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ABSTRACT

Motivation: In molecular biology, as in many other scientific fields,
the scale of analyses is ever increasing. Often, complex Monte Carlo
simulation is required, sometimes within a large-scale multiple testing
setting. The resulting computational costs may be prohibitively high.
Results: We here present MCFDR, a simple, novel algorithm for
false discovery rate (FDR) modulated sequential Monte Carlo (MC)
multiple hypothesis testing. The algorithm iterates between adding
MC samples across tests and calculating intermediate FDR values for
the collection of tests. MC sampling is stopped either by sequential
MC or based on a threshold on FDR. An essential property of the
algorithm is that it limits the total number of MC samples whatever
the number of true null hypotheses. We show on both real and
simulated data that the proposed algorithm provides large gains in
computational efficiency.

Availability: MCFDR is implemented in the Genomic HyperBrowser
(http://hyperbrowser.uio.no/mcfdr), a web-based system for
genome analysis. All input data and results are available and
can be reproduced through a Galaxy Pages document at:
http://hyperbrowser.uio.no/mcfdr/u/sandve/p/mcfdr.

Contact: geirksa@ifi.uio.no
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1 INTRODUCTION

The development of novel experimental techniques is rapidly
increasing the generation of data in many fields in biology,
in particular in genomics with the advent of high-throughput
sequencing (McPherson, 2009; Shendure and Ji, 2008). Chromatin
immunoprecipitation (ChIP) technology combined with next-
generation sequencing generates high-resolution data along the
genome on DNA methylation, histone modifications, transcription
factor binding and more (Horner et al., 2010). The large amount of
data generated by these techniques opens up for statistical studies
of relations between genomic properties, both globally and locally
along the genome. An example of such a local analysis is the study
of how the relation between histone modifications and repeating
elements varies across chromosomes (Pauler et al., 2009). A natural
approach to such an investigation is to split the genome into bins
along the genome, e.g. one bin per chromosome, cytoband or gene,
and then perform a statistical test of a null hypothesis HO versus

*To whom correspondence should be addressed.
TThe authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First authors.

an alternative hypothesis H1 for each bin. At the same time, due
to the complex structural properties of the genome, it is often
inappropriate to make simplified assumptions that would enable
analytic evaluation of significance (Ewan Birney er al., 2007).
Instead, Monte Carlo (MC) sampling is often needed, resorting to
computationally expensive reshuffling of genomic elements for each
MC sample. As a consequence, Monte Carlo in multiple testing
settings is rapidly becoming important (Sandve et al., 2010).

With tests being performed for a large number of bins locally
along the genome, the computational requirements may become
extremely high, as the effort needed is basically the multiple of
a very large number of test by a (possibly also very large) number
of MC samples. Several papers have considered ways to reduce
the number of samples during MC-based P-value computation for
individual tests. Besag and Clifford (1991) propose a sequential MC
algorithm for P-value computation, reducing the needed number of
MC samples for tests that are anyway insignificant. Other papers
consider alternative ideas for P-value estimation, such as controlling
resampling risk (Gandy, 2009), and prediction of P-values using
Random Forest models (Kustra et al., 2008). Also, there has been
some work on Monte Carlo approaches for multiple testing in cases
where P-values can be calculated analytically (Lin, 2005; Seaman
and Miiller-Myhsok, 2005).

In this article, we propose an algorithm that limits the total
number of needed MC samples, regardless of how many tests
are truly HO. In Section 2, we describe our algorithm, in which
MC sampling is stopped either according to the sequential MC
stopping rule or when we reach a given multiple testing significance
threshold. Then, in Section 3, we show on both simulated and
real data that this method can lead to a drastically reduced total
number of MC samples. Finally, Section 4 presents a discussion and
some conclusions. Further details are provided in the accompanying
Galaxy Pages (Goecks et al., 2010) document.

2 METHODS

A commonly used multiple testing analogue to the classical P-value is the
so-called g-value (Storey, 2002). The g-value of an individual test is defined
as the minimal false discovery rate (FDR) (Benjamini and Hochberg, 1995)
at which the test is called significant. P-values relate to g-values by a factor
which is proportional to the number of tests for which HO is true. Denote an
MC sample of the test statistic as ‘extreme’ if it is further to the H1-tail of
the null distribution than the observed test statistic.

