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Adrenocortical carcinoma (ACC) is a raremalignancy with dismal prognosis. Hypoxia is one of characteristics of cancer leading to
tumor progression. For ACC, however, no reliable prognostic signature on the basis of hypoxia genes has been built. Our study
aimed to develop a hypoxia-associated gene signature in ACC. Data of ACC patients were obtained from TCGA and GEO
databases. .e genes included in hypoxia risk signature were identified using the Cox regression analysis as well as LASSO
regression analysis. GSEA was applied to discover the enriched gene sets. To detect a possible connection between the gene
signature and immune cells, the CIBERSORT technique was applied. In ACC, the hypoxia signature including three genes
(CCNA2, COL5A1, and EFNA3) was built to predict prognosis and reflect the immune microenvironment. Patients with high-
risk scores tended to have a poor prognosis. According to the multivariate regression analysis, the hypoxia signature could be
served as an independent indicator in ACC patients. GSEA demonstrated that gene sets linked to cancer proliferation and cell
cycle were differentially enriched in high-risk classes. Additionally, we found that PDL1 and CTLA4 expression were significantly
lower in the high-risk group than in the low-risk group, and resting NK cells displayed a significant increase in the high-risk group.
In summary, the hypoxia risk signature created in our study might predict prognosis and evaluate the tumor immune mi-
croenvironment for ACC.

1. Introduction

Adrenocortical carcinoma (ACC) is a rare malignant
endocrine tumor arising from the cortex of the adrenal
gland, which has a dismal prognosis [1]. .e Surveillance,
Epidemiology, and End Results (SEER) registry reported
that the incidence of ACC in the United States was one per
million people annually from 1974 to 2014 [2]. Although
radical surgical resection is the most effective therapy, 5-
year survival rates of ACC patients range from 15% to 44%
[3]. .erefore, it is warranted to identify an improved
prognostic feature to predict the prognosis for ACC

patients and then assign them to appropriate therapeutic
interventions.

Hypoxia arising from decreased oxygen supply is one of
the hallmarks of tumor microenvironment. Tumor hypoxic
condition is closely correlated with proliferation, tumor
recurrence, metastasis, drug resistance, and decreased pa-
tient survival [4]..ere are various hypoxia-associated genes
with prognostic power in cancer, such as P4HA1 in glio-
blastoma [5] and PDSS1 in hepatocellular carcinoma [6].
Currently, the impact of tumor microenvironment on the
immune system has paid great attention. It is well known
that hypoxia is regarded as an immune suppressor on
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immune system..e novel hypoxia risk signature developed
by Lin et al. was thought to be an independent prognostic
indicator and a tool for measuring immune microenvi-
ronment for glioma patients [7]. Another hypoxia-related
model established by Shou et al. was a predictor for the
immune microenvironment in Melanoma [8]. Hence,
hypoxia genes could be considered as latent biomarkers for
evaluating immune microenvironment in cancers.

Over the last decades, advances in epigenetic analyses
and genome-wide expression profile studies had provided us
with a better understanding of the molecular genetics of
ACC. Several biomarkers associated with metastasis, prog-
nosis, and survival in ACC patients have been confirmed by
data mining. However, hypoxia signature for predicting
ACC prognosis has not been established. .erefore, we
aimed to identify a potential hypoxia risk signature based on
the hypoxia-associated genes, which could be considered as a
robust prognostic tool to evaluate the immune microenvi-
ronment for ACC patients. In years to come, the risk model
might be applied to help physicians quickly identify prog-
nosis and make important treatment decisions in ACC.

2. Materials and Methods

2.1. Datasets. .e RNA-seq data and relevant clinical in-
formation of ACC patients were downloaded from the
Cancer Genome Atlas (TCGA) and Gene Expression Om-
nibus (GEO) database (GSE19750). RNA-seq data for
normal adrenal tissue were obtained from the GTEx data-
base. More clinical data details were provided in Supple-
mentary Material Table S1 as in our previous published
study [9]. We searched the Molecular Signatures Database
for getting the collection of hypoxia-related genes. No ethical
approval was required because the data we utilized were
obtained from public databases.

2.2. Construction of Hypoxia Signature. .e univariate Cox
regression analysis was performed to evaluate the rela-
tionship of hypoxia genes with overall survival (OS) in ACC.
.en, we further applied the glmnet package in R to perform
the LASSO regression analysis for narrowing the range of
genes whose P value <0.05 in the univariate analysis.
Multivariable Cox regression was then utilized to gain the
coefficients. Formula for calculating the risk score is as
follows:

Risk score � 􏽘
n

i�1
(coef mRNAi∗ expression of mRNAi),

(1)

where coef is the coefficient calculated by multivariable Cox
regression.

