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Abstract
Salt tolerance genes constitute an important class of loci in plant genomes. Little is 
known about the extent to which natural selection in saline environments has acted 
upon these loci, and what types of nucleotide diversity such selection has given rise to. 
Here, we surveyed genetic diversity in three types of Na+/H+ antiporter gene (SOS, 
NhaD, and NHX, belonging to the cation/proton antiporter 1 family), which have well-
characterized essential roles in plant salt tolerance. Ten Na+/H+ antiporter genes and 
16 neutral loci randomly selected as controls were sequenced from 17 accessions of 
two closely related members of the genus Populus, Populus euphratica and Populus 
pruinosa, section Turanga, which are native to northwest China. The results show that 
salt tolerance genes are common targets of natural selection in P. euphratica and 
P. pruinosa. Moreover, the patterns of nucleotide variation across the three types of 
Na+/H+ antiporter gene are distinctly different in these two closely related Populus 
species, and gene flow from P. pruinosa to P. euphratica is highly restricted. Our results 
suggest that natural selection played an important role in shaping the current distinct 
patterns of Na+/H+ antiporter genes, resulting in adaptive evolution in P. euphratica 
and P. pruinosa.
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1  | INTRODUCTION

The ability of an organism to undergo biological adaptation to the en-
vironment is a product of long- term evolution (Darwin, 1859). A pop-
ulation is able to evolve when it contains individuals with heritable 
variation in traits facilitating functional diversification and adaptation. 
Adaptive evolution has been discussed in detail with respect to genes 
involved in human diseases and/or pathogen response pathways 
(Manjurano et al., 2015; Tishkoff et al., 2001; Vigano et al., 2012). In 
plant genomes, genes related to salt adaptation constitute an import-
ant group of loci. It is still largely unknown whether differences in mu-
tation rates across the genome, consistent with natural selection in 
response to environmental stresses, can account for the evolution of 

salt tolerance- related genes in plants. Positive selection will decrease 
nucleotide diversity in proximity to loci under selective pressure and 
increase the prevalence of low- frequency SNPs, whereas balancing 
selection or local adaptation increases both nucleotide diversity and 
the prevalence of medium- frequency SNPs (Biswas & Akey, 2006; Fu 
& Li, 1993; Morrell, Lundy, & Clegg, 2003; Tajima, 1989). Although the 
effects of demographic history on nucleotide diversity and site fre-
quency distributions can mimic the effects of selection, demographic 
influences affect the whole genome while selection targets specific 
loci. Thus, demographic effects can be estimated using a genomewide 
set of reference genes (Akey et al., 2004; Glinka et al., 2003; Wright & 
Gaut, 2005). Multilocus scans that detect outliers from neutral expec-
tations are more apt to successfully identify plant genes influenced 
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by natural selection, as, for example, was carried out in studies on 
drought and/or salt tolerance- related genes in sunflower, wild tomato, 
and Pinus pinaster (Eveno et al., 2008; Fischer et al., 2011; Kane & 
Rieseberg, 2007), “phenology genes” in balsam poplar (Populus balsam-
ifera, Keller et al., 2011, 2012), and candidate genes for cold hardiness 
in coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Eckert et al., 
2009).

