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Metabolic reprogramming has been suggested as a hallmark of cancer progression.
Metabolomic analysis of various metabolic profiles represents a powerful and technically
feasible method to monitor dynamic changes in tumor metabolism and response to
treatment over the course of the disease. To date, numerous original studies have
highlighted the application of metabolomics to various aspects of tumor metabolic
reprogramming research. In this review, we summarize how metabolomics techniques
can help understand the effects that changes in the metabolic profile of the tumor
microenvironment on the three major metabolic pathways of tumors. Various non-
invasive biofluids are available that produce accurate and useful clinical information on
tumor metabolism to identify early biomarkers of tumor development. Similarly,
metabolomics can predict individual metabolic differences in response to tumor drugs,
assess drug efficacy, and monitor drug resistance. On this basis, we also discuss the
application of stable isotope tracer technology as a method for the study of tumor
metabolism, which enables the tracking of metabolite activity in the body and deep
metabolic pathways. We summarize the multifaceted application of metabolomics in
cancer metabolic reprogramming to reveal its important role in cancer development
and treatment.
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INTRODUCTION

In recent years, metabolism, as an important link between environmental factors, metabolic small
molecules, host genes and diseases, has gained increasing interest regarding its relationship with
tumors. Under environmental selection pressures induced by microenvironmental and genetic
factors, the inside of the tumor undergoes evolution. Simultaneously, under the control of genotypes,
metabolic characteristics of the tumor undergo adaptive changes; this is termed metabolic
reprogramming (Zhao et al., 2019). Studies have shown that the tumor microenvironment is
often nutritionally deficient; thus, tumor cells reprogram their metabolism and that of the
microenvironment to maintain their proliferative ability (Wu and Dai, 2017; Ringel et al., 2020).

Metabolic reprogramming of the tumor microenvironment is considered one of the markers of
cancer and an important direction of tumor research (Hanahan and Weinberg, 2011). Continuous
developments in high-throughput sequencing and bioinformatics technology have enabled wide use
of the combined analysis of metabolomics (Kaushik and DeBerardinis, 2018), genomics (Horn et al.,
2019), transcriptomics (Finotello and Trajanoski, 2018), and proteomics (Kim et al., 2019) to
determine the etiology and pathogenesis of diseases. Metabolomics is regarded as the final node of

Edited by:
Haishi Qiao,

China Pharmaceutical University,
China

Reviewed by:
Stefana Cacciatore,

International Centre for Genetic
Engineering and Biotechnology

(ICGEB), South Africa
Christos K. Kontos,

National and Kapodistrian University of
Athens, Greece
Xiawei Cheng,

East China University of Science and
Technology, China

Yujie Su,
Washington State University,

United States
Jinghui Sun,

Chengdu Medical College, China

*Correspondence:
Yu Chen

chenyu_njmu@126.com
Yonglin Yang

easing@163.com

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 24 August 2021
Accepted: 08 November 2021
Published: 25 November 2021

Citation:
Han J, Li Q, Chen Y and Yang Y (2021)

Recent Metabolomics Analysis in
Tumor Metabolism Reprogramming.

Front. Mol. Biosci. 8:763902.
doi: 10.3389/fmolb.2021.763902

Frontiers in Molecular Biosciences | www.frontiersin.org November 2021 | Volume 8 | Article 7639021

REVIEW
published: 25 November 2021

doi: 10.3389/fmolb.2021.763902

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.763902&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fmolb.2021.763902/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.763902/full
http://creativecommons.org/licenses/by/4.0/
mailto:chenyu_njmu@126.com
mailto:easing@163.com
https://doi.org/10.3389/fmolb.2021.763902
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.763902


various molecular pathways and is considered the ultimate goal of
omics research. The rise of metabolomics has allowed
considerable progress to be made in understanding the
relationship between metabolic regulation and cancer.

Metabolomics techniques are defined as the measurement of
the dynamic multiparameter metabolic response of biological
systems to various stimuli and genetic changes in specified
quantities (Johnson et al., 2016). They primarily involve
analyses of metabolites in bodily fluids, cells, and tissues and

are usually applied as a valuable means to identify biomarkers
(Zampieri et al., 2017). The basic research approach involves
measuring metabolites using high-throughput and high-
resolution detection technology, acquiring massive datasets,
obtaining different metabolites via data analysis, finding
metabolic pathways, and explaining their biological
significance (Toledo et al., 2017). Metabolomics techniques
usually include nuclear magnetic resonance (NMR), liquid
chromatography-mass spectrometry (LC-MS), and gas

FIGURE 1 | (A) Analytical workflow of metabolomics studies. A typical metabolomics study includes experimental design, sample collection, sample profiling, data
analysis, and functional interpretation stages. Metabolites from biological fluids, cells, and tissues that differ between tumor and control groups can be detected using
metabolomics [e.g., nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS)]
and data analyses. Discovery of metabolic biomarkers and pathways that are specific to certain cancers benefit cancer research.
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chromatography-mass spectrometry (GC-MS) (Fiehn, 2016;
Lane et al., 2019). In addition, the accuracy of qualitative
metabolite analyses depends not only on the detection and
resolution ability of the mass spectrometer but also on the
corresponding metabolite database (Wishart et al., 2013;
Johnson et al., 2016). Figure 1 illustrates the basic workflow of
metabolomics techniques.

Mass spectrometry-based technology has become the
mainstream technology for the analysis of targeted
metabolomics pathways. Numerous studies have revealed that
differences in small molecular metabolites, such as serum,
tissues, urine, and saliva, and changes in corresponding
metabolic pathways are closely related to tumor risk, tumor
type, and the sensitivity and efficacy of chemotherapy drugs as
well as potential drug targets (Wishart 2019). Metabolomics
technology could bring a new dimension to tumor metabolism.
Several excellent reviews of metabolomics applications in cancer
research have been published, which have focused primarily on
the search for metabolic biomarkers and investigations on
metabolic mechanisms underlying various tumors (Zhang
et al., 2014; Xiao and Zhou, 2017). In this review, we first
summarize the applications of metabolomics to the three major
metabolism pathways of cancers. We then focus on biofluid
markers for the early prediction of tumors, metabolomics in

cancer drug treatments, and applications of resistance
mechanisms. Finally, we introduce the applications of stable
isotope tracer technology to the field of metabolomics and offer
future directions.

