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ABSTRACT

Repetitive sequences are biologically and clinically
important because they can influence traits and
disease, but repeats are challenging to analyse
using short-read sequencing technology. We
present a tool for genotyping microsatellite repeats
called RepeatSeq, which uses Bayesian model selec-
tion guided by an empirically derived error model that
incorporates sequence and read properties. Next, we
apply RepeatSeq to high-coverage genomes from
the 1000 Genomes Project to evaluate performance
and accuracy. The software uses common formats,
such as VCF, for compatibility with existing genome
analysis pipelines. Source code and binaries
are available at http://github.com/adaptivegenome/
repeatseq.

INTRODUCTION

Tandem repeats are dispersed throughout the genome, in
and around gene regions. They were first identified as
agents of disease �20 years ago (1), and since then,
several microsatellite repeats (not all of which are
triplets) have been identified as the underlying basis for
a wide range of neurological and morphological disorders
in humans and other mammals (2–4). In addition to
causing disease, microsatellites can exert subtle effects on
gene function and quantitative traits [reviewed in (5)].
Repeats are also mutational hotspots in that their instabil-
ity can be triggered by nearly any aspect of DNA metab-
olism, and even transcription or stress [reviewed in (6)].
This sensitivity to defects in repair and cellular insults
makes repeats useful markers for genome instability and
cancer (7,8). Further, analysing repeats in personal
genomes promises benefit not just to medical genetics
and the diagnosis of repeat-related disorders but also to

forensics and genealogy, where shorter and more stable
tandem repeats can serve as DNA fingerprints to
uniquely identify individuals (9,10). The use of accurately
and globally measuring tandem repeats spans medicine,
genetics and biotechnology; repeats influence clinical and
subclinical phenotypes, are signatures for genomic in-
stability and cancer and are important markers for foren-
sics and genealogy.
Despite their use and biological importance, some

repetitive sequences (particularly microsatellites) are
challenging to study with short-read sequencing technol-
ogy. Genotyping microsatellite repeats from reference-
mapped reads is fundamentally distinct from calling
SNPs or indels in non-repetitive sequence because there
is no sound basis for inferring homology between pairs of
aligned repeat units. Microsatellite genotypes must be
assigned in terms of allele length or the number of
sequenced bases within a read separating the non-
repetitive flanking boundaries aligned to the reference,
irrespective of intervening alignment gaps. Furthermore,
reads must span an entire repeat track to confidently
support an allele length. We recently demonstrated the
advantage of this repeat-aware genotyping approach in a
population-scale analysis of >100 inbred isolates from the
Drosophila Genetics Reference Panel (DGRP) (11,12).
Here, we describe a comprehensive genotyping software
package that we have termed RepeatSeq, for calling
microsatellite repeat genotypes from whole genome
resequencing data. RepeatSeq combines a repeat-aware
method for repeat allele determination (11) with a
Bayesian genotyping approach that uses a novel error
model informed by properties of a repeat sequence and
the reads that map to it.
Current approaches for identifying repeat mutations

include indel genotyping methods implemented in popular
software suites, such as GATK (13) and ATLAS2 (14),
that can reveal indels within repeat regions or the
recently reported lobSTR method (10), which much like
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our approach, considers repeats in their entirety. Indel
callers are ill-suited for identifying repeat mutation, as
they do not report repeat genotypes, they can base indel
identification on reads that do not fully span the repeat
and they fail to account for the error rates of different
repeat types. The mutation rate of microsatellite repeats
is influenced largely not only by the length of repeat tract
but also by other intrinsic properties, such as the size of
the repeated unit and the purity (lack of interruptions) of
the repeated sequence (15). A genotyping method that in-
corporates the mutational properties of repeat sequences
will be better able to distinguish false alleles from true
heterozygosity. However, the success of a genotyping
approach relies on more than just the accurate identifica-
tion of true alleles—the method must be applicable to the
greatest number of loci genome-wide. The lobSTR
method, for example, makes microsatellite calls genome-
wide (10); however, it is blind to homopolymers runs
(i.e. mononucleotide repeats, which are a common and
important source of genetic variation). In the following
sections we describe the RepeatSeq algorithm and error
model and its application to high-coverage genomes from
the 1000 Genomes Project (16). RepeatSeq assigned geno-
types to �90% of the repeat loci, including homopoly-
mers. In addition, comparing RepeatSeq to lobSTR
revealed that �90% of repeats genotyped by both
methods were assigned the same call. The software
inputs high-throughput resequencing data in BAM
format (17) and outputs genotypes in multiple formats,
including VCF format (18), for compatibility and easy
integration with existing genotyping pipelines.