Recent advances in genetic analysis and the advent of the ge-
nomic era have permitted the isolation and identification of genes 
responsible for salt tolerance pathways. Salt resistance is a quan-
titative character controlled by multiple genes in plants, with a 
given plant species typically containing hundreds or thousands of 
salt- responsive genes (Brosche et al., 2005; Gong et al., 2005; Ma 
et al., 2013; Qiu et al., 2011; Sottosanto, Gelli, & Blumwald, 2004; 
Yang et al., 2013). Na+/H+ antiporters provide one mechanism for 
the removal of sodium from the cytoplasm in order to maintain low 
cytoplasmic sodium concentrations in plant cells (Bassil, Ohto, et al., 
2011; Bassil, Tajima, et al., 2011; Fukuda et al., 2004; Shi et al., 2003; 
Yokoi et al., 2002). Plant Na+/H+ antiporters belong to the monova-
lent cation/proton antiporter 1 (CPA1) superfamily (Brett, Donowitz, 
& Rao, 2005). At least three types of Na+/H+ antiporter, NHX, NhaD, 
and SOS, which differ in subcellular location, have been found in 
plants (Barrero- Gil, Rodriguez- Navarro, & Benito, 2007; Blumwald 
& Poole, 1985; Shi et al., 2000), and it has been suggested that 
they play important roles in coping with increased Na+ influx and in 
compartmentalizing Na+ within subcellular compartments under salt 
stress (Bassil, Ohto, et al., 2011; Bassil, Tajima, et al., 2011; Fukuda 
et al., 2004; Gaxiola et al., 1999; Shi et al., 2003; Yamaguchi et al., 
2003). Plant salt tolerance can be enhanced by over- expression of 
Na+/H+ antiporters (Apse et al., 1999; Shi et al., 2003), and the ex-
pression profiles of these genes differ between closely related salt- 
sensitive and salt- tolerant species (Kant et al., 2006; Zahrana et al., 
2007).

The sister species Populus euphratica Olivier and Populus pruinosa 
Schrenk are members of the Populus section Turanga Bunge; they grow 
in semi- arid regions of China and are known for their high levels of 
stress tolerance (Figure 1). Both species play important roles in the 
arid ecosystems of northwest China (Li et al., 2003, 2006). Surveys of 
DNA sequence variability in salt tolerance genes from closely related 
Populus species distributed in similar high- salinity environments may 
contribute to a comprehensive understanding of the genetic basis of 

salt adaptation of Populus and the other plants. For this study, we se-
lected three types of Na+/H+ antiporter gene which were identified 
in previous studies as being affected by salt stress in P. euphratica (Hu 
& Wu, 2014; Ottow et al., 2005; Wu et al., 2007; Ye et al., 2009), and 
sequenced almost the complete gene coding regions for ten Na+/H+ 
antiporter genes in these three classes, and 16 neutral loci randomly 
selected as controls, in order to analyze nucleotide diversity in these 
two Populus species.

2  | MATERIALS AND METHODS

2.1 | Plant materials

Leaf tissues from 17 different populations, six of P. pruinosa and 
eleven of P. euphratica, were collected from sites covering the full ge-
ographic range of each species in northwest China (Figure 2). For both 
species, ten to fifteen individuals were sampled from each population; 
the sampled individuals were separated by at least 100 m to minimize 
the potential for sampling the same clonal individual. Four to eight 
individuals per population were selected randomly for this study. DNA 
was extracted from silica gel- dried leaves by a modified CTAB method 
(Doyle & Doyle, 1987).

2.2 | Amplification, cloning, and sequencing

For this work, we selected three types of Na+/H+ antiporter gene 
on the basis of previous studies that have identified genes affected 
by salt stress in P. euphratica (Hu & Wu, 2014; Ottow et al., 2005; 
Wu et al., 2007; Ye et al., 2009). SOS1 and SOS1B encode plasma 
membrane- localized transporters, the six NHX genes belong to the 
vacuolar type Na+/H+ antiporter group, and the two NhaD genes are 
chloroplast- localized (Barrero- Gil et al., 2007; Blumwald & Poole, 
1985; Shi et al., 2000). We constructed primers (Table S1) for these 
Na/H antiporter genes using data from the poplar genome database 
(http://genome.jgi-psf.org/Poptr1/Poptr1.home.html), making the 
assumption that the gene family consisted of the ten members previ-
ously described (Barrero- Gil et al., 2007; Blumwald & Poole, 1985; 
Shi et al., 2000).