When most tests are from HO, the correction factor is large. Then, for
an individual test to become significant, many MC samples are needed.
Note, however, that in such a situation most tests would have many extreme
samples (as they come from HO0), implying that for these tests the MC
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sampling would have been stopped early if a sequential MC stopping criterion
were adopted. In the opposite scenario, when most tests are from H1, the
multiple testing correction factor is small, and fewer MC samples are needed
in order to obtain a significant g-value for each individual test. But then few
tests have many extreme samples, and few tests would have been stopped
early by sequential MC.

Consider testing m null hypotheses Hyy, ..., Hp, with corresponding test
statistics 7T;=¢;, i=1,...,m, where large values of #; constitutes evidence
against Ho;. Each test is performed by MC simulation: for test i=1,...,m,
we simulate n; independent datasets under the null hypothesis, yielding
simulated test statistics ti’; forj=1,...,n;. Let k; be the number of simulated
test statistics that are greater than or equal to #;. The Monte Carlo P-value
Pme (Davison and Hinkley, 1997; Phipson and Smyth, 2010) is then given by
ki +1
ni+1’
since under Ho;, all n;+1 values ¢;,1}], ...,t,.*;,i are equally likely values of
T;, and k;+ 1 of these are greater than or equal to the observed ¢;.

Our concern is with choosing the number of needed MC samples, n;,
for each test i [cf. the discussion in Hope (1968)]. To begin, consider the
case of a single test, m=1, and assume that we observe k; =0. Then Py, =
(nj+1)~!, and for a given significance threshold «, we need n; > é —1to
have a possibility of rejecting Hy. Thus, the stricter we make the significant
threshold, the more MC samples are needed. For example, for « =0.05, we
only need n; > 19, but for «=0.001 we need n; >999.

For a moderate to large number m of tests, computational problems arise
for two reasons: first, simply because m itself is large; second, because of
the need to correct for multiple testing. As an example, assume that n;=n
for each i, and that we use Bonferroni corrected P-values to account for
multiple testing, with an overall family-wise error rate of o.. Then, each test
has significance threshold «/m, and m(% - ) samples are needed in total.
For m=1000 and «=0.05, this means that nearly 20 million MC samples
are needed. Since each MC sample typically involves a complex reshuffling
of genomic elements, the computational cost is extremely high.

Besag and Clifford (1991) propose a sequential MC method for hypothesis
testing. Their basic idea is to stop MC sampling at the point that it becomes
clear that the null hypothesis will never be rejected. Assume that large values
of the test statistic constitute evidence against HO. Instead of using a fixed
MC sample size, sampling is continued until either a pre-determined number
h of values larger than the observed test statistic #; (i.e. extreme MC samples
according to our definition) has been obtained (at MC sample size /, say), or
until some maximum number n of MC samples have been calculated. Let g
be number of values exceeding #; when this algorithm terminates. Then, the
sequential P-value Py, is given by

L (g=h),
g+ D/+1) (g<h).

Besag and Clifford (1991) suggest setting 2=10 or 20.

For the multiple testing setting, we propose to augment this procedure by
adding a third stopping criterion, namely a g-value threshold «, aiming to
run just as many samples as are needed to obtain an accept/reject decision for
each test. For m tests with observed test statistics #1,12,...,,, our proposed
Monte Carlo False Discovery Rate (MCFDR) algorithm is as follows:

Pine =Pr(T; > 1;|Ho;) =

smc

(1) Let A={1,2,...,m} and B=¢
(2) UntilA=¢:
(a) For each i€A, calculate/update p; by sequential MC, using an

additional MC sample. If a total of 4 samples exceeding #; are
then obtained, move i from A to B.

(b) Calculate g-values (see below) g1,g2,...,qn based on the current
P-values Py,P;,...,P,. If gi <« for all i €A, then move all i€ A
to B.

Instead of adding only a single MC sample in Step 2a, a batch of N > 1
additional MC samples may be added.