METABOLOMICS ANALYSIS OF THE
THREE MAJOR METABOLIC PATHWAYS
OF TUMOR
During cancer development, metabolic reprogramming
provides cancer cells the ability to survive and proliferate.
The most famous is the Warburg effect, which suggests that the
aerobic glycolysis pathway is closely related to the occurrence
of cancer. In addition, deregulated anabolism/catabolism of
fatty (FAs) and amino acids, especially glutamine, serine, and
glycine, have been shown to function as metabolic regulators
in supporting cancer cell growth. The occurrence and
development of cancer cells are closely related to the three
metabolic pathways. Figure 2 shows the regulation of the three
pathways of cancer cells and how they crossover.
Metabolomics techniques can be used to supplement tumor
metabolism by analyzing the metabolic profiles of different
tumors.

FIGURE 2 | The regulation of the three pathways of cancer cells and their crossover. During cancer development, metabolic reprogramming provides cancer cells
the ability to survive and proliferate. Glucose, amino acid, and lipid metabolism are inseparable. Activated glycolysis and impaired aerobic respiration shape the altered
glucosemetabolism. In addition, deregulated anabolism/catabolism of fatty and amino acids, especially glutamine, serine, and glycine, have been identified to function as
metabolic regulators in supporting cancer cell growth. TCA, tricarboxylic acid; FA, fatty acid; acetyl-CoA, acetyl coenzyme A; FA-CoA, fatty acetyl coenzyme A.
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Glucose Metabolism Reprogramming in
Cancer Progression
Owing to the need for malignant proliferation, tumor cells exhibit
a rapid glycolysis phenomenon in various environments called
the Warburg effect. Tumor cells have a high ability to proliferate
and a high demand for energy, which often leads to hypoxia in the
local tissue microenvironment (Warburg, 1956; Williams et al.,
2016). Although glycolysis is not as efficient as aerobic respiration
in terms of energy supply, it is 100 times faster than aerobic
respiration and provides the amino acids and intermediate
metabolites of pentose phosphate essential for highly
proliferating cancer cells (Cacciatore and Loda, 2015). Thus,
cancer cells weaken or even cease using the mitochondrial
aerobic oxidation pathway in favor of the glucose glycolysis
pathway for energy, which produces large amounts of lactic
acid (Chen et al., 2014). Aerobic glycolysis is a key metabolic
feature of the Warburg phenotype and is caused by active
metabolic reprogramming that is required to support sustained
cancer cell proliferation and malignant progression (Kishton
et al., 2016). Glucose metabolism includes not only glycolysis
but also other pathways that require glucose. These pathways
include pentose phosphate pathway (PPP), hexosamine pathway,
glycogenesis. They are all reprogrammed in cancer cells, and this
reprogramming can be used to selectively target cancer cells.

High-throughput omics screening has shown that the tumor
microenvironment and various cancer-promoting signaling
pathways significantly up-regulate the glycolysis process, which
results in the Warburg effect. Recent investigations of renal
carcinoma cells and tissues from xenografted mice and
patients using metabolomics, proteomics, and transcriptomics
have unambiguously confirmed that this phenomenon is a key
component of metabolic reprogramming (Perroud et al., 2009).
As an example of Warburg metabolism, levels of enzymes
involved in glycolysis, such as hexokinase-1 pyruvate kinase,
and lactate dehydrogenase A were significantly increased in
renal carcinoma cells and tissues (Perroud et al., 2006). In a
breast cancer study (Dai et al., 2017), researchers cultured MCF-7
and T47D breast cancer cells with different glucose
concentrations and found that low glucose concentration
significantly inhibited the proliferation of breast cancer cells.
Moreover, signal pathway enrichment analysis showed that the
Hippo-Yap cell signaling pathway in MCF-7 breast cancer cells
was downregulated when the glucose concentration in the culture
environment was reduced, whereas the expression of
NRF2 pathway-related genes in T47D breast cancer cells was
significantly increased (Maldonado et al., 2021). In a recent lung
cancer study, researchers found that glucose metabolism
disorders may be closely associated with the carcinogenesis of
lung cancer, which suggests that glucose metabolism may be a
potential therapeutic target for lung cancer (Ding et al., 2019).

Essentially, the Warburg effect in tumor cells is caused by the
increased expression of metabolic enzymes related to the
glycolysis pathway. In recent years, the regulation of glycolytic
metabolic enzymes, especially rate-limiting enzymes, has
attracted considerable attention in the field of oncology (Chen
et al., 2016). Through metabolomics analysis, researchers

confirmed that KRAS gene’s effect on tumor metabolism can
be realized through transcriptional regulation of glucose
transporters and glycolysis enzymes. And the KRAS activating
mutations copy gain creates unique metabolic dependences that
can be exploited to selectively target these aggressive mutant
KRAS tumors (Kerr et al., 2016). Wong et al. showed that protein
arginine N-methyltransferase 6 (PRMT6) regulates aerobic
glycolysis in human hepatocellular carcinoma (HCC) through
nuclear relocalization of pyruvate kinase M2 isoform (PKM2), a
key regulator of the Warburg effect. This research provides a
mechanistic link between tumorigenicity of tumors and glucose
metabolism (Wong et al., 2020). The tumor microenvironment
and various cancer-promoting signaling pathways have been
found to significantly upregulate the glycolysis process and
thus, providing a variety of potential targets for inhibiting
glycolysis in tumor therapy. This has been confirmed in a
variety of tumor settings and is associated with poor tumor
outcomes (Li et al., 2018; Zhang et al., 2020).

Lipid Metabolic Reprogramming in Cancer
Cells
Tumor cells exhibit metabolic plasticity, which provides a
selective advantage for the survival and proliferation of tumor
cells in harsh microenvironments, such as hypoxia, acidosis, and
malnutrition (Hanahan and Weinberg, 2011). Significant
characteristics of lipid metabolism in tumor cells include
increased adipogenesis rate and an upregulated mitochondrial
fatty acid β-oxidation level (Currie et al., 2013). A variety of
tumors have shown similar trends, and various metabolites
involved in lipid metabolism have exhibited typical changes.
In such microenvironments, tumor cell lipid synthesis is
increased (Peng et al., 2018). Lipids provide a large amount of
energy for the proliferation of tumor cells to maintain membrane
synthesis and other related functions during tumor cell growth.
Systemic metabolic alterations associated with increased
consumption of saturated fat and obesity are linked with
increased risk of prostate cancer progression and mortality.
Studies have shown that in primary prostate cancer, dietary
saturated fat intake contributes to tumor progression by
mimicking MYC over expression, setting the stage for
therapeutic approaches involving changes to the diet (Labbé
et al., 2019). Lipid metabolomics techniques provide
information on lipid changes in various tumor cells
(Poczobutt et al., 2016).