The sequenced regions of the Na+/H+ antiporter loci ranged from 
3,890 to 8,858 bases in length and contained complete coding re-
gions (excluding some poor- quality sequences in the case of SOS1B) 

F IGURE  1 Populus euphratica Olivier 
(left) and Populus pruinosa Schrenk (right), 
distributed in desert area in northwest 
China. Photographs by Yuxia Wu
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for each gene (Figure S1), including a total of 17,812 bp of coding re-
gion and 32,463 bp of noncoding region, resulting in a total length of 
50,325 bp and 49,518 bp in P. euphratica and P. pruinosa, respectively, 
across all genes. The total numbers of sequenced nonsynonymous, 
synonymous, and noncoding sites for all the Na+/H+ antiporter genes 
are given in Table S2. We directly sequenced most of the genes from 
PCR products after treatment with ExoSAP- IT (USB Corp., Cleveland, 
OH, USA). Several portions of the genes contained long fragments 
with segregating indels that prevented direct sequencing. In these 
cases, PCR products were cloned into the pGEM19- T vector (Takara, 
China) after preparing the DNA using the recommended protocol for 
the AxyPrep DNA Gel Extraction kit (AXYGEN, China), and three to 
five clones were sequenced. The 16 reference loci (Table S3) were ran-
domly selected from a set used to develop estimates of nucleotide 
diversity in P. balsamifera (Olson et al., 2010). We PCR- amplified and 
directly sequenced these reference loci from all 76 sampled individu-
als (Table S4). The 16 reference loci contained 162–639 bp of coding 
sequence and ranged in length from 415 to 687 bp per gene, with 
a total length of 9,761 bp. Aligned sequences were edited manually 
using Aligner v.5.1.0 (Codon Code Corporation, Dedham, MA), with all 
posterior probabilities >.8 and all polymorphic and heterozygous sites 
visually confirmed. For the ten Na+/H+ antiporter genes and 16 refer-
ence loci, exon and intron boundaries were determined from cDNA se-
quences obtained from the GenBank database or genomic sequences 
(Ma et al., 2013; Tuskan et al., 2006).

2.3 | Data analysis

To resolve haplotypes from sequences obtained directly from PCR 
products, phase v. 2.1 (Stephens & Scheet, 2005; Stephens, Smith, 
& Donnelly, 2001) was used. After excluding insertions/deletions (in-
dels), genetic parameters were estimated using DnaSP v.5.10 (Librado 
& Rozas, 2009). We implemented the IMa2 (Hey, 2006, 2010; Hey & 
Nielsen, 2004) program using a Markov Chain Monte Carlo (MCMC) 
approach to analyze gene flow between the two species. Posterior 
probability densities (proportional to likelihoods) of the model pa-
rameters were used to assess significance (Guo et al., 2013). Arlequin 

3.1 (Excoffier, Laval, & Schneider, 2005) was used to calculate popu-
lation structure statistics (FST). The statistical significance of FST for 
each locus was calculated by comparing the observed values with the 
distribution of FST calculated from 10,000 permutations of sequences 
among populations.

The influence of selection on individual salt tolerance genes was 
tested using multiple methods. For each species, we separately gen-
erated 105 simulated data sets under the neutral model of Hudson, 
Kreitman, and Aguade (1987) to simulate a genomewide pattern of 
diversity using diversity estimates from our 16 reference loci. These 
data sets were used to assess the probability that diversity estimates 
for the salt tolerance genes were consistent with neutral expecta-
tions. The simulated data sets consisted of 80 and 50 chromosomes in  
P. euphratica and P. pruinosa, respectively, numbers which reflected 
 average sample sizes across loci for each species (http://home.uchi 
cago.edu/rhudson1/source/mksamples.html). Absolute nucleotide dif-
ferentiation for each salt tolerance gene was calculated as πT-S = πT -  πS,  
where πT is the total nucleotide diversity using all the samples from 
the two species and πS is the average nucleotide diversity within each 
of the species (Charlesworth, 1998; Keller et al., 2012). Statistical sig-
nificance was determined by comparing the observed πT - πS to the 
95% confidence interval calculated from the variation among 104 neu-
tral coalescent simulations for each salt tolerance gene using DnaSP 
v.5.10 (Librado & Rozas, 2009), and these estimates were based on 
the number of segregating sites and assumed no recombination. The 
HKA test (Hudson et al., 1987) was applied to evaluate the ratio of si-
lent polymorphisms within species to the divergence between species 
across multiple loci. We conducted an HKA test (Hudson et al., 1987) 
using the multilocus HKA program available from Jody Hey (https://
bio.cst.temple.edu/~hey/software/software.htm) to assess whether 
differences could be identified across all loci with 104 simulations. We 
then used maximum- likelihood HKA (mlHKA) to conduct statistical 
tests comparing each salt tolerance locus between species (Wright 
& Charlesworth, 2004; http://wright.eeb.utoronto.ca/programs/). To 
compare the model in which selection is hypothesized and the neutral 
model at specific loci, the divergence time parameter (T) was set at 
15 (Ma et al., 2013; Tuskan et al., 2006) in the mlHKA program with 

