impact 
on the GWR Model results. [63] In the results, we set the VIFs value to no more than 5 [64] 
for each factor. As shown in Table 5, only three meteorological factors—humidity, wind 
speed, and precipitation—passed the multicollinearity test. 

  

Figure 8. Cluster thermograph. The correlation between various meteorological factors and PM2.5 and the autocorrelation
between the factors based on clustering.

Table 5. Variance inflation factors (VIFs) statistical table for each factor.

Variable VIFs State

X10: Maximum temperature 9.155588111575856 Failed
X12: Humidity 1.831256992288039 Pass

X13: Wind speed 1.7003003448074754 Pass
X14: Pressure 14.098901165524186 Failed

X15: Total precipitation 4.594658800736686 Pass

3.2.2. Analysis of Humanity Factors

We analyzed the spatial differentiation characteristics of PM2.5 influencing factors by
adopting the three models in the geographic detector, and the following conclusions were
drawn.

(1) Factor detector. The factor detector is mainly used to detect the explanatory power
of influencing factors for some phenomena. In Table 6, which provides the Factor_detector
analysis results, the influence of each factor on the spatial heterogeneity of PM2.5 passed
the significance test. By comparison, in the three urban agglomerations of the YREB, the
explanatory power of the spatial differentiation of the top five PM2.5 impact factors was
ranked as follows: enterprises (X3) > total precipitation (X15) > social public vehicles
(X5) > wind speed (X13) > green coverage in the built-up area (X7). These five factors
were not completely attributed to socio-economic factors or meteorological factors, which
indicates that the spatial heterogeneity of PM2.5 in the three urban agglomerations of the
YREB is affected by multiple factors. Five factors with the strongest explanatory power,
including enterprises, total precipitation, social public vehicles, wind speed, and green
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coverage in the built-up area were selected via the principal component analysis. These
factors were able to explain the causes of PM2.5 spatial differentiation in nearly half of the
three urban agglomerations, thereby simplifying the scientific parameters for large-scale
spatial regression analysis.

Table 6. Factor_detector results.

X1 X2 X3 X4 X5 X6 X7 X8 X12 X13 X15

q statistic 0.0488 0.0388 0.1749 0.0432 0.0768 0.0243 0.0534 0.0518 0.0269 0.0618 0.1179
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) Ecological detector. Ecological detectors were used to compare whether there were
significant differences in the influence of various influencing factors on the spatial distribu-
tion of PM2.5. In Table 7, Y represents the two factors that have significant differences in
the spatial distribution of PM2.5, while N represents no significant difference. The results
showed the following: (1) There are significant differences between the enterprises (X3)
and other factors on the distribution of PM2.5 concentration in the three urban agglomer-
ations. (2) In addition to the social public vehicles (X5), the total precipitation (X15) and
the other nine factors also have significant differences in the spatial distribution of PM2.5.
(3) In the remaining nine factors, except for social public vehicles (X5), population (X2),
enterprises (X3), and humanity (X12), the other five factors had no significant effect on
PM2.5 concentration distribution.

Table 7. Ecological_detector results.