In Step 2b above, we calculate g-values based on the current P-values. The
g-values mainly depend on the proportion g of true null hypotheses among
the m tests. Let P(1) <Py <--- < Py be the ordered, observed P-values. For
a given estimate 77 of 79, ¢(;y =g-value(P(;) can be easily estimated as

§iy= min mxdgPg)/j.
Ga = min m+7o * W/

Thus, the main issue is estimating 9. Many methods for estimating o
have been proposed in the literature (Celisse and Robin, 2010; Finner and
Gontscharuk, 2009; Friguet and Causeur, 2011; Hwang, 2011; Jiang and
Doerge, 2008; Langaas et al., 2005; Nettleton et al., 2006; Storey, 2002;
Tamhane and Shi, 2009; Zhang, 2011). Most methods assume that P-values
are continuous and uniformly distributed on (0, 1) under Hy. However, in
the sequential MC case, P-values are discrete and uniformly distributed on
the set

H={1,h)(h+1),....h)(n—1),h/n,(h—1)/n, ..., 1/n}.

Pounds and Cheng (2006) have proposed a very simple estimator of 7q:
ﬁ'():min(l,% zm=1 pi)- This estimator can be shown to give conservative
estimates for both discrete and continuous P-values, and we have therefore
chosen to use this estimator in our algorithm.

3 RESULTS

3.1 Simulations

In order to investigate the correctness and efficiency of the
proposed scheme, we perform a simulation study. The uniform (0,1)
distribution is used to generate P-values from tests for which HO
is true, and a Beta distribution with more mass on lower values is
used to generate P-values under H1, giving a Uniform-Beta mixture
distribution of underlying P-values for tests (Pounds and Morris,
2003). By definition, the probability that a test statistic randomly
sampled under H is more extreme than the observed test statistic
is given by the P-value. Let P; be the P-value corresponding to
test i. Then, instead of drawing test statistics directly, we may
draw Bernoulli variables with parameter P; as indicators of whether
a randomly drawn test statistic would be more extreme than the
observed test statistic. Accordingly, simulation for a single test i
may be performed by drawing ng;;, MC samples Yj;, j=1,..., 15y
of a Bernoulli variable with parameter P;, with Yj; =1 corresponding
to an extreme sample.

For standard non-sequential MC we draw a fixed number of
samples for each test. For sequential MC, samples are drawn until a
given number of extreme samples is observed or until a maximum
number of samples is reached. For the MCFDR scheme, samples are
drawn either until a given number of extreme samples is observed
or until the estimated FDR-value falls below a given threshold. The
simulation procedure is summarized below:

(1) Draw mmy samples from the Uniform distribution, and
m(1—mq) samples from the Beta («, B) distribution.
(2) Foreachtesti,i=1,...,m
(a) Setg=0
(b) While g is smaller than a limit specified by the stopping
criterion (differently defined in the basic scheme, the

sequential MC scheme, and the MC-FDR scheme)
(1) Generate Y ~ Bernoulli (p;)

2)IfY=1letg=g+1

As the main simulation, we ran 5000 tests, with « =0.25, =25,
h=20, a maximum of 50000 samples for standard and sequential
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Fig. 1. Total number of samples for sequential MC and MCFDR,
respectively, as a function of the number of true H1. When the proportion
of true H1 is low, most tests are stopped by the sequential MC criterion,
resulting in a similar number of samples for both schemes. At larger
proportions of true H 1, the multiple testing correction becomes milder, and
thus fewer samples are needed to reach the FDR threshold. Thus, for the
MCFDR scheme the total number of needed samples decreases with higher
true H1 proportions. In contrast, for the sequential MC scheme, the number
of needed samples increases linearly with increasing proportion of true H1.
For standard MC, a large, constant number of samples is needed.

MC, and with 7 varying between 0 and 1. The maximum number
of samples was chosen to ensure the possibility of significant results
after multiple testing correction. Figure 1 shows the resulting total
number of samples for sequential MC and MCFDR, respectively,
as a function of the number of true H1. Figure 2a shows that the
number of rejected tests, as a function of the number of true H1, is
very similar across all three schemes. When the number of true H1 is
low, stronger multiple testing correction is needed, leading to lower
power and under-rejection. When the number of true H1 increases,
more rejections can be made, while still controlling the FDR. For
example, when 4500 of the 5000 hypotheses are truly from H1,
rejecting all 5000 null hypotheses would give an FDR of exactly
(5000—4500)/5000=0.1. Note that these are general features of
the FDR; this behavior is not specific to our approach. Figure 2b
shows that the empirical FDR is also very similar across schemes,
and very close to the chosen FDR threshold.