F IGURE  2 Locations of populations sampled and accessions of Populus euphratica and Populus pruinosa used in this study. The geographic 
distribution ranges of P. euphratica and P. pruinosa in China are shown in green

http://home.uchicago.edu/rhudson1/source/mksamples.html
http://home.uchicago.edu/rhudson1/source/mksamples.html
https://bio.cst.temple.edu/~hey/software/software.htm
https://bio.cst.temple.edu/~hey/software/software.htm
http://wright.eeb.utoronto.ca/programs/
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105 MCMC cycles. Comparisons were performed by carrying out a 
likelihood- ratio test using chi- squared values to determine statistical 
significance. The population selection parameters (γ = 2NeS, where 
Ne is the effective population size and S is the selection parameter) 
were determined using the mkprf software described in Bustamante 
et al. (2002). We defined sites in the salt tolerance genes and the 16 
reference loci as replacement or silent sites, depending on whether 
or not each polymorphism altered the amino acid at a given site in 
P. euphratica and/or P. pruinosa relative to the amino acid present at 
the same site in Populus trichocarpa. mkprf was based on the posterior 
distribution of the sample parameters using the Monte Carlo Markov 
Chain (MCMC) approach. We ran the simulation for 107 cycles and, 
after discarding the first 104 as “burn- in,” we sampled every 10th itera-
tion. We summarized the selection parameters for each salt tolerance 
gene and reference locus using the mean and 95% distribution confi-
dence intervals.

3  | RESULTS

3.1 | Nucleotide diversity and population 
differentiation

Ten Na+/H+ antiporter genes were sequenced from a total of 76 in-
dividuals: 52 individuals from eleven P. euphratica populations and 24 
individuals from six P. pruinosa populations (Figure 2). After excluding 
indels, the aligned Na+/H+ antiporter sequence for each locus ranged 
in length from 3,890 bp (NHX5) to 8,858 bp (SOS1) (Figure S1 and 
Table S2). Statistics on sequence polymorphism for each locus are 
presented in Table S2.

Most salt tolerance genes and all reference loci had higher nucle-
otide diversity in P. pruinosa than in P. euphratica (Tables S2 and S4). 
The average nucleotide diversity across all salt tolerance- related genes 
was higher in P. pruinosa (θw = 0.0030 ± 0.00097) than in P. euphratica 
(θw = 0.0025 ± 0.00076; Table S2). The mean synonymous nucleotide 
diversity (πsil) across the 16 reference loci was 0.0034 for P. euphratica 
and 0.0053 for P. pruinosa (Figure 3 and Table S4).

The 16 reference loci exhibited differentiation among P. euphrat-
ica populations (mean FST = 0.257, range = 0–0.424) but significantly 
less differentiation among P. pruinosa populations (mean FST = 0.149, 
range = 0.024–0.381, Table S4). The FST values for salt tolerance 
genes among populations within species varied between 0.253 and 
0.545 in P. euphratica and between 0.124 and 0.463 in P. pruinosa 
(Table S2).