Lipid metabolism presents as a network of pathways with
flexible feedback loops and crosstalk to meet the increased
metabolic needs of cancer cells. Based on multi-omics data of
pan-cancer, researchers have found extensive alterations in FAs,
arachidonic acid, cholesterol metabolism, and peroxisome
proliferator-activated receptor (PPAR)-signaling in different
tumors, and lipid metabolism features are shared among
tumors with similar tissue origin tumors. Moreover, possible
causes of metabolic disorders have been correlated with lipids
in tumors from several perspectives, which include somatic
mutation, DNA methylation abnormality, and regulation of
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transcription factors (Hao et al., 2019). For example,
hexadecenoic acid, docosahexaenoic acid, heptanoic acid, and
β-hydroxybutyrate, are significantly greater in gastric cancer than
they are in benign tissue (Stuart et al., 2014). Untargeted
metabolomic studies of kidney cancers have shown increased
use of FAs by cancer cells (Ganti et al., 2012). Consistent with this
finding, FA oxidation inhibitors, such as the PPAR α antagonist
GW6471, have been tested in several models of renal clear cell
cancer and have been shown to inhibit the growth of related
tumor cells (Abu Aboud et al., 2015).

Lipid metabolism can not only affect the growth of tumor cells
by metabolic recombination of fatty acids and other molecules,
but also regulate the cross-talk between tumor cells and tumor
associated stromal cells to modulate the high metabolic needs of
the tumor. It has been reported that the liver X receptor (LXR), a
lipid activated transcription factor, plays an important role in
modulating the TME. Apoptotic tumor cells containing
oxysterols activate LXR in macrophages causing suppression of
dendritic cell migration and recruitment of neutrophils in tumors
resulting in tolerance and immunosuppression (Traversari et al.,
2014). Cancer stem cells (CSCs) or tumor-initiating cells (TICs)
represent a small group of cancer cells with self-renewing, tumor-
initiating, and unique metabolic properties. Unlike most tumor
cells, CSCs and TICs are conventionally treated refractory tumors
that are the cause of recurrence in cancer patients. Recent
advances in metabolomic detection have shown that lipid
uptake of new fat to form lipid droplets and induce changes
in lipid desaturation and FA oxidation are related to the
regulation of CSCs (Brandi et al., 2017). Changes in lipid
metabolism not only meet the energy requirements and
biomass production of CSCs but also activate several
important carcinogenic signaling pathways, including Wnt/
β-catenin and Hippo/YAP signaling pathways (Wang et al.,
2016; Yi et al., 2018). It has been suggested that lipid
metabolism in tumor cells and its role in tumor progression
and metastasis have attracted more and more attention.

Amino Acid Metabolism Reprogramming in
Tumor Growth
Cancer cells’ need for amino acids increases in order to sustain
their rapid proliferation. In addition to their use in protein
synthesis, amino acids are increasingly being studied as
metabolites and regulators that support cancer cell growth
(Wen et al., 2018). Multiple amino acids have been confirmed
to be valuable in the identification of potential biomarkers and
understanding the pathogenesis of various malignant tumors.
Among these, the study of glutamine, serine, and glycine has
been a primary focus (Jung et al., 2014; Yip-Schneider et al.,
2019). Amino acid uptake, steady-state levels, and catabolism
are all elevated in the leukemia stem cell (LSC) population
(Jones et al., 2018). Changes in the amino acid metabolic
spectrum are correlated with the occurrence of gastric
cancer, and the amino acid metabolic pathway is abnormal
in gastric cancer patients, as shown by the significant
correlation between the levels of alanine and arginine and
cancer T stage (Chen et al., 2010).

Increased glutamine metabolism is a commonly observed
metabolic change in cancer, and glutamine is second only to
glucose in importance as a nutrient in cancer. As the most
abundant free amino acid, glutamine is involved in a series of
energy generation, macromolecular synthesis, and signal
transmission pathways of cancer cells by providing nitrogen
and carbon atoms (Coloff et al., 2016; Kappler et al., 2017).
Glutamine can synthesize a variety of other amino acids to
participate in the tricarboxylic acid (TCA) cycle. Moreover,
glutamine-derived fumarate, malate, and citrate increase
significantly when glucose is deprived, which suggests that
glutamine drives the glucose-independent TCA cycle (Spinelli
et al., 2017). Increasing glutamine for mitochondrial-dependent
bioenergy production and cell biosynthesis is a key feature of
many tumor cells (Wang et al., 2019). In a study that analyzed
differences in metabolic profiles between gastric cancer (GC) and
gastric ulcer (GU), researchers used LC-MS-based plasma
metabolic analysis and found that plasma ornithine levels were
higher, and plasma glutamine, histidine, arginine, and tryptophan
levels were lower in GC patients than in GU patients (Jing et al.,
2018). Several independent studies have also shown higher
utilization of glutamine in renal clear cell carcinoma compared
with that in normal renal tissue (Wettersten et al., 2015; Hakimi
et al., 2016).

Other amino acids, such as aspartic acid and arginine, are
involved in the reprogramming of amino acid metabolism in
cancer. In a study that investigated significant metabolomic
changes in plasma in the early and late stages of 4T1
metastatic breast cancer in mice, the plasma arginine
concentration was higher during the early stage of metastasis
but gradually decreased, and the urine-arginine/arginine ratio
increased in the late stages (Kus et al., 2018). This is consistent
with the activation of the arginine metabolic pathway in cancer.
Xie et al. used a combined liquid and gas chromatography
technology to compare and the plasma metabolic spectrum in
breast cancer patients and found that aspartic acid concentration
was significantly negatively correlated with the risk of breast
cancer (Xie et al., 2015). In addition, low serum aspartic acid
concentrations were found to be unique in breast cancer patients,
and no significant changes were observed for the serum aspartic
acid levels of other malignant tumors, such as gastric and
colorectal cancer (Zhang et al., 2020). Aspartic acid is a major
neurotransmitter that is known to inhibit tumor cell proliferation,
and it may induce tumor cell death through the Akt pathway
(Chen et al., 2020). Antimetabolites that interrupt amino acid
synthesis have also been developed and are undergoing clinical
trials as cancer therapeutics (Tabe et al., 2019).