Variable X1 X2 X3 X4 X5 X6 X7 X8 X12 X13 X15

X1 - - - - - - - - - - -

X2 N - - - - - - - - - -

X3 Y Y - - - - - - - -

X4 N N Y - - - - - - - -

X5 N N Y N - - - - - - -

X6 N N Y N Y - - - - - -

X7 N N Y N N N - - - - -

X8 N N Y N N N N - - - -

X12 N N Y N Y N N N - - -

X13 N N Y N N N N N N - -

X15 Y Y Y Y N Y Y Y Y Y -

(3) Interaction detector. The Interaction_detector module can be used to compare
the difference of the explanatory power of each factor superposed by two factors and
that of a single factor. The analysis results in Table 8 show that the interaction of any
two factors had a positive enhancement effect on the increase in the PM2.5 concentration
and that this enhancement relationship varied between two times and ten times. This
conclusion can be found by comparing the explanatory power of a single influence factor
in Table 6. Especially when GDP (X1), population density (X6), the proportion of secondary
industry (X2), and humidity (X12) were combined with other factors, their impact on PM2.5
increased the most. This discovery could facilitate the comprehensive treatment of air
pollution. Meanwhile, when the enterprise (X3) interacts with other factors, its influence
on the PM2.5 distribution difference of the three urban agglomerations is the strongest on
the whole. Wind speed (X13) and total precipitation (X15) also appeared to exert a strong
influence on the PM2.5 precipitation in the three major urban agglomerations when they
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interacted with most factors. This phenomenon indicates that meteorological factors as
“catalysts” can enhance the explanatory power of other factors for PM2.5 concentration.

Table 8. Interaction_detector results.

Variable X1 X2 X3 X4 X5 X6 X7 X8 X12 X13 X15

X1 0.0488 - - - - - - - - - -

X2 0.2558 0.0389 - - - - - - - - -

X3 0.2786 0.3439 0.1749 - - - – - - -

X4 0.1402 0.3034 0.3380 0.0432 - - - - - - -

X5 0.2013 0.2778 0.3613 0.2085 0.0768 - - - - - -

X6 0.2678 0.2221 0.3029 0.2026 0.1782 0.0243 - - - - -

X7 0.2556 0.2279 0.3265 0.3128 0.2469 0.2956 0.0534 - - - -

X8 0.2945 0.2696 0.3389 0.2676 0.3106 0.2767 0.3165 0.0518 - - -

X12 0.2176 0.2032 0.3476 0.179 0.2471 0.2167 0.2085 0.2074 0.0269 - -

X13 0.2654 0.2474 0.3562 0.2606 0.2556 0.2812 0.2307 0.3349 0.3046 0.0618 -

X15 0.2760 0.2907 0.3547 0.2897 0.2629 0.2650 0.3043 0.3007 0.2866 0.2974 0.1179

4. Discussion

We borrowed the idea of principal component analysis to select the first five factors
with the strongest explanatory power, including enterprises, total precipitation, social
vehicle ownership, wind speed, and green coverage, in the built-up area. These factors
were able to explain the causes of PM2.5 spatial differentiation in nearly half of the three
urban agglomerations, thereby simplifying the scientific parameters for large-scale spatial
regression analysis.

Based on GWR and MGWR models, the above five indicators were selected for
geographic regression analysis modeling for PM2.5 from 2015 to 2018. Figure 9 shows the
modeling results for 2018. The main findings are as follows: (1) The spatial distribution
patterns obtained by the two models were different. For the Local R2 of GWR, YRD-UA
was the smallest, and CY-UA was the largest. The local regression effect of MGWR was the
worst for CY-UA and the best for YRMR-UA. The regression results indicated that different
models had some differences in their feature extraction of explanatory factors. (2) From the
regression results, the local regression coefficient of MGWR was significantly higher than
that of GWR. Since MGWR allowed the optimization of covariate specific bandwidth rather
than producing a single average bandwidth applicable to all relationships [52], making
the model more sensitive to capturing details, the R2 effect of MGWR was much better
than that of GWR. (3) In Table 9, we list more regression outcome parameters for the GWR
and MGWR models over four years. In addition to R2, the residual squares of MGWR was
much smaller than that of the GWR model, and the selection of parameter Sigma was also
more rational. To sum up, MGWR in a large-scale spatial study was better than the GWR
model in its overall regression effect, year-over-year stability, and local detailed description,
making this model more suitable for multi-factor regression analysis from the perspective
of urban agglomeration.