2.3. Survival Analysis and Constitution of a Predictive
Nomogram. We applied the Kaplan–Meier analysis to make
a comparison between the two groups in TCGA and GEO
cohorts. To find the possible prognostic variables, the uni-
variate Cox analysis was done. Additionally, the multivariate

Cox analysis was utilized to identify whether the risk sig-
nature could be considered as an independent risk factor for
OS in ACC. .e precision of the risk model in forecasting
the survival of ACC was validated using a ROC curve. A
predictive nomogram was built based on T and risk score to
estimate the prognosis at 1-, 3-, and 5-year for ACC.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA was used
to find a substantial variation in gene sets presented in the
two risk groups. Under each analysis, 1000 times of gene set
permutations were performed. A risk score was calculated
using the phenotype label. Significant gene sets were clas-
sified as those with normalized enrichment score >1 and
minimal P value <0.05.

2.5. Estimation of Immune Cell Subtype Proportion.
Newman et al. developed an analytical tool named
CIBERSORT, which can offer a way for estimating the
content of immune cells through the expression of each gene
[10]. To further estimate the proportions of 22 human
immune cells in the two risk groups, we normalized the
mRNA expression matrix and utilized the analytical tool
CIBERSORT in ACC cohorts.

3. Results

3.1. Establishment of Hypoxia Risk Signature. To establish a
hypoxia risk signature and explore its prognostic value in
ACC patients, a total of 144 overlapping hypoxia-associated
genes derived from the two cohorts were selected for the
following analysis. As illustrated in Figure 1(a), a total of 33
hypoxia-associated genes strongly correlated with the OS
rate were identified by the univariate Cox analysis. Finally,
13 hypoxia-associated genes were retained via the LASSO
regression analysis (Figure 1(b)). In addition, a prognostic
model was established by the multivariate Cox regression
analysis (Figure 1(c)), which was composed of 3 genes:
CCNA2, EFNA3, and COL5A1. .e formula for risk score
calculation is as follows: risk score � (0.81∗CCNA2) +

(0.46∗EFNA3) + (0.38 ∗COL5A1). .ereafter, total pa-
tients were allocated, respectively, into the low- and high-
risk groups in two cohorts according to their risk score
values. It was found that all 3 genes were correlated with one
another in both TCGA and GEO cohorts (Figures 1(d) and
1(e)). .e process was shown in the Supplementary Material
Figure S1. As shown in Figure S2, we further compared the
expressional levels of 3 genes in ACC tissues with that in 127
normal adrenal tissues from the GTEx database and found
that all 3 genes were differentially expressed in ACC tissues
and normal tissues (P< 0.001).

3.2. Effect of theHypoxia-Related Signature on the Prognosis of
ACC Patients. .e expressional levels of 3 hypoxia-associ-
ated genes were correlated with a higher risk score in TCGA
andGEO cohorts, as seen in the heatmap, suggesting that the
patients with a higher risk score were more likely to have an
anoxic microenvironment (Figures 2(a) and 2(b)). As
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Figure 1: Establishment of hypoxia risk signature in ACC patients. (a) Prognostic genes identified by univariate Cox regression. (b) LASSO
regression algorithm. (c) .e hypoxia risk signature developed by multivariate Cox regression. (d)-(e) Comparison of Spearman’s cor-
relation coefficient among 3 hypoxia-associated genes.
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Figure 2: Continued.
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illustrated in Figures 2(c) and 2(d), there was a significantly
higher death rate in the high-risk group compared with that
in the low-risk group. Furthermore, the effect of the hyp-
oxia-related signature on the prognosis of ACC patients was
assessed by the Kaplan–Meier (KM) analysis. It was also
found that the OS of patients in the high-risk group was
obviously lower than that of patients in the low-risk group in
TCGA cohort (P< 0.001), which was further validated in the
GEO cohort (P � 0.027). .ese results supported the

hypothesis that the new hypoxia-related signature had a
definite effect in predicting the outcomes of ACC patients.

3.3. Correlation between Hypoxia-Associated Gene and
Clinicopathological Features in ACC Patients. Taking into
account the significant biological roles of hypoxia in the
occurrence and progression of cancers, the correlation of 3
hypoxia-associated genes included the risk signature with
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Figure 2: Application value of the hypoxia-related signature in predicting the outcomes of ACC patients. (a) Heatmap of expressional
profiles of 3 hypoxia-associated genes in the high/low-risk group in two cohorts. (b)-(c) the risk score andOS in patients in the high/low-risk
group in two cohorts. (d) .e death rate in the high/low-risk group. (e) Kaplan–Meier survival analysis of patients in the high/low-risk
group.