METABOLOMIC MARKERS IN CANCER
PROGRESSION

With the comprehensive development of modern molecular
biology, many new tumor markers carry important clinical
value for the early diagnosis and screening of malignant
tumors; however, current routine tumor markers lack
sensitivity and specificity for the early diagnosis of tumors. As
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TABLE 1 | Metabolites in biofluid samples of cancer and non-cancer groups.

Year Sample
types

Tumor types Patients/animal models Method Discriminant metabolites or
findings

Related metabolic
pathways

Ref

2016 plasma Papillary thyroid
microcarcinoma

patients with cancer (n � 26)
from healthy controls (n � 17)

NMR Elevated levels of glucose,
mannose, pyruvate and 3-
hydroxybutyrate in plasma, are
involved in the metabolic
alterations in papillary thyroid
microcarcinoma

Glycolysis, amino acid Lu et al. (2016)

2016 plasma Lung and liver
cancer

lung (n � 50) and liver cancer
patients (n � 50)

LC-MS two values was discovered to
identify lung and liver cancer,
which were the product of the
plasma concentration of
putrescine and spermidine; and
the ratio of the urine
concentration of S-adenosyl-l-
methionine and
N-acetylspermidine

The pathways of polyamines
metabolome

Xu et al. (2016)

2020 plasma Pancreatic cancer patients with pancreatic
cancer (n � 60) from healthy
controls (n � 60)

LC-MS The top 10 ranked differential
metabolites were precisely
aligned as glycocholic acid,
agmatine, melatonin, beta-
sitosterol, sphinganine,
hypoxanthine, spermidine,
hippuric acid, creatine and
inosine.new metabolite
biomarkers in plasma (creatine,
inosine, beta-sitosterol,
sphinganine and glycocholic acid)
can be used to readily diagnose
pancreatic cancer in a clinical
setting

purine metabolism, glycine
and serine metabolism,
arginine and proline
metabolism, steroid
biosynthesis, sphingolipid
metabolism and bile
metabolism

Luo et al. (2020)

2019 plasma Pancreatic cancer patients with pancreatic
cancer (n � 22) from healthy
controls (n � 40)

LC-MS About 270 lipids belonging to 20
lipid species were found
significantly dysregulated.
LysoPC 22:0, PC (P-14:0/22:2)
and PE (16:0/18:1) are all
associated with tumor stage,
CA19-9, CA242 and tumor
diameter. What’s more, PE (16:0/
18:1) is also found to be
significantly correlated with the
patient’s overall survival

lipids Tao et al. (2019)

2014 plasma Oral squamous
cell carcinoma

Patients with locally
advanced OSCC(n � 105)

GC-MS Chemotherapy leads to up-
regulation of fatty acids, steroids,
and antioxidant substances.
Lactate, glucose, glutamate,
aspartate, leucine, and glycerol
are associated with efficacy of
induction chemotherapy.
Lactate, glutamate, and
aspartate can precisely predict
the suitability and efficacy of
induction chemotherapy

Glycolysis, amino acid, fatty
acid

Ye et al. (2014)

2019 plasma Breast cancer 1,624 first primary incident
invasive breast cancer cases
and 1,624 matched controls

LC-MS There were significant differences
in lysoPCs in breast cancer
patients. LysoPC aaC18:0 was
negatively associated with the
risk of breast cancer, while higher
concentrations of
phosphatidylcholine PC ae C30:0
were associated with an
increased risk of breast cancer

lysoPCs His et al. (2019)

(Continued on following page)
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TABLE 1 | (Continued) Metabolites in biofluid samples of cancer and non-cancer groups.

Year Sample
types

Tumor types Patients/animal models Method Discriminant metabolites or
findings

Related metabolic
pathways

Ref

2018 plasma Pancreatic cancer pancreatic ductal
adenocarcinoma (n � 271),
chronic pancreatitis (n �
282), liver cirrhosis (n � 100)
or healthy as well as non-
pancreatic disease controls
(n � 261)

GC-MS Proline, Sphingomyelin (d18:2,
C17:0), Phosphatidylcholine,
Isocitrate (C18:0, C22:6),
Sphinganine-1-phosphate
(d18:0), Histidine, Pyruvate,
Ceramide (d18:1, C24:0),
Sphingomyelin (d17:1, C18:0)
and CA19-9 formed a
biomarker signature. The
biomarker signature could be
identified as a differential
diagnosis between pancreatic
ductal adenocarcinoma (PDAC)
and chronic pancreatitis (CP)

complex lipids, fatty acids
and related metabolites

Mayerle et al.
(2018)

2017 Urine Prostate cancer 64 prostate cancer patients
and 51 individuals diagnosed
with benign prostate
hyperplasia

NMR Branchedchain amino acids,
glutamate, pseudouridine,
glycine, P � 0.015;
dimethylglycine, fumarate and 4-
imidazole- acetate were able to
distinguish between prostate
cancer and benign prostate
hyperplasia (BPH)

TCA cycle of glucose
metabolism

Pérez-Rambla
et al. (2017)

2012 Urine Kidney cancer (Group A: 29 cancer
patients, 33 controls; Group
B: 6 cancers,6 controls)

GC-MS Results showed differential
urinary concentrations of several
acylcarnitines as a function of
both cancer status and kidney
cancer grade, with most
acylcarnitines being increased in
the urine of cancer patients and in
those patients with high cancer
grades

acylcarnitines Ganti et al.
(2012)

2011 Urine Bladder cancer 27 bladder cancer (BC)
patients and 32 healthy
controls

LC-MS Cancer patients have elevated
levels of acetyl carnitine and
adipate in their urine. Carnitine
C9:1 and component I, were
combined as a biomarker
pattern

Fatty acid and carnitine
metabolism

Huang et al.
(2011)

2020 Urine Breast cancer patients with breast cancer (n
� 56) and benign breast
tumors (n � 22), as well as
from healthy females (n � 20)

GC-MS 1-methyl adenosine (1-MA), 1-
methylguanosine (1-MG) and 8-
hydroxy-2′-deoxyguanosine (8-
OHdG) levels were significantly
elevated in the early stages of
breast cancer, but no significant
differences were observed
between the benign tumor group
and the healthy group

nucleoside metabolomes Omran et al.
(2020)

2013 Urine Ovarian cancer 40 preoperative epithelial
ovarian cancer (EOC)
patients, 62 benign ovarian
tumor (BOT) patients, and 54
healthy controls

LC-MS The concentrations of some
urinary metabolites of 18
postoperative EOC patients
among the 40 EOC patients
changed significantly compared
with those of their preoperative
condition, and four of them
suggested recovery tendency
toward normal level after surgical
operation, including N4-
acetylcytidine, pseudouridine,
urate-3-ribonucleoside, and
succinic acid

nucleotide metabolism,
histidine metabolism,
tryptophan metabolism,
mucin metabolism

Zhang et al.
(2013)

(Continued on following page)
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TABLE 1 | (Continued) Metabolites in biofluid samples of cancer and non-cancer groups.