In order to inspect the behavior of the schemes more closely, it is
necessary to look at the number of samples and estimated P-values
at individual settings of true H1. Figure 3a shows underlying and
estimated P-values in a collection where 10% of tests come from
H1. Figure 3b shows the number of needed samples per test, with
tests sorted in the same order as in Figure 3a. A few tests (seen
at the left side of the plot) corresponding to very low P-values,
need a large number of samples to become significant since they are
subject to strong multiple testing correction (due to the relatively
high 7). However, the remaining (majority of) tests are stopped
early by the sequential MC threshold. The other end of the spectrum,
with a large proportion of true H1, is shown in Figure 4a and
Figure 4b. Figure 4a shows underlying and estimated P-values in
a simulation where 80% of tests come from H1. Here, most P-
values are small, and estimated with reasonable accuracy. Figure 4b
shows the corresponding number of needed samples. Only a few of
the P-values are large enough to stop early by the sequential MC
criterion. However, the mild multiple testing correction (due to the

relatively low ) means that a limited number of samples is needed
to reach g-values below the chosen threshold (0.1).

In order to further investigate the generalizability of the simulation
results, we performed additional simulations with varying % (detailed
plots are provided in the accompanying Galaxy Pages document). As
expected, both the number of samples and the precision of estimated
P-values increased as a function of increasing /, for both sequential
MC and the MCFDR scheme. Apart from this, the behavior and
relation between the schemes were as for the main simulations
(using h=20). We have also tried simulations with a range of
different settings for various other parameters, without observing
any unexpected behavior. Thus, we are not aware of any setting for
which the MCFDR scheme would fail to work as intended.

3.2 Real data

The regulatory role of epigenetic modifications is gaining increasing
attention, to a large degree driven by the increased availability of
high resolution, genome-wide data on such modifications (Barski
et al., 2007). A recent study by Pekowska et al. (2010) investigates
how profiles of H3K4me2-modifications in T-Cells (Wang et al.,
2008) are distributed within genes. Based on a clustering of
H3K4me2-profiles, five classes of genes are distinguished. A main
distinction between these classes is whether H3K4me? is localized
around the transcription start site or to a larger degree spread
throughout the gene body. Pekowska et al. (2010) proceed to discuss
implications of these patterns for expression and tissue specificity.

The distributive aspect of H3K4me2-modifications is in
Pekowska et al. (2010) mainly considered on a per class basis,
where clustering allows patterns to be seen across a large number
of genes. An alternative is to ask, individually for each gene,
whether H3K4me2-modifications appears significantly more at the
upstream end of the gene. This requires a precise hypothesis to be
evaluated statistically for each gene. A natural test statistic is the
average relative positioning of modifications within the gene. As
histone modifications are connected to nucleosomes, which favor
certain inter-spacings along DNA, the empirical inter-point length
distribution should be preserved in a null hypothesis (Sandve et al.,
2010). This requires a Monte Carlo based hypothesis test, where
H3K4me?2-modifications are permuted while preserving inter-point
distances, and where the test statistic is the average relative position
within a gene.

To focus on genes where there should be enough data to support
conclusions to be drawn, we consider the 3466 Ensembl genes
that include 10 or more histone modifications. We find that 2747
(79%) of the considered genes have significantly more H3K4me2-
modifications at the upstream end of the gene, confirming that
the H3K4me2-modifications preferentially localize close to the
transcription start site.

For any particular gene, we may also ask the opposite question:
does H3K4me?2 localize preferentially at the downstream end
of the gene? We find four Ensembl genes with significantly
more H3K4me?2 modifications downstream in the gene. Although
the preferential localization downstream in these genes could
represent a distinct regulatory signal targeting this gene set, a
more plausible explanation is that the genes in question are
overlapping other genes (or gene variants) that drive the association
to H3K4me?2 modifications. Manual inspection of these particular
regions supports this latter explanation. Two of the genes overlap

3237



G.K.Sandve et al.