3.2 | Gene flow and introgression

Gene flow between P. euphratica and P. pruinosa was examined using 
the IMa2 model, and the marginal posterior density distribution for 
migration rates is shown in Figure 4. Estimates of migration parame-
ters were nonzero for both species at reference loci, with m1 = 0.219 
(from P. euphratica to P. pruinosa) and m2 = 0.087 (from P. pruinosa to 
P. euphratica); the probabilities of the migration rate for both direction 
were strongly statistically significant (p < .001). For the salt tolerance 
genes, the migration rate was m1 = 0.203 from P. euphratica to P. prui-
nosa whereas the migration rate in the opposite direction was almost 
zero (m2 = 0.0003). Thus, salt tolerance gene flow from P. euphratica 
to P. pruinosa was greater; gene flow from the opposite direction was 
very restricted.

F IGURE  3 Comparisons of nucleotide 
diversity and spectrum of site frequencies 
at silent nucleotide substitution sites for 
salt tolerance genes (open circles and 
points) and reference loci (open and shaded 
bars) in Populus euphratica (a and b) and 
Populus pruinosa (c and d) and coalescent 
simulations of a standard neutral model for 
P. euphratica (red) and P. pruinosa (blue)
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3.3 | Site frequency distributions and diversity 
vs. divergence

Some salt tolerance genes in both P. euphratica and P. pruinosa ex-
hibited silent site diversity (πsil) that was inconsistent with neutral 
expectations (Figure 3). NHX4, NHX2, and NhaD2 in P. euphratica 
(Figure 3a,b), NHX2, and NhaD2 in P. pruinosa (Figure 3c,d) exhibited 
outlier πsil and Dsil values compared to neutral expectations. HKA 
tests comparing diversity within both species to divergence from 
P. trichocarpa (Tuskan et al., 2006) showed that salt tolerance 
genes had significant differences from a neutral model in P. euphra-
tica (x2 = 23.88, df = 9, p < .01), and near- significant differences in 
P. pruinosa (x2 = 16.21, df = 9, p = .06; Table 1). mlHKA tests were 
performed to assess whether diversity and divergence for salt toler-
ance loci were consistent with neutral evolution from P. trichocarpa 
(Table 2). In P. euphratica, NHX2 and NhaD2 had elevated diversity 
compared to divergence, whereas NHX4 and SOS1 showed decreased 
diversity. In P. pruinosa, NhaD1 exhibited significant deviation from 
neutrality, and NhaD2 exhibited near- significant deviation from 
neutrality (p = .065, k = 1.85; Table 2). At the whole- gene level, as 
measured by πT-S, more than half of the salt tolerance genes showed 
significant differentiation (SOS1, NHX2, NHX4, NHX6, NhaD1, and 
NhaD2) or near- significant differentiation (NHX1 and NHX5) in excess 
of the expectations for neutral simulations between P. euphratica and 

P. pruinosa (Figure 5). We performed mkprf analysis for the ten salt 
tolerance genes in this study and the 16 randomly selected neutral 
reference loci, using P. trichocarpa, for which sequence data are pub-
licly available, as the outgroup. We divided the loci that we analyzed 
into two classes (salt tolerance genes and reference loci) and obtained 
the posterior distribution parameters shown in Figure 6. The results 
showed that the salt tolerance genes have different patterns of re-
placement site polymorphism relative to the reference loci in both 
species (Figure 6). NhaD2 had a significantly negative selection pa-
rameter, whereas the other salt tolerance genes (with the exception 
of SOS1B) had significantly positive selection parameters, in P. eu-
phratica (Figure 6a). Salt tolerance genes had significantly positive se-
lection parameters in P. pruinosa (Figure 6b). The estimated selection 
parameters, with mean values of 0.89 and 1.49 in P. euphratica and 
P. pruinosa, respectively, were significantly greater than zero in both 
species (Figure 6c,d). However, none of the reference loci showed a 
significantly negative or positive selection parameter distribution in 
either species (Figure 6). We thus found evidence for predominantly 
beneficial gene substitutions in salt tolerance genes, but not in refer-
ence loci, in both species.