Year Sample
types

Tumor types Patients/animal models Method Discriminant metabolites or
findings

Related metabolic
pathways

Ref

2019 Urine Lung cancer lung cancer (n � 32) and
healthy controls (n � 29)

GC–MS Six metabolites were altered in
urine (l-glycine, phosphoric acid,
isocitric acid, inositol, palmitic acid
and stearic acid) and four
metabolites (l-glycine, phosphoric
acid, isocitric acid and inositol)
were decreased from patients with
cancer, indicating a strong, unified
marker of lung cancer pathology

Fatty acid and glucose
metabolism

Callejón-Leblic
et al. (2019)

2010 Saliva Oral, breast and
pancreatic cancer

69 oral, 18 pancreatic and 30
breast cancer patients, 11
periodontal disease patients
and 87 healthy controls

CE-
TOFMS

They identified 57 principal
metabolites that can be used to
accurately predict the probability
of being affectedby each individual
disease. Patients with oral cancer
had significantly higher levels of
salivary polyamines compared to
the control group, and taurine and
piperidin were identified as oral
cancer-specific metabolites,
providing promising markers for
oral cancer screening

Polyamines and amino acid
metabolism

Soini et al.
(2010)

2016 Saliva Oral cancer patients with oral cancer (n �
24) and healthy controls (n
� 44)

CE-
TOFMS

In total, 85 metabolites in tumor
and 45 metabolites in saliva were
identified to be significantly
different between oral cancer and
controls, and the combination of
S-adenosylmethionine and
pipecolate can discriminate oral
cancers from controls

metabolites in the urea cycle
and one carbon cycle

Ishikawa et al.
(2016)

2017 Saliva Oral squamous
cell carcinoma

22 patients with oral
squamous cell carcinoma
(OSCC) and 21 healthy
controls

CE-
TOFMS

A total of 25 metabolites were
revealed as potential markers to
discriminate between patients
with OSCC and healthy controls

Choline and metabolites of
the BCAA cycle

Ohshima et al.
(2017)

2019 Saliva Breast cancer 101 patients with invasive
carcinoma of the breast, 23
patients with ductal
carcinoma in situ, and 42
healthy controls

LC-MS The levels of polyamines in the saliva
of breast cancer patients were
significantly increased. In addition,
polyamines and their acetylated
forms were elevated invasive
carcinoma of the breast only

Polyamine metabolism Murata et al.
(2019)

2018 Saliva Pancreatic cancer patients with PC (n � 39),
those with chronic
pancreatitis (CP, n � 14), and
controls (C, n � 26)

CE-
TOFMS

Polyamines, such as spermine,
N₁-acetylspermidine, and N₁-
acetylspermine, showed a
significant difference between
patients with PC and those with
C, and the combination of four
metabolites including N₁-
acetylspermidine showed high
accuracy in discriminating PC
from the other two groups

Polyamine metabolism Asai et al. (2018)

2012 CSF Malignant gliomas 10 patients presenting
malignant gliomas and seven
control patients that did not
present malignancy

LC-MS One subtype contained
metabolites rich in citric acid cycle
components that distinguished the
metabolic characteristics of
patients with malignant glioma
from those in the control group.
Newly diagnosed patients were
classified into different subtypes
and showed low levels of
metabolites involved in tryptophan
metabolism, which may indicate a
loss of inflammatory features

Metabolites from the citric
acid cycle, gluconeogenesis,
and pyrimidine metabolism,
urea cycle

Locasale et al.
(2012)

(Continued on following page)
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an emerging omics technology, metabolomics mainly involves
the study of small molecular metabolites (i.e., those less than
1,500 Da) and reflects a series of small changes in the body at the
level of metabolites, which is suitable for the diagnosis of diseases.
Many scholars have used a variety of detection techniques to
conduct research on the early diagnosis and treatment prediction
of tumors (Srivastava and Creek, 2019). Metabolomics
approaches are used to identify and validate metabolic
biomarkers that accurately and sensitively diagnose tumor field
progression and metastasis in a clinical setting. Furthermore,
such efforts can be left to clinicians with appropriate time frames
to promote early and effective therapeutic interventions, which
will significantly improve the 5-years survival rate of tumor
patients. We summarize the major findings of previous tumor
blood metabolome studies (Table 1).

Blood Biomarkers
Because blood is a readily available biological specimen, blood
biomarker studies account for the majority of metabolomics and
tumor studies. The application of metabolomics technology has
led to significant breakthroughs in the discovery of biomarkers
for a variety of tumors, which include pancreatic, liver, lung, and

breast cancers (Ye et al., 2014; Xu et al., 2016; His et al., 2019). For
instance, Lu et al. used NMR spectroscopy to screen metabolic
changes in thyroid tissues and plasma from papillary thyroid
microcarcinoma patients respectively. The results revealed
reduced levels of fatty acids and elevated levels of several
amino acids in thyroid tissues (Lu et al., 2016). This work
illustrates that the metabolomics approach is capable of
providing more sensitive diagnostic results and more
systematic therapeutic information for all kinds of tumor.

In the case of pancreatic cancer, researchers have identified
five new metabolic biomarkers (creatine, inosine, beta-sitosterol,
sphinganine and glycocholic acid) that can be used for the clinical
diagnosis of pancreatic cancer by comparing plasma
metabolomics between patients with pancreatic cancer (n �
60) and healthy controls (n � 60) (Luo et al., 2020).
Subsequently, a large prospective study comparing the lipid
metabolomics of serum exosomes between pancreatic cancer
patients and healthy controls showed that approximately 270
lipids were significantly dysregulated. Further analysis of the
correlation between these abnormal lipids and other
phosphatidylcholine (PC)-related factors showed that LysoPC
22:0, PC (14:0/22:2), and PE (16:0/18:1) were correlated with

TABLE 1 | (Continued) Metabolites in biofluid samples of cancer and non-cancer groups.