—
Q
~

8 8
Q 7| — Basic MC Q 7| — Basic MC
© | s sSeqMC © | e SeqMC
w 8 |- McFDR g | ---- MCFDR
2 g S
e
L 9 o
34 S | S |
Q [=3 o
5 8 | =g
5 K S
g
2 g § -
o - o - -
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of true H1s Number of true H1s

Fig. 2. Behavior of the sequential MC and MCFDR schemes as a function of the number of true H1. (a) Number of rejected tests as a function of the number
of true H1. (b) Empirical FDR on test collections as a function of the number of true H1.
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Fig. 3. Test collection at 79 =0.9. (a) Underlying and estimated P-values (sorted by underlying P-value). The small P-values, mostly from H 1, are accurately
estimated. Larger P-values, mainly from HO, are less accurately estimated, as for sequential MC. (b) Number of samples drawn per test, as well as the number
of extreme samples among these, with tests sorted in the same order as in panel (a).
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Fig. 4. Test collection at 7o =0.2. (a) Underlying and estimated P-values (sorted by underlying P-value). (b) Number of samples drawn per test, as well as
the number of extreme samples among these, with tests sorted in the same order as in panel (a).

with an alternative gene variant, where the methylations display a When asking whether H3K4me2-modifications appears
typical pattern in reference to this alternative variant. A third gene significantly more at the upstream end of the gene, there is a
is overlapping with another (Ensembl) gene at the opposite strand high proportion of very low P-values. Therefore, the sequential
(Fig. 5). MC threshold on number of extreme samples does not apply early
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Fig. 5. H3K4me2 modifications and Ensembl genes occurring in gene region corresponding to Ensembl gene ID ENSG00000112038 (chr6:154,402,136-
154,609,693), visualized by the UCSC Genome Browser. In reference to the above-mentioned gene (corresponding to Ensembl transcript ID ENST00000337049
in the figure), H3K4me2 modifications occur significantly more downstream in the gene. However, in reference to the gene corresponding to ID
ENSTO00000367220, which is shorter and at the opposite strand, the H3K4me2 modifications are preferentially located close to TSS, occur gradually less

frequently throughout the gene body and stop appearing after the gene body.

for the majority of tests. An unlimited sequential MC run was
still running after 2 weeks, having surpassed 1.5 million samples
for some tests. We therefore imposed a ceiling on the maximum
number of samples for sequential MC, set to 50000 to ensure the
possibility of significant results after multiple testing correction
(indeed, using a maximum of 10000 samples for sequential MC
missed all significant results when asking about overrepresentation
of H3K4me2 downstream in genes). Many of the tests hit the
imposed ceiling on maximum number of samples, with a total
number of >30 million samples across tests. In the MCFDR
scheme, using a FDR-threshold of 0.1, the total number of samples
was <350000, almost a factor 100 less than with sequential MC
(running time were for MCFDR <5 min, as compared to >9h for
sequential MC). As a large proportion of the null hypotheses end
up rejected, the number of samples needed to reach g-values below
the chosen threshold is limited.

When investigating whether H3K4me2 modifications are
preferentially located downstream in genes, there is a very low
proportion of rejected tests. Most of the tests stop early by the
sequential MC threshold, making the two schemes behave very
similarly. The few rejected tests are subject to a very strong multiple
testing correction, and as discussed above needs >10000 samples
to at all allow any test to beat the FDR threshold. When applying
a ceiling of 50000 samples to both schemes, the total number of
samples are essentially similar. If the ceiling is removed, the total
number of samples increases only slightly for MCFDR, while it
increases substantially for sequential MC (surpassing one million
samples for some of the tests). Details are provided in the Galaxy
Pages document.

4 DISCUSSION AND CONCLUSIONS

We have provided a simple and efficient method for MC-based
multiple testing. The method is freely available as part of the
Genomic HyperBrowser, an open source, generic web-based system

for statistical analysis of genomic annotation data. The method has
been shown to work well on simulated data, and also to be highly
useful for a realistic example, with computation times reduced by a
factor of nearly one hundred.

MC-based hypothesis testing is often needed for genomic
data. In our example of H3K4me2-modifications, the simplifying
assumptions that would be needed to do analytic tests would be
highly unreasonable. As discussed in Ewan Birney et al. (2007),
assuming Poisson distributed positions of H3K4me2-modifications
(as would be needed for an analytic test) gives an unrealistically
small variance of the null distribution, and hence leads to false
positives. Indeed, the analytic version of the test gave 112 significant
findings for the downstream positioning test, as opposed to only four
findings when preserving inter-point distances in the MC version.