The bandwidth and local regression coefficients are commonly used for the impact
analysis of driving force factors [60,65]. The most significant advantage of the MGWR
model was that it not only allowed the spatial variation of each parameter estimate but
also generated a separate optimal bandwidth for the conditional relationship between the
response variable and each predictive variable, simulating the spatial variation process
under different spatial scales. In Table 10, we outline these statistics, including the enter-
prises, total precipitation, social vehicle ownership, wind speed, and green coverage in
the built-up area, as well as the effective number. The variables with large bandwidth will
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have a wide spatial influence on the dependent variable (PM2.5 concentration). In contrast,
variables with a small bandwidth affected the dependent variable (PM2.5 concentration)
at a local scale. Effective number of parameters (ENP) offered a compromise between the
variance of the fitting value and the deviation of the coefficient estimate value, which was
used to measure the value of the equilibrium point. In the first two years, green coverage
in the built-up area (X7) had the minimum bandwidth. In the second two years, the factor
of the minimum bandwidth and the maximum ENP value were both wind speed (X13).
This reflected the change process of the influencing factors of spatial heterogeneity.

The calculated annual average of the local regression coefficients is shown in Table 11
and roughly reflects the changing trend of the most important factor affecting the PM2.5
of the urban agglomerations. The results showed the following: (1) In 2015, the most
important influencing factors of the three urban agglomerations were all different—CY-UA:
wind speed (X13); YRMR-UA: green coverage in the built-up area (X7); YRD-UA: total pre-
cipitation (X15). (2) Social public vehicles (X5), which were the most important influencing
factor, were responsible for CY-UA and YRMR-UA, while the most important influencing
factor for PM2.5 for the YRD-UA was wind speed (X13). (3) By 2017, the most important
influencing factors of the three urban agglomerations changed again. The most important
driving force of CY-UA changed from socio-economic factors to the meteorological factor
of total precipitation (X15), while enterprises (X3)—as a socio-economic factor—influenced
the PM2.5 concentration of the remaining two urban agglomerations. (4) In the analysis
results of 2018, the most important impact factor of the three urban agglomerations was
unified as wind speed (X13), indicating that meteorological factors played a dominant role
in spatial regression modeling during this year.
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Table 9. Comparison of the GWR and MGWR parameters.

Analysis Index
2015 2016 2017 2018

GWR MGWR GWR MGWR GWR MGWR GWR MGWR

Residual Squares 5016.893 41.043 3020.999 44.202 3765.526 51.354 3245.950 46.311
Effective Number 10.960 12.145 10.930 11.893 10.745 11.098 10.995 11.474

Sigma 9.066 0.828 7.033 0.858 7.840 0.918 7.294 0.875
AICc 534.385 196.576 498.050 201.150 513.242 209.572 503.022 203.248

R2 0.283 0.430 0.253 0.386 0.177 0.287 0.226 0.357
R2Adjusted 0.166 0.312 0.132 0.263 0.046 0.155 0.010 0.233

Table 10. 2015–2018 MGWR Bandwidth statistics table.

Variable
2015 2016 2017 2018

Bandwidth ENP Bandwidth ENP Bandwidth ENP Bandwidth ENP

Intercept 43.000 2.902 43.000 2.902 43.000 2.999 43.000 3.022
X3 71.000 1.658 71.000 1.755 71.000 1.646 71.000 1.599
X5 71.000 1.846 71.000 1.911 71.000 1.761 71.000 1.793
X7 46.000 2.446 44.000 2.320 71.000 1.498 68.000 1.608
X13 62.000 1.658 71.000 1.591 65.000 1.730 65.000 1.830
X15 70.000 1.471 71.000 1.415 68.000 1.464 71.000 1.622

Table 11. 2015–2018, table of the total regression coefficient for each urban agglomeration.