METHODS

Program outline

The genotyping process is summarized in Figure 1. Reads
are first mapped to a reference sequence and then sorted,
with duplicate reads marked. Next, reads mapping to
reference repeat regions are locally realigned using the
GATK IndelRealigner tool. Then, for each repeat, the
RepeatSeq module discards reads that do not completely
span the repeat, as these reads cannot unambiguously
support a repeat allele length. The extent to which a
read must overlap a repeat (and match the reference) is
an adjustable parameter, although we have previously
optimized this value to maximize the number of repeat
regions that could be genotyped while minimizing the in-
clusion of improperly mapped reads (11). Finally,
RepeatSeq assigns the most probable genotype using a
fully Bayesian approach and considers the reference
length of the repeat, the repeat unit size and the average
base quality of the mapped reads, as previous information.
RepeatSeq implements a diploid genotyping model by
default, but it can be set at runtime to implement a
haploid model.
Several other read filters can be adjusted. For example,

reads can be excluded from consideration on the basis
of their length, mapping quality and on whether they
are properly paired. By default, RepeatSeq returns
microsatellite calls in VCF format for compatibility and

interoperability with other indel callers. However,
RepeatSeq can also output a detailed report that returns
annotated alignments of reads in addition to just the
assigned genotypes.

Probabilistic determination of repeat genotypes

The probability that a read is representative of a true allele
can be inferred by the properties of the read and the ref-
erence repeat sequence that it maps to (11). We explored
many such properties in a previous DGRP population
study (12). The DGRP is composed of >100 fly
genomes; each derived from single female founders of a
natural fly population and bred to near-isogeny by 20
generations of full-sibling matings. Therefore, in the
absence of mapping, alignment or sequence errors, all
reads from a single inbred line mapped to a specific micro-
satellite locus should possess the same repeat allele length,
and this homozygosity permits the assumption that
deviant reads represent error. To strengthen the validity
of this assumption, we minimized the effects of any
residual heterozygosity by excluding genomic regions
with >5% heterozygosity (based on the SNP calls). For
loci to which at least 10 reads had been mapped, reads that
supported the majority allele were assumed to support the
true allele at the locus, whereas reads that supported a
non-majority allele were assumed to be errors. The pro-
portions of reads supporting majority alleles were
computed within five bins of equal size for the following
properties: reference repeat length, repeat unit size and
average base quality for the read. The resulting 5� 5� 5
array reflects the frequency of discordant and concordant
reads and is the source of error profiles for RepeatSeq.

Once reads are mapped, realigned and then pruned of
those that do not span the repeat, RepeatSeq calls the
most probable genotype using Bayesian model selection.
The error rate (�error) is populated with prior information
by associating the reference repeat length, unit size and
average base quality of the read data with the appropriate
bin of the error profiles. The reads at a given locus support
k length variants v1, v2, . . . , vk where k � 1. RepeatSeq
considers each homozygous and heterozygous genotype
suggested by the read data, of which, there are
c ¼ kðk+1Þ=2. For example, if two length alleles are
present then the heterozygous genotype of the two
variants and each homozygous genotype are considered.
If three variants are present, then the possible three homo-
zygous and three heterozygous genotypes are considered.

Let x denote the reads at a given locus. Denote the c pos-
sible genotypes g1, g2, . . . , gc. For heterozygous and
homozygous genotypes, we assume the likelihood Lðx

*
jgiÞ

is multinomial ðn; �
*

Þ, and �ð�
*

Þ is Dirichletð�
*
Þ , where the

elements of �
*

sum to unity. For the purpose of elucidating
the statistical model, let gA generically denote a homozy-
gous genotype and let gAB denote a heterozygous
genotype, where A and B each represent one of the
length variants present in the data. In the heterozygous
case, the values x

*
, �
*

and �
*

are 3D vectors. The values
xð1Þand xð2Þ represent the number of reads of variants A
and B, respectively, and xð3Þ is the number of reads of any
other variant. Values �ð1Þ and �ð2Þ represent the probability
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that a read at this locus is of variant A and B, respectively,
and �ð3Þ represents the probability that a read does not
represent a true variant (e.g. a sequencing or mapping
artifact relative to the genotype gi under consideration).
The homozygous genotypes are modelled similarly with
2D vectors: position one refers to the variant supported
by the genotype and the second position refers to all other
alleles.