Increasingly, we see applications where the calculation of
each single MC sample is quite computationally expensive, and
where the problem is further compounded by the need to do
thousands of hypothesis tests (Ewan Birney et al., 2007; Sandve
et al., 2010). In general, we must consider both statistical and
computational efficiency. The FDR was introduced with the aim
to improve statistical efficiency (as compared with e.g. Bonferroni
correction): reject as many null hypotheses as possible, while
controlling a reasonable error rate. As we have shown, taking the
FDR into account during MC sampling can also greatly improve
computational efficiency when we need to do MC-based multiple
tests.

As shown by both our simulation study and our real data example,
our method is particularly useful in the case where many tests are
truly H1, while still giving correct results if few or no tests are
truly H1. Much work on multiple hypothesis testing and FDR has
(implicitly or explicitly) assumed that the proportion of true null
hypotheses is close to one (Efron, 2004). While this may be a natural
assumption in the oft-studied case of testing for differential gene
expression, we see no reason why it should be made in general.
In fact, our study of H3K4me2-modifications provides an example
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where the assumption is clearly wrong. The case with relatively
few true null hypotheses leads to the largest computational burden
using current algorithms, such as sequential MC. We speculate that
such cases will become increasingly common in the future, with the
advent of more elaborate study designs and research questions—in
particular when doing local analysis of a generic question, such as
investigating a specific relation between genomic features in bins
along the genome.

Our method assumes that the user is mainly interested in an FDR-
based accept/reject decision for each test, and aims to stop MC
sampling when further sampling would not change the decision.
In such a setting, the concept of resampling risk due to Gandy
(2009) is relevant. Attempting to control resampling risk for g-values
would be an interesting undertaking, though not straightforward as it
would require taking uncertainty (variance) of the FDR into account
(Owen, 2005). Kustra et al. (2008) aims to improve computational
efficiency of P-value estimation in specific MC settings. Although
beyond the scope of the present article, it would be interesting to
study the adoption of our FDR-based stopping criterion also to the
methods of Gandy (2009) and Kustra et al. (2008).

We have here considered the MC-based P-values as the values
of direct interest, as these indeed satisfy the criteria for valid
P-values (Davison and Hinkley, 1997; Phipson and Smyth, 2010).
An alternative view is to think of the MC computed P-values as
estimates of an underlying true P-value. Then, the MC P-value
estimate follows a binomial distribution around the underlying
P-value (North er al., 2002). As new samples are added, this
estimated P-value will change, although it will still be highly
dependent on the previous estimate. A possible variation of our
MCEFDR algorithm would be to stop sampling individually as each
testreaches the specified g-value threshold: at Step 2b in the MCFDR
algorithm as described in Section 2, for each i€ A, move i from A
to B if g; <. Although even less computationally demanding, this
could introduce a bias toward stopping sampling at estimates lower
than the underlying P-value. The reason for this is the tendency to
stop sampling at ‘opportune’ times, when the estimate happens to be
at left-hand side of the binomial distribution around the underlying
P-value. This is less likely to happen when using the global criterion,
as it would need to happen for several estimates simultaneously.
Simulations (described in the Galaxy Pages document) confirm this
empirically.

Both simulations and applications of the MCFDR algorithm is
available through the Genomic HyperBrowser. A simple web tool
allows anyone to run simulations at different parameter settings,
providing detailed inspection of the properties of the algorithm.
MCFDR is integrated into the main analysis engine of the Genomic
HyperBrowser, allowing anyone to make use of the algorithm for
analyses on their own data, or reproduce our biological findings (see
the Galaxy Pages document referred to in the abstract). Furthermore,
due to the inherent simplicity of the algorithm, it is easy to apply
to any computational investigation that involves MC and multiple
testing.

Although modern technologies for data generation and
computation is neither a necessity for MC estimation (Hammersley
and Morton, 1954) nor for multiple testing (Schweder and Spjgtvoll,
1982), it seems clear that their adoption has been driven by
increased computer power and data generation technologies such
as microarrays. In the same way, although the ideas here presented

on MC in multiple testing settings are general, we believe their
relevance will increase strongly along with the future developments
in e.g. next-generation sequencing, making them an important part
of a bioinformaticians toolbox in the future.
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