Year Sample
types

Tumor types Patients/animal models Method Discriminant metabolites or
findings

Related metabolic
pathways

Ref

2013 CSF Glioma 32 patients with histologically
confirmed

GC–MS The citric and isocitric acid levels
were significantly higher in the
glioblastoma (GBM) samples
than in the grades I-II and grade III
glioma samples. In addition, the
lactic and 2-aminopimelic acid
levels were relatively higher in the
GBM samples than in the grades
I-II glioma samples. The CSF
levels of the citric, isocitric, and
lactic acids were significantly
higher in grade I-III gliomas with
mutant isocitrate dehydrogenase
(IDH) than in those with wild-
type IDH.

Metabolites from the aerobic
glycolysis

Nakamizo et al.
(2013)

2020 CSF Medullo-
blastoma (MB)

8 patients diagnosed with
recurrent MB and 7 healthy
controls

LC-MS The up-regulation of tryptophan,
methionine, serine and lysine,
which have all been described to
be induced upon hypoxia in CSF.
While cyclooxygenase products
were hardly detectable, the
epoxygenase product and beta-
oxidation promoting lipid
hormone 12,13-DiHOME was
found to be strongly up-regulated

Lipid and amino acid
metabolism

Reichl et al.
(2020)

2020 CSF different types of
brain tumors

A cohort of
163 histologically-proven
patients with brain disorders

LC-MS A total of 508 ion features were
detected by the LC-Q/TOF-MS
analysis, of which 27 metabolites
were selected as diagnostic
markers to discriminate different
brain tumor types

Amino acids and citrate
metabolism

Wang et al.
(2020)

NMR, nuclearmagnetic resonance; GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; CE-TOFMS, capillary electrophoresis time-of-
flight mass spectrometry; CSF, cerebrospinal fluid.
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tumor stage, CA19-9, CA242, and tumor diameter. In addition,
PE (16:0/18:1) was significantly associated with overall survival
(Tao et al., 2019). Currently, non-invasive diagnostic tests can
only distinguish pancreatic ductal adenocarcinoma (PDAC) from
chronic pancreatitis (CP) in approximately two-thirds of patients.
Using untargeted metabolomics techniques, Mayerle
demonstrated that a biomarker signature (nine metabolites
and an additional CA19-9) could be identified as differential
diagnoses of PDAC and CP (Mayerle et al., 2018). In addition,
inflammatory metabolites identified by serum metabolomics can
also stratify tumor and improve diagnosis of patients with
aggressive tumor (Cacciatore et al., 2021). The discovery of
metabolomics for tumor blood biomarkers can be extended to
various aspects, which include the discovery of significantly
different metabolites, changes in the tumor metabolic
spectrum, and direct identification of tumors and inflammation.

Urine Biomarkers
The non-invasive nature of urine biomarkers makes them
particularly suitable for a wide range of screening purposes,
especially for measuring urine from asymptomatic high-risk
groups to distinguish between those who may and may not be
carrying a disease. Accurate and effective analyses of urine
metabolites offer promise for their applications to provide a
deeper understanding of tumor pathology and eventually,
clinical transformations (Pérez-Rambla et al., 2017; Dinges
et al., 2019).

In urological tumors, Ganti used GC-MS to measure carnitine
in two different laboratories (Laboratory A: 29 cancer patients
and 33 controls; Laboratory B: 6 cancer patients and 6 controls)
and showed that differences in urinary concentrations of several
acylcarnitines were a function of cancer status and renal cancer
grade. Most cancer patients and those with high-grade cancers
have increased acylcarnitine in their urine (Ganti et al., 2012). In a
bladder cancer study, researchers reported elevated levels of
acetylcarnitine and adipate in the urine of cancer patients,
which suggested dysregulation of FA metabolism. Changes in
the mitochondrial TCA cycle and energy metabolism or the
excessive production of acetyl-coenzyme A (acetyl-CoA) lead
to changes in acetylcarnitine levels (Huang et al., 2011). Under
normal physiological conditions, lipid in urine is limited; thus, the
increase in lipid markers in urine is a clear indication of
tumorigenesis, especially in the urinary system. Moreover, in
non-urinary tumors, such as liver, stomach, cervical, and breast
cancers, differential metabolites in urine distinguish cancer
patients from healthy controls (Dinges, Hohm et al., 2019).
Omran used GC-MS to detect urine metabolites from breast
cancer patients and compared these with samples from patients
with benign breast tumors and healthy women. Results suggested
that 1-methyl adenosine (1-MA), 1-methylguanosine (1-MG),
and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels were
significantly elevated in the early stages of breast cancer;
however, no significant differences were observed between the
benign tumor group and the healthy group (Omran et al., 2020).
Urine also plays a role in the uniqueness of biomarkers for
specific cancer types (Zhang et al., 2013; Callejón-Leblic et al.,
2019).

Salivary Biomarkers
In addition to blood and urine, other biological fluid biomarkers
are available for the early diagnosis of specific cancers. Saliva is a
biological fluid made up of more than 99% water and less than 1%
of proteins, electrolytes, and other low-molecular-weight
components (Soini et al., 2010). Saliva plays a key role in
lubrication, chewing, swallowing, and digestion. It protects the
integrity of oral tissue and also provides clues for local and
systemic diseases and conditions (Abraham et al., 2012). In
2010, using capillary electrophoresis time-of-flight mass
spectrometry (CE-TOFMS), Sugimoto found that saliva
metabolites were embedded with cancer-specific signals. They
performed a comprehensive metabolite analysis of saliva samples
from patients with oral cancer and periodontal disease and
healthy controls. Patients with oral cancer had significantly
higher levels of salivary polyamines compared with the control
group, and taurine and piperidine were identified as oral cancer-
specific metabolites, which may be promising markers for oral
cancer screening (Sugimoto et al., 2010). To explore applications
of salivary metabolite biomarkers in oral cancer screening,
hydrophilic metabolites in the saliva and tumor tissues of
patients with oral cancer were analyzed using CE-TOFMS. In
total, 85 metabolites in tumors and 45 metabolites in saliva were
identified to be significantly different between oral cancer patients
and controls, and the combination of S-adenosylmethionine and
pipecolate discriminated oral cancer patients from controls
(Ishikawa et al., 2016).