The vector �
*

characterizes prior information about
the probability vector �

*

, and �
*

is formed based on
derived error profiles. In the heterozygous case, let yA
represent the number of majority allele supporting reads
of variant A from the error profiles, and let wa represent
the number of non-majority allele supporting reads from
the error profiles. Let yB and wB be similarly defined
for variant B. Hyperparameters �ð1Þ ¼ �ð2Þ ¼ 1+yA+yB

2 and
�ð3Þ ¼ �error ¼ 1+wA+wB. In the homozygous case,
hyperparameters �ð1Þ ¼ 1+yA and �ð2Þ ¼ �error ¼ 1+wA,
where yA and wA are as defined previously. The
Bayesian model describing the probability of read error
given genotype gi is as follows:

Prior : � �
*

j�
*

, gi

� �
is Dirichletð�

*
+1Þ

Likelihood : L x
*
j�
*

, gi

� �
is multinomial n, �

*
� �

, hence

Posterior : �ð�
*

jx
*
, �
*

, giÞ is Dirichletð�
*
+x

*
+1Þ

This model specification ensures that the posterior dis-
tribution �ð�

*

jx
*
, �
*

, giÞ weighs the error profile reads
equally to reads from the data. We consider the aforemen-
tioned model specification for all genotypes
gi, i ¼ 1, . . . , c. The marginal distribution of the data
given each genotype is estimated, and Bayes’ rule is used
to compute the probability of each genotype given the
data. This strategy is a fully Bayesian model selection al-
gorithm, for which each model under consideration

corresponds to one of the genotypes suggested by the
data. The marginal distribution of the data for a given
genotype is

� x
*
jgi

� �
¼

Bð�
*
+x

*
+1

*

Þ

Bð�
*
+1

*

Þ

�
n!Qk
j¼1 xj!

where Bð�Þ represents the multinomial beta function. This
analytical solution is based on conjugacy results. Bayes’
rule is then implemented to invert the above probabilities.

� gijx
*

� �
¼

�ðx
*
jgiÞ�ðgiÞPk

j¼1 �ðx
*
jgjÞ�ðgjÞ

where � gið Þ ¼
1
k for all i ¼ 1, . . . , k. The most probable

genotype is then selected, provided that the probability
of the genotype is >50%.

RESULTS

Optimization of read mapping for microsatellite repeat
genotyping

The accuracy of repeat genotypes is contingent on the
proper mapping of reads to repeat loci. There are many
short-read mapping algorithms, and their performance
has been widely evaluated (19). However, mapping algo-
rithms have not yet been evaluated on their ability to
accurately map reads composed of low-complexity
sequence. We compared the accuracy of several popular
tools, including Bowtie2 (20), BWA (21), Novoalign
(Novocraft Technologies), Stampy (22) and SMALT
(Wellcome Trust Sanger Institute). First, reference
repeats were identified from the hg19 reference sequence
using a previously described approach (11). Next,
DWGSIM (http://github.com/nh13/DWGSIM) was used
to simulate 100 bp single-end Illumina reads from refer-
ence repeats from chromosomes 1 through 7 in human
reference sequence, with a simulated coverage of 15�.
We specified a 2% uniform sequencing error rate and a
0.1% mutation rate, of which 10% of the mutations were
small indels (1–10 bp long) and the remainder were point
mutations.
Simulated reads were then mapped to the entire human

reference sequence. The parameters, runtimes and resource
usage for all tools are documented in Supplementary
Table S1. The proportion of incorrectly mapped reads is
plotted as a function of the proportion of correctly
mapped reads in Figure 2 under different mapping
quality thresholds. For each mapping quality threshold,
the accuracy rate is the number of correctly mapped reads
divided by the total amount of reads simulated. Likewise,
the inaccuracy rate is the number of incorrectly mapped
reads divided by the total number of mapped reads.
Assessment of read alignment is based on the leftmost
coordinate of the read. Novoalign maps repeat-containing
reads with the lowest ratio of inaccurate calls to accurate
calls. Among the open source tools, Bowtie2-high
(Bowtie2 using the highest sensitivity option) is the best
mapping method by this metric. Other settings of Bowtie2,
along with Stampy and BWA-SW, performed fairly

Figure 1. An outline of the RepeatSeq method. Reads are mapped and
realigned, and a set of reads spanning reference repeats are retained.
Genotypes are assigned with consideration of the a priori error rate
�error, which comes from the appropriate error profile and is used in
the prior distribution of allele and error probabilities �ð�

*

j�
*

, giÞ. The
probability of each genotype suggested by the data is estimated in a
Bayesian fashion, and the most probable genotype among these is
called.
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similarly among each other, but not as well as Novoalign
or Bowtie2-high.
Table 1 summarizes the performance of the mapping

programs and includes a comparison with the lobSTR
method, which eschews conventional short-read mappers
in favour of its own method for directly assigning reads to
a proper location on the human reference sequence. The
table indicates performance cumulatively for all mapping
qualities, to enable fair comparison with lobSTR, which
does not report mapping quality. Novoalign mapped the
greatest number of correctly mapped reads (40 547 527;
93.9%), although SMALT mapped the greatest number
of reads overall (41 180 368; 95.4%). LobSTR mapped
the fewest number of correctly mapped reads (1 117 142;
2.59%) but also the fewest reads overall (1 118 902;
2.59%). Maximizing read mapping might result in
increased numbers of improperly mapped reads; therefore,
we also compared mapping methods on the basis of their
inaccuracy rate. We found that lobSTR features the
lowest inaccuracy rate of 0.16%, followed by Novoalign
with an inaccuracy rate of 1.14%. The open-source
Bowtie2-high method also performs nearly as well with
an inaccuracy rate of 1.18%.
Comparing performance cumulatively for all mapping

qualities likely underestimates the accuracy of conven-
tional mappers because even minimal filtering by
mapping quality can exclude inaccurately mapped reads.
For example, filtering reads based on a minimum mapping
quality of 4 lowers the Novoalign inaccuracy rate to
0.007%, at the cost of reducing the number of correctly
mapped reads to 40 297 714 (93.3%). At a minimum
mapping quality of 3, Novoalign features an inaccuracy
rate of 0.33% with 40 436 553 (93.6%) correctly mapped
reads. Bowtie2-high performs similarly with an inaccuracy
rate of 0.03% (40 213 461 or 93.1% correctly mapped

reads) with a minimum mapping quality of 2. Filtering
reads by mapping quality allows for optimizing the
trade-off of maximizing correctly mapped reads while
minimizing the incorrectly mapped reads.

Application of RepeatSeq to whole genomes from a
parent–offspring trio

A subset of genotyping error can be inferred by evaluating
whether called genotypes from a parent–offspring dataset
are consistent with Mendelian inheritance (23). We
applied RepeatSeq to whole genome data generated
using the Illumina HiSeq and 100 bp reads, from the
CEU trio, a family from Utah with European ancestry
(CEU genomes: NA12878, NA12891, NA12892). The
average coverage of the mapped and post-processed
genomes was 42.7� and this coverage dropped to 33.3�
at repeat regions. In testing for consistency with
Mendelian inheritance, we considered repeats for which
calls were made from all genomes in the trio and for
which there was at least a single mapped discordant read
at the locus in each genome. RepeatSeq requires at
least two reads to make a call and for this threshold,
92.1% of evaluated repeat calls are consistent with
Mendelian inheritance (Supplementary Table S2). At a
minimum coverage of 9�, the percentage of consistent
calls increases to 95.3%, and at 17�, the percentage
increase to 98.0%.

This consistency test also enables the assessment of the
impact of choosing a less informative prior for the
genotyping model. We replaced our error profile with a
constant rate prior in which we define a single observed
concordant reads and no discordant reads for every
element of the error profile. This strategy eschews the ex-
perimentally derived error profile and instead incorporates
weak prior information into our genotyping algorithm.

Figure 2. The performance of various methods for mapping reads to reference repeats. Mapping accuracy is determined using simulated 100 bp
Illumina reads (with a coverage of 15�) and is assessed by measuring the proportion of incorrectly mapped reads as a function of the proportion of
correctly mapped reads under different mapping quality thresholds. Variations of Bowtie2 are fully described as follows: bowtie2 (Bowtie2 with
default settings), bowtie2-high (Bowtie2 using the highest sensitivity setting), bowtie2-local (Bowtie2 with default sensitivity and soft-clipping) and
bowtie2-local-high (Bowtie2 using the highest sensitivity and soft-clipping).
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Not surprisingly, the percentage of consistent calls drops
substantially. At a minimum of 2, 9 and 17� coverage, the
constant rate prior produces calls that are consistent 72.9,
73.7 and 74.5% of the time, respectively (Supplementary
Table S2).