4  | DISCUSSION

4.1 | Salt tolerance genes are common targets of 
natural selection in P. euphratica and P. pruinosa

The genes responsible for salt tolerance have been extensively 
studied in many plants, especially in the model plant Arabidopsis 
thaliana (Apse et al., 1999; Bassil, Ohto, et al., 2011; Bassil, 
Tajima, et al., 2011; Qiu et al., 2002; Shi et al., 2000; Yamaguchi 
et al., 2003, 2005). An analysis of nucleotide polymorphism and 
divergence in the salt tolerance- related genes in 20 ecotypes of 
A. thaliana provided little evidence for any recent effect of posi-
tive selection (Puerma & Montserrat, 2013). In the present study, 
several genes related to salt tolerance appear to have been recent 
targets of positive selection in P. euphratica and P. pruinosa accord-
ing to the results of the mkprf analyses. However, most salt toler-
ance genes in both P. euphratica and P. pruinosa exhibited silent site 
diversity (πsil) which were consistent with neutral expectations, the 
exceptions being NhaD2 in P. euphratica and NHX2 in P. pruinosa. 
A positive value for the selection parameter γ indicated an excess 
of nonsynonymous substitutions in nine of the 10 Na+/H+ anti-
porter genes in P. euphratica and eight of the 10 Na+/H+ antiporter 
genes in P. pruinosa. An excess of nonsynonymous substitutions is 
a strong indicator of positive selection, which has been used to de-
tect, for example, sex- biased adaptive evolution in Drosophila mela-
nogaster (Proschel, Zhang, & Parsch, 2006) and disease response 
genes in loblolly pine (Ersoz et al., 2010). Meanwhile, HKA tests 
showed significant differences from a neutral model in P. euphra-
tica (p < .01), and near- significant differences in P. pruinosa (p = .06) 
for the 10 Na+/H+ antiporter genes. A comparison of nucleotide 
polymorphisms and divergence indicates that salt tolerance genes 
are more frequently targets of natural selection than are reference 

F IGURE  4 Likelihood distributions for migration rate estimates 
under the IMa2 model

TABLE  1 HKA test results for 10 salt tolerance genes in  
P. euphratica and P. pruinosa

Species Deviationa dfb pchi
c

P. euphratica 23.8829 9 .00792**

P. pruinosa 16.2086 9 .06265

aSum of deviations in the chi- square test.
bDegrees of freedom.
cChi- square distribution probability.
*p < .05, **p < .01.
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loci in P. euphratica and P. pruinosa. In northwest China, natural 
populations of P. euphratica and P. pruinosa are distributed only 
in desert regions, where there is little precipitation and higher salt 
habitats occur, and conditions are consequently hostile to plants. 
Comparative studies have indicated that these species can with-
stand salt stress better than any other poplar species tested, on the 

basis of growth, photosynthetic performance, and survival under 
salt stress (Chen et al., 2003; Hukin et al., 2005; Wang et al., 2007). 
Our results showed that salt tolerance genes have undergone 
greater divergence between the two species than the 16 reference 
loci, indicating that adaptive evolution of these genes has taken 
place in both P. euphratica and P. pruinosa.

TABLE  2 mlHKA test results for salt 
tolerance genes in Populus euphratica and 
Populus pruinosa

F IGURE  5 Coalescent analysis of 
nucleotide differentiation between Populus 
euphratica and Populus pruinosa. Shaded 
bars denote 95% confidence intervals 
around the simulated distribution from the 
neutral model. Diamonds are observed 
values of differentiation, with observed 
values falling outside of the simulated 
distributions depicted by solid diamonds 
(*p < .05, **p < .01, ***p < .001)