Year UA X3 X5 X7 X13 X15

2015
CY-UA 0.0501 0.1838 −0.0519 0.2845 −0.2318

YRMR-UA 0.0321 0.1153 −0.3978 0.1060 −0.3210
YRD-UA 0.0297 0.0362 −0.2294 0.1841 −0.3227

2016
CY-UA −0.1898 0.4302 −0.1964 0.2794 −0.0626

YRMR-UA −0.1097 0.2146 −0.1439 0.1891 0.0130
YRD-UA −0.1235 0.1102 −0.0521 0.1545 0.0048

2017
CY-UA −0.0926 0.1156 0.0154 0.2064 −0.2524

YRMR-UA −0.1633 0.0668 −0.0567 0.1609 −0.0102
YRD-UA −0.2467 0.0171 −0.0654 0.0672 0.0147

2018
CY-UA −0.1760 0.0942 0.1113 0.3328 −0.2483

YRMR-UA −0.1482 0.0803 −0.0967 0.3372 −0.1990
YRD-UA −0.2029 0.0219 −0.1258 0.2824 −0.2103

In summary, from multiple spatial scales, this study objectively describes the spatial
and temporal distribution of PM2.5 in the three urban agglomerations of the YREB from
2015 to 2018 and comprehensively uses a variety of analysis methods such as correlation
analysis and geodetector. It significantly improves the applicability and universality of the
analysis model and provides an effective method for subsequent studies. However, due
to the limitation of time granularity of statistical yearbook data, GWR model and MGWR
model only analyzed the interannual variation rule of PM2.5 driving factors, which is also
the direction to be improved in subsequent experiments.

5. Conclusions

This paper took PM2.5 data from China’s environmental monitoring sites from 2015
to 2018 as its main research object and combined socioeconomic data and meteorological
data from the same period to discuss the spatiotemporal distribution characteristics and
the driving force factors of PM2.5 in the three urban agglomerations of the YREB. The
spatial autocorrelation and spatial heterogeneity of PM2.5 from the perspective of urban
agglomeration were analyzed, and the variations in this characteristic under different
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time granularities were presented using exploratory spatial analysis and a geographical
statistical model. The main conclusions of the study are as follows: (1) Over the past four
years, PM2.5 concentrations in the three urban agglomerations have obviously declined.
In terms of specific agglomerations, the decrease of PM2.5 in the Yangtze River Middle-
Reach urban agglomeration was the largest. Specifically, the PM2.5 concentration in the
provincial capitals and municipalities has dropped the most. The analysis on the seasonal
scale showed that the concentration of pollutants is high in spring and winter, while the
concentration of PM2.5 is low in summer and autumn. (2) In terms of spatial distribution,
PM2.5 pollution in the Yangtze River Middle-Reach urban agglomeration was more serious
than that in the other two urban agglomerations, and that in the north bank of the Yangtze
River was more serious than that in the south bank. Furthermore, the discussion of spatial
autocorrelation shows the changing trend of high and low pollutant concentration areas.
(3) Based on the correlation analysis and geographical detector model, we simplified the
initial eleven impact factors into five indicators: enterprises, total precipitation, social public
vehicles, wind speed, and green coverage in the built-up area. These factors can effectively
explain the PM2.5 spatially stratified heterogeneity for more than half of the three major
urban agglomerations of the YREB and can be applied to the spatial analysis models as
the main impact factors of PM2.5. It is found that the superposition of meteorological
factors and socio-economic indicators will have a significant heterogeneity effect in the
PM2.5 distribution. (4) The GWR and MGWR models were used for spatial regression. In
the quantitative analysis, the MGWR model showed better fitting regression and smaller
errors and was more suitable for studying spatial characteristics on a large-scale. On this
basis, the MGWR model was adopted to analyze the most important factors of the three
urban agglomerations, and we found that the most important driving force factors of
PM2.5 in 2015–2017 differed from both spatial and temporal perspectives. As the most
influential driving factor, wind speed affected the spatial distribution of PM2.5 in the three
urban agglomerations along the YREB in 2018. In addition, future research will focus on
eliminating the loss of sequence rules caused by the data averaging process and improving
the accuracy of PM2.5 spatial modeling. In order to better control air pollution, the PM2.5
concentration prediction model is also one of the key points of future research.
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