Application of RepeatSeq to the HG01140 whole genome

We compared the performance of our genotyper with
lobSTR, a recently reported tool that is also the only
other genotyper tuned for microsatellite repeats. To
perform the comparison, a 16� sequenced human
genome (HG01140) from the 1000 Genomes Project was
mapped against the hg19 reference sequencing using
Novoalign, post-processed and passed to both genotyping
methods. The FASTQ files for this genome were mapped
using Novoalign and realigned using the GATK
IndelRealigner. RepeatSeq was then executed using
default parameters to generate a list of repeat genotypes.
To genotype repeats with lobSTR, we used the available
binaries (lobSTR version 1.0.6) and usage guidelines.
First, lobSTR built an index for the hg19 reference
genome. The same list of repeat regions used by
RepeatSeq was indexed for use by lobSTR. Next,
lobSTR constructed a new BAM file (based on the same
BAM file used by RepeatSeq) containing its alignments
for genotype calling. We used default parameters except
that we specified genotyping repeats with a unit length of
1–5. The lobSTR-generated BAM file was then passed to
the lobSTR allelotyper tool to produce a list of repeat
genotypes.

Table 2 summarizes the comparison of RepeatSeq and
lobSTR genotypes. The percentages indicate the fraction
of genotypes made from a list of 4 030 980 reference repeat
regions. Unlike the earlier comparison using simulated
data from chromosomes 1 through 7, this comparison
includes all identified hg19 reference repeat regions.
RepeatSeq assigned genotypes to 3 604 790 (89.4%)
repeats, whereas lobSTR assigned genotypes 106 043
(2.63%) repeats. When the comparison is made by
repeat unit size, RepeatSeq assigns genotypes to a
similar proportion of repeats for all unit sizes, whereas
lobSTR assigned the most genotypes to dinucleotide
repeats (64 670; 10.3%). For repeat regions that were

genotyped by RepeatSeq and lobSTR, we measured the
concordance of the methods or cases in which both
methods assigned the same genotype. Genotypes were
assigned by both methods for 96 950 repeats. Of these,
85 569 (88.3%) repeat genotypes were the same. The con-
cordance between the methods is lowest for 2mers (83.4%)
and increases with unit size, which is expected given that
the variability of microsatellite repeats is dependent on the
size of the repeated unit sequence. From the 11 381
(11.7%) discordant genotypes, we randomly selected
repeat regions and used Sanger sequencing to confirm
which method assigned the correct genotype. After
sequencing 40 regions, we found that 25 (62.5%) regions
were correctly genotyped by RepeatSeq, 4 (10.0%) regions
were correctly genotyped by lobSTR and 11 (27.5%)
regions were incorrectly genotyped by both methods
(Supplementary Table S3).
From the 3 604 790 repeat genotypes assigned by

RepeatSeq, lobSTR failed to genotype 3 507 840 (97.3%)
regions. This is consistent with lobSTRs greatly reduced
number of total and correctly mapped reads for the
simulated data (Table 1). However, from the 106 043
repeat genotypes assigned by lobSTR, 9093 repeat geno-
types (8.57%) were missed by RepeatSeq. In 5090 (56.0%)
of the repeats, lobSTR was able to map more reads to the
locus than RepeatSeq had access to, and this likely
enabled the assignment of a genotype by lobSTR. In
nearly half of these cases (2436 repeats), lobSTR added
more than one mapped read to the locus. We also found
that lobSTR assigns genotypes if at least a single read is
mapped to the locus. RepeatSeq, however, requires at
least two mapped reads, as a single read is not sufficient
to confidently distinguish a heterozygous locus from a
homozygous locus. There were 3819 (42.0%) cases in
which lobSTR exclusively assigned a genotype using
only a single read. For the remaining repeats genotyped
by lobSTR and not RepeatSeq, manual inspection
revealed that RepeatSeq failed to genotype many of
these repeats because it could not assign a high enough
confidence (>50%) to the genotype. Finally, there were
417 097 (10.3%) repeats not genotyped by either method
primarily because no reads could be mapped to these
regions. In all, RepeatSeq assigns genotypes to �90% of