Species Description ln La
Likelihood- ratio 
statistics pb Kc

P. euphratica Neutral (all 
k = 1)

−90.5620

SOS1 −87.9450 5.2340 .022* 0.43

SOS1B −90.6341 −0.1442 #NUM 1.15

NHX1 −90.3898 0.3444 .557 1.27

NHX2 −88.5555 4.0130 .045* 1.78

NHX3 −90.0357 1.0526 .305 1.46

NHX4 −87.7454 5.6332 .018* 0.35

NHX5 −90.7698 −0.4156 #NUM 1.10

NHX6 −91.4150 −1.7060 #NUM 0.67

NhaD1 −90.6519 −0.1798 #NUM 1.04

NhaD2 −87.8897 5.3446 .021* 2.04

P. pruinosa Neutral (all 
k = 1)

−83.8881

SOS1 −83.6798 0.4166 .519 0.75

SOS1B −83.0617 1.6528 .199 0.59

NHX1 −83.7073 0.3616 .548 1.24

NHX2 −83.6987 0.3788 .538 1.31

NHX3 −82.6406 2.4950 .114 1.63

NHX4 −83.8798 0.0166 .897 1.07

NHX5 −83.6745 0.4272 .513 1.27

NHX6 −84.2675 −0.7588 #NUM 1.06

NhaD1 −79.5194 8.7374 .003** 0.32

NhaD2 −82.1915 3.3932 .065 1.86

aThe likelihood value of the model.
bThe possibility of the chi- square distribution.
cThe selection parameter for the gene.
*p < .05, **p < .01.
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4.2 | Genetic signatures indicate differences in 
selective pressure acting on salt tolerance genes 
between P. euphratica and P. pruinosa

Population genomic signatures of selection can include decreased 
polymorphism within populations, elevated differentiation among 
populations (FST), and linkage disequilibrium resulting in neutral ex-
pectations failing to be met (Beaumont, 2005; Keller et al., 2012; 
Tang, Thornton, & Stoneking, 2007). The mean synonymous nucleo-
tide diversity values across the 16 regions we sampled in P. euphra-
tica (πsil = 0.0033) and P. pruinosa (πsil = 0.0053) largely fall within 
the ranges found across other Populus species based on estimates 
from multiple loci, P. trichocarpa (πsil = 0.0029, Gilchrist et al., 2006), 
P. balsamifera (πsil = 0.0045, Olson et al. 2010), and P. tremula 
(πsil = 0.0125, Ingvarsson, 2008). Mean nucleotide diversity across 
the ten salt tolerance genes in P. euphratica (θw = 0.0025) and P. pru-
inosa indicated that the latter had much higher nucleotide diver-
sity, with an average value of θw = 0.0030. When we compared the 
16 reference loci between these two species, nucleotide diversity 

was still lower in P. euphratica (θw = 0.0025) than in P. pruinosa 
(θw = 0.0034). These results are consistent with our recent study 
of CpDNA in these two species, which indicated that total gene 
diversity (HT) in P. euphratica is HT = 0.447, lower than the P. prui-
nosa value of HT = 0.590 (Wang et al., 2011). These results are also 
consistent with those of another of our recent studies, which were 
inferred from six NHX type Na+/H+ antiporter gene fragments (Guo 
et al., 2013) and other candidate nuclear loci (Wang et al., 2014) 
from these two species. Variation at particular loci resulting from 
different environmental selection pressures will accentuate levels 
of population differentiation and thus result in higher FST values 
(Biswas & Akey, 2006; Keller et al., 2012). Our previous study using 
the same set of populations showed that demographic effects were 
not as a cause of the haplotype structure in P. euphratica (Wang 
et al., 2014). Of the two species, salt tolerance genes showed a 
higher level of genetic differentiation among populations in P. eu-
phratica (FST = 0.407) than in P. pruinosa (FST = 0.223). In addition, 
most salt tolerance genes exhibited genetic signatures indicating dif-
ferent degrees of selection, relative to the neutral model, between 