Since then, several studies have shown that the combination of
saliva and tumor metabolomics is beneficial for the identification
of salivary metabolite biomarkers and the screening of
noninvasive oral cancers (Ohshima et al., 2017). In addition to
salivary metabolomics of oral cancer, metabolite profiles of saliva
in other cancers and diseases have been analyzed (Murata et al.,
2019). Great progress has been made in the clinical application of
salivary biomarkers. Several biomarkers for systematic cancer
detection have been identified and validated at preclinical levels
(Asai et al., 2018). The discovery of saliva biomarkers also has
special significance for noninvasive identification and recognition
of tumors.

Cerebrospinal Fluid Biomarkers
Cerebrospinal fluid (CSF) is a biological fluid that is most likely to
be affected by central nervous system dysfunction, and its analysis
can better reflect inherent neurological and biochemical changes
(Crews et al., 2009). In 2012, Locasale et, al. first analyzed the
metabolic profiles of 10 patients with malignant glioma and seven
control patients with non-malignant glioma using a targeted mass
spectrometry metabolomics platform and reported a significant
association between CSF metabolites and glioma malignancy
(Locasale et al., 2012). The study also provided the first global
assessment of the polar metabolic composition of CSF associated
with malignancies and demonstrated that data acquired using
mass spectrometry technology may have sufficient predictive
power for the identification of biomarkers and classification of
neurological diseases.

In recent years, several studies have also confirmed that the use
of untargeted metabolomics techniques to analyze metabolic
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characteristics of different brain tumors in clinical CSF samples
enables reliable identification of significant metabolic differences
between different brain tumors, which offers significant promise
for diagnoses of brain tumors (Nakamizo et al., 2013; Reichl et al.,
2020; Wang et al., 2020). More metabolites, including
tricarboxylic acid cycle products, tryptophan and methionine,
were also found in the cerebrospinal fluid of gliomas and
metastatic tumors (Ballester et al., 2018). Brain tumors are
often associated with ischemic necrosis and inflammatory
responses. Inflammation-related markers can be detected in
the cerebrospinal fluid, which may aid the diagnosis of CNS
tumors. Elevated levels of inflammatory markers, such as
interleukin-10 and soluble interleukin-receptor, were found in
the cerebrospinal fluid of primary CNS lymphoma (Geng et al.,
2021). Specific cerebrospinal fluid biomarkers could help avoid
high-risk biopsy operations and unnecessary craniotomy, and
even guide preoperative surgical planning.

METABOLOMICS ANDONCOLOGYDRUGS

Application of Metabolomics in the
Evaluation of Tumor Drug Efficacy
The main purpose of drug therapy of tumors is to control the
growth of the tumor and improve the quality of life of patients.
Selecting the most effective anti-tumor drugs has become a top
priority. In clinical practice, metabolomics can be used to detect
body or cell metabolites that reflect the effects of anti-tumor drugs
on the body or cells to improve the efficacy of drugs and reduce
avoidable adverse reactions.

Kim et al. used NMR to investigate metabolic alterations
following adriamycin (ADR) treatment for gastric
adenocarcinoma. After human gastric adenocarcinomas were
implanted into mice, ADR was intraperitoneally administered
for 5 days, and urine was collected on days 2 and 5. Results
showed that the levels of trimethylamine oxide, hippurate, and
taurine decreased in the tumor model and increased following
ADR treatment. In addition, the levels of 2-oxoglutarate, 3-
indoxylsulfate, trigonelline, and citrate, which all increased in
the tumor model, significantly decreased to those of normal
controls following ADR treatment (Kim et al., 2013). In a
plasma metabolomics study of 54 patients with colorectal
cancer who received capecitabine before and after treatment, it
was found that the content of low-density lipoprotein-derived
lipids was positively correlated with drug toxicity during
treatment (Backshall et al., 2011).

Furthermore, using untargeted lipidomics and quantitative
polymerase chain reaction, Zhang et al. identified distinct features
of lipid metabolism in imidazole ketone erastin (IKE)-induced
ferroptosis and demonstrated that IKE slows tumor growth
(Zhang et al., 2019). Once drugs act on the body, changes in
genes and/or proteins can impact changes in terminal
metabolites, which can be reflected at the metabolic level.
Therefore, the early efficacy of drugs can be assessed using
metabolomics, which enables medication regimens to be
adjusted.

Application of Metabolomics in the
Evaluation of Drug Resistance in Cancer
The metabolic pattern of tumor cells changes following the
development of drug resistance. The same drug can produce
different metabolic changes in sensitive and drug-resistant cells
(Zhang et al., 2016). Therefore, metabolomics can be used to
detect metabolic changes in cells and their response to drugs to
determine whether tumor cells are resistant to drugs and monitor
drug resistance as early as possible. As a fast, simple, and effective
method, metabolomics uses a multivariable and dynamic method
to evaluate metabolic results across a variety of physiological and
pathological states, which allows the prediction and assessment of
patients’ sensitivity and drug resistance to chemotherapy.

Metabolomics can be used to distinguish between platinum
resistance and metabolite levels. Poschner et al. used LC-MS to
characterize the levels of steroids, active estrogen, and sulfated or
aldehyde glucose during the development of platinum resistance
in ovarian cancer and found that these metabolites are highly
expressed in carboplatin-sensitive cells (Poschner et al., 2020). In
a study of non-small cell lung cancer (NSCLC), cisplatin-resistant
cells were more sensitive to nutrient deprivation than were
sensitive cells, and adding glutamine to cisplatin-resistant cells
restored cell death due to nutrient deprivation by increasing the
intracellular nucleotide concentration. Therefore, cisplatin-
resistant patients can improve efficacy by combining drugs,
such as 5-fluorocrail, that target nucleoside metabolism (Obrist
et al., 2018). The metabolic pattern analysis of cancer patients can
also find the metabolic differences between drug-resistant
patients and drug-sensitive patients, so as to monitor the drug
resistance of patients as early as possible and carry out follow-up
treatment (Jiye et al., 2010). Metabolomics has made great strides
in the study of drug resistance genes in tumors.