Table 1. Performance of mappers for microsatellite repeat regionsa

Method Total mapped n (%) Correctly mapped n (%) Incorrectly mapped n (%)

lobSTR 1118 902 (2.59) 1 117 142 (2.59) 1760 (0.16)
Novoalign 41 014 531 (95.0) 40 547 527 (93.9) 467 004 (1.14)
Bowtie2 40 678 703 (94.2) 40 196 603 (93.0) 482 100 (1.19)
Bowtie2-high 40 946 152 (94.8) 40 464 488 (93.7) 481 664 (1.18)
Bowtie2-local 40 961 622 (94.9) 40 448 448 (93.6) 513 174 (1.25)
Bowtie2-local-high 40 975 438 (94.9) 40 472 990 (93.7) 502 421 (1.23)
BWA 39 390 695 (91.2) 38 941 969 (90.2) 448 726 (1.14)
BWASW 40 611 633 (94.1) 40 120 872 (92.9) 490 761 (1.21)
SMALT 41 180 368 (95.4) 40 491 179 (93.7) 689 189 (1.67)
Stampy 41 004 163 (95.0) 40 478 030 (93.8) 526 133 (1.28)

aNumber (%) of total, correctly and incorrectly mapped reads by each mapping method from 43 176 537 simulated 100 bp single-end reads that
overlap a repetitive region in the hg19 reference sequence. Percentages for incorrectly mapped reads are from total mapped reads and not the total
simulated reads.
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repeats in the HG01140 genome, and in the cases where
both methods make a call, the concordance in genotypes is
�90%. Although we did not exhaustively validate the dis-
cordant genotypes, we do not see any evidence to suggest
that lobSTR generally assigns genotypes more accurately
than RepeatSeq.

DISCUSSION

Repetitive DNA sequences pose unique challenges to
next-generation sequencing technologies. However, these
sequences are too important to ignore, in terms of their
frequent occurrence in the genome and their biological
relevance. RepeatSeq uses properties of reference repeat
sequences and the reads that map to them, to best identify
reads that contribute to true alleles. To enable accurate
RepeatSeq calls, we first evaluated several methods for
mapping repeat-containing reads to the human reference
sequence. We found that when we filtered reads by
mapping quality, Novoalign and Bowtie2 correctly map
>93% of simulated repeat-containing reads to the human
reference (compared with 3% mapped by lobSTR) while
maintaining an inaccuracy rate that is lower than lobSTR.
Filtering reads by mapping quality allowed for optimizing
the trade-off of maximizing correctly mapped reads while
minimizing the incorrectly mapped reads.
When we analysed the HG01140 genome from the 1000

Genomes Project, we found that RepeatSeq assigned geno-
types to �90% of the repeats, whereas lobSTR genotyped
<3%. The disparity between the methods results likely
from the difference in how many reads are mapped by
lobSTR and Novoalign. LobSTR did make calls that
RepeatSeq missed for 9093 (8.57%) repeats. Of these
calls that RepeatSeq missed, 42% were made with the
support of a single read. RepeatSeq requires the support
of two reads to make calls in diploid genomes. From the
remaining cases, RepeatSeq sometimes failed to have high
enough genotype probabilities (>50%), and in other cases,
lobSTR was able to exclusively make a call likely because
it was able to map more reads to the locus. There is no
doubt that there are cases in which lobSTR will excel at
assigning genotypes, particularly those that exhibit
extreme allelic variation from the reference (such as in
the case of expanded repeats at the HTT locus in
Huntington’s patients); however, based on the number of
calls, �90% concordance in genotypes for repeats in which
both methods made a call and our Sanger validation data,

RepeatSeq offers the best comprehensive approach for ex-
haustively genotyping repeats in human genomes.

RepeatSeq is multithread and scales well on multi-core
processors. An analysis of �4 million reference repeats in
the NA12878 genome (40� post-processed coverage,
100 bp reads) takes 11 h using a single core of an AMD
Opteron 6174 CPU and a maximum of 1.65 GB of
memory. With 48 cores, the runtime is reduced to 20
min. Runtimes can be further reduced by opting to
generate only the VCF output. In addition to outputting
genotypes using VCF, RepeatSeq optionally produces a
detailed report that includes an annotated alignment of
all the reads to the reference sequence for each microsat-
ellite locus. We envision this extended report will be
valuable for manually confirming calls and for further
refining the method. The use of VCF output ensures the
compatibility of RepeatSeq with other variant callers and
analysis pipelines. For example, the VCF output of
RepeatSeq can be used to augment indel calls from
GATKs UnifiedGenotyper to provide a comprehensive
and more accurate set of variant calls.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3.
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RepeatSeq N, lobSTR N 138 769 (12.0) 61 800 (9.88) 77 758 (10.2) 78 922 (9.33) 59 848 (9.26) 417 097 (10.3)

aNumber (%) of total, concordant and discordant microsatellite calls are provided by repeat unit length, indicated by column values 1–5.
Comparisons are made for microsatellites in which both, one or neither method makes a call. N indicates no call.
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