F IGURE  6 Means of the posterior distributions of the selection parameters (γ = 2Nes) from a hierarchical Bayesian mkprf analysis. Selection 
parameters for Na+/H+ antiporter salt tolerance genes (red and blue open circles) and reference loci (red and blue points) are shown; error bars 
are 95% confidence intervals (red and blue vertical lines) for Populus euphratica (a) and Populus pruinosa (b). Estimated distribution of the mean 
value of the selection parameter (γ) across salt tolerance genes (red solid line) and reference loci (red dashed line) in P. euphratica (c) and across 
salt tolerance genes (blue solid line) and reference loci (blue dashed line) in P. pruinosa (d)
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P. euphratica and P. pruinosa. Although results from our previous 
study showed that these two desert poplar species underwent spe-
ciation about 0.66–1.37 million years ago, during a period when de-
serts were widespread and glaciations oscillations were occurring 
frequently in central Asia (Wang et al., 2014), the lower nucleotide 
diversity and higher FST value in P. euphratica compared with P. prui-
nosa is striking, and most salt tolerance genes show significantly dif-
ferent genetic signatures, revealing that natural selection has been 
acting differentially on these sibling species.

4.3 | Countervailing selection acting on gene flow 
from P. pruinosa to P. euphratica

Complicating factors, such as gene flow, mutation, natural selection, 
and adaptation, provide the impetus for the gradual process of evo-
lution (Lenormand, 2002; Morjan & Rieseberg, 2004). Gene flow is 
considered to delay the progress of speciation by homogenizing the 
genetic components and making the mechanisms that give rise to new 
species more complex (Lenormand, 2002; Slatkin, 1987). As P. euphra-
tica has a wider geographic distribution than that of P. pruinosa, the 
lower nucleotide diversity in the former compared to the latter spe-
cies is somewhat surprising. P. pruinosa has an earlier flowering time 
making the pollen flow from P. euphratica to P. pruinosa unrealistic 
(Guo et al., 2013). One possible factor to be considered is unbalanced 
gene flow between the two species, for the 16 reference loci, with 
more introgression taking place from P. euphratica to P. pruinosa. We 
found that gene flow between P. pruinosa and P. euphratica was asym-
metric. These results were consistent with our previous study using 
SSR markers and other neutral genes (Guo et al., 2013; Wang et al., 
2011, 2014). Interestingly, our findings showed that gene flow from 
P. pruinosa to P. euphratica for salt tolerance genes was completely 
blocked. Antagonism between gene flow and natural selection has 
been found in the case of the alleles of the gene encoding the bA sub-
unit in yellow- billed pintails living at different altitudes (McCracken 
et al., 2009). Observations from completed whole- genome sequences 
for plants have shown that a high proportion of diversity has resulted 
from lineage- specific adaptive evolution (Ma et al., 2013; Tuskan 
et al., 2006). Our results indicated that salt tolerance alleles that are 
transferred from P. pruinosa to P. euphratica may confer lower fitness 
and thus be quickly eliminated from P. euphratica, resulting in gene 
flow being completely prevented; in the meantime, gene flow is still 
occurring at unlinked reference loci. Our results showed that the gene 
introgression of salt tolerance genes from P. pruinosa into P. euphra-
tica has been eliminated, implying that the natural selection has been 
one of the evolutionary forces driving the divergence of these two 
Populus species.

Na+/H+ antiporters are essential for cellular salt and pH ho-
meostasis throughout the plant kingdom. We detected distinct pat-
terns of natural selection in salt tolerance genes, patterns which 
may have favored population fitness in saline regions where P. eu-
phratica was located. These different patterns may have not only 
triggered speciation between P. euphratica and P. pruinosa, but also 
helped the two species to maintain their genetic distinctness and 

respective geographic distributions. It will therefore be informative 
to determine whether the genetic differentiation between these 
two Populus species, in particular with respect to the traits underly-
ing their adaptation to extreme environments, is due to variation in 
a small number of key genes with large effects or to more complex 
genetic variation.
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