METABOLIC FLUX ANALYSIS AND
FLUXOMICS IN CANCER METABOLISM
EXPLORATIONS
Quantitative analysis of metabolism has improved our
understanding of metabolic features including metabolite
concentrations, fluxes, and free energies. With the
development of nuclear magnetic resonance, mass
spectrometry, and other technologies, the application of stable
isotope tracer technology to the field of metabolomics has become
an important aspect of biological research (Bruntz et al., 2017).
Stable isotope-resolved metabolomics (SIRM) is a method that
extrapolates metabolic pathways and fluxes via the analysis of
changes in stable isotope tracer precursor substances to
substances. SIRM works primarily by injecting isotopically-
enriched precursors, such as [13C6]-Glc, into biological
systems and detecting subsequent metabolic transformations.
Incorporating stable isotopes, such as 2H, 13C, or 15N, into
biological precursors has long been used to trace their metabolism
in living systems. . Biological samples can be studied using NMR,
mass spectrometry, and other detection platforms (Fan et al.,
2012) (Figure 3).
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Glucose plays a vital role in important glucose catabolic
pathways, such as the glycolysis and TCA cycles; thus,
13C-labeled glucose is commonly used as a tracer. Metabolic
differences derived from SIRM have shown that energy and
anabolism are increased in cultured lung cancer cells and
NSCLC compared with those in the normal lung (Lane et al.,
2011). Moreover, a study using SIRM found that the proliferation
of cancer cells can be reduced by inhibiting the glycolysis pathway
in cancer cells (Gu et al., 2016). Researchers used 13C-labeled
glucose to track the glycolysis pathway in lung cancer patients

and animal models (Hu et al., 2019) and revealed that lactic acid
contributes more to the Krebs cycle than does glucose. This result
suggests that lactic acid is the end metabolic waste of theWarburg
effect and provides new opportunities for the diagnosis and
treatment of cancer (Hui et al., 2017). Proliferating cells shunt
glucose into pathways other than the glycolysis and Krebs cycle
pathways, and SIRM has confirmed that an increase of glucose
flux into these pathways occurs. For example, enhanced non-
oxidative and oxidative pentose phosphate pathway activity has
been reported in pancreatic and renal cancers, respectively, using

FIGURE 3 | Steps for studying cancer metabolism using stable isotope-resolved metabolomics (SIRM). Stable isotope tracers, such as uniformly 13C-labeled
glucose (13C6-Glc) or uniformly 13C,15N-labeled glutamine (13C5,

15N2-Gln), are administered via addition to the culture medium for cells or via intravenous injection into
whole organisms. Metabolites are then extracted, labeled by tracers, and subjected to various NMR and MS analyses to probe metabolic activity.
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a (13C2-1, 2)-glucose tracer (Boros et al., 2005; Yang et al., 2013).
In addition, many clinically successful drugs and promising
candidates for drug targeting tumor therapy may benefit from
SIRM analyses to gain insights into their molecular mechanisms.
For example, SIRM and microarray experiments have
demonstrated that selenium agents perturb Krebs cycle activity
and attenuate lipid biosynthesis in lung cancer cells, and these
alterations are related to the activation of the AMP-activated
protein kinase pathway. Anti-cancer target discovery is one of the
most promising translational applications for SIRM, and
inhibitors of several targets have been developed and are
showing promise in preclinical models (Svensson et al., 2016).

In recent years, Dynamic nuclear polarization enhanced
magnetic resonance imaging based on isotope tracer have
become dependable imaging tools for the diagnosis and
treatment assessment in cancer. Based on preclinical studies
that have demonstrated the use of hyperpolarized (1–13C]
-pyruvate imaging tools for prostate cancer, Researchers have
investigated the in vivo pharmacokinetics and
pharmacodynamics of hyperpolarized (1–13 C)-pyruvate in
order to apply as a tool for imaging liver cancer (Salamanca-
Cardona and Keshari, 2015). Applications of probes other than
pyruvate are still in the early stages, but molecular imaging of
real-time metabolic events could be a valuable tool to elucidate
hitherto undiscovered metabolic fluxes that play a role in cancer
development and treatment (Perkons et al., 2021).

By gaining insights into metabolic dysfunction due to cancer
development or drug interventions, Metabolic flux analysis and
fluxomics can be integrated with genomic and proteomic
information to achieve systems biochemical insights in both
model systems and individual human patients.

SUMMARY AND FUTURE DIRECTIONS

Metabolomics has been used across many aspects of cancer
research, which include cancer pathophysiology, biomarker
discovery, and therapeutic response. Metabolic reprogramming
is a hallmark of malignancy, and changes in metabolic profiles
strongly influence cancer development, progression, and
response to treatment. Metabolomics techniques can be used
to monitor the dynamics of tumor metabolism and response to

treatment over the course of the disease. Moreover, another area
of increasing importance is the identification of biomarkers for
personalized treatment strategies. At the same time, metabolomic
analysis may also yield more accurate and useful clinical
information about the metabolic needs of the tumor, as well
as the identification of new pharmacodynamic biomarkers and
the monitoring of drug resistance of the tumor. On this basis, the
applications of stable isotope tracer technology to the field of
metabolomics have become an important part of biological
research to track the activity of metabolites in the body and
trace deep metabolic pathways.

However, there are still several limitations in the study of
metabolic reprogramming in tumors using metabolomics.
Methodologically, absolute homogeneity across different
batches of biological samples cannot be achieved, and the
techniques and methods used should be optimized to establish
a set of highly sensitive routine procedures that apply to
metabolites of varying polarity across different samples.
Secondly, most existing studies focus on the metabolomics of
biological fluids or extracellular metabolites; however, it is also of
importance to study the metabolic characteristics of intracellular
metabolites and cancer cells. Thirdly, the mechanisms underlying
metabolic changes need to be clarified. This can be achieved by
integrating transcriptomic and/or proteomic analyses to identify
genes or proteins that cause or are associated with metabolomic
changes, which may be potential targets for tumor therapy.
Analyzing metabolic changes in tumor cells in response to
drugs and revealing the metabolic mechanism underlying
tumor drug resistance may provide opportunities to overcome
tumor chemotherapy resistance or reverse tumor sensitivity via
metabolic regulation. Metabolomics provides a novel approach to
study the metabolic reprogramming of tumors and will continue
to be widely used in the diagnosis and treatment of different
tumors in the future.
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