4 Journal of Oncology



the pathological stages in ACC patients. As shown in Fig-
ure 3, the expressional levels of 3 hypoxia-associated genes
were obviously higher in ACC patients at the advanced stage.

3.4. Obvious Effect of Hypoxia Risk Signature in Predicting the
Outcomes of ACC Patients. .e univariate regression anal-
ysis indicated that a higher risk score was correlated with a
poorer OS (P< 0.001). T, M, and stage were other factors
linked to poor OS rate (Figure 4(a)). .e multivariate
analysis showed that a higher hypoxia risk score was in-
dependently correlated with a poorer OS rate (P< 0.001),
suggesting that it may be considered to be one of inde-
pendent prognostic factors for ACC patients (Figure 4(b)).
Based on the data from TCGA and GEO cohorts, the re-
ceived operating characteristic (ROC) curve was drawn to
evaluate the predictive effect of the hypoxia risk signature.
.e area under the curve (AUC) of 1-, 3-, and 5-year OS
rates in TCGA cohort were 0.949, 0.952, and 0.871, re-
spectively, suggesting that the risk signature had an obvious
effect in predicting the outcomes of ACC patients
(Figure 4(c)). It had been furthermore confirmed in GEO
cohort (Figure 4(d)).

3.5. Development of a Predictive Nomogram. In order to
develop a convenient tool to predict the outcomes of ACC
patients in clinical practice, a predictive nomogram based on
T and a risk score based on TCGA cohort were constructed
(Figure 5(a)). As illustrated in calibration plots, as an op-
timal model, the nomogram created in this study had rea-
sonable precision (Figures 5(b)–5(d)).

3.6. Hypoxia-Associated Signaling Pathways Screened by
GSEA. .e hypoxia-related signaling pathways were com-
pared between the high- and low-risk groups by the GSEA
analysis. Gene sets linked to cancer proliferation and cell
cycle, such as cell cycle, DNA replication, and Hedgehog
signaling, were highly enriched in the high-risk group in
TCGA cohort (Figure 6(a)). .ese findings were further
validated in the high-risk group in the GEO cohort
(Figure 6(b)).

3.7. Correlation of Hypoxia Risk Signature with Immunity
Microenvironment. It is suggested that the tumors in a
hypoxic microenvironment could be exempted from
physical antitumor immune responses due to inhibited
antineoplastic immune cells and promoted tumor immune
escape. In our study, the potential of a hypoxia risk signature
was investigated to determine the immunity microenvi-
ronment; variations in immune infiltration of 22 immune
cell types were evaluated and compared between ACC pa-
tients in the low- and high-risk groups using the CIBER-
SORT tool and LM22 signature matrix. .e findings from
TCGA cohort are presented in Figures 7(a)–7(d). .e ex-
pressional levels of the genes for negative regulation of the
cancer-immunity cycle were detected in the low/high-risk
groups by querying gene expression signatures collected
from Tracking Tumor Immunophenotype website [11]. .e

expression levels of the genes for negative regulation of the
cancer-immunity cycle were upregulated in the high-risk
group, suggesting that the cancer-immunity cycle in patients
of the high-risk group was not activated. In addition, the
percentage of resting NK cells was obviously greater in the
high-risk group, while the content of activated NK cells was
decreased. Previous studies showed that the expression levels
of immune checkpoints were related to hypoxia. .us, the
expression levels of immune checkpoints in the low/high-
risk groups were further investigated in this study. It was
found that the expressional levels of critical immune
checkpoints such as programmed death ligand-1 (PDL1)
and cytotoxic T lymphocyte antigen-4 (CTLA4) were ob-
viously lower in the high-risk group than in the low-risk
group (Figures 7(e) and 7(f )).

4. Discussion

ACC is a rare malignancy originating from the adrenal
cortex with a dismal prognosis. In recent years, accumu-
lating studies have confirmed that several biomarkers are
prognostic factors of ACC. It is reported that tumors with
the expression of Ki67 higher than 10% have significantly
poor prognosis than those with lower than 10% in ACC
patients [12]. .e nuclear division cycle 80, cyclin B2, and
miRNAs have been reported to involve in carcinogenesis
and progression of ACC, predicting OS in patients with
ACC [13, 14]. Additionally, PTTG1 and GLUT1 had been
proven as a marker of poor survival in ACC [15, 16].
However, a single gene biomarker could be affected by
various factors leading to an incorrect predictive effect, and
some studies have found that gene signatures could offer a
better alternative for predicting prognosis and survival [17].
.us, it is necessary to find more efficient and sensitive gene
signature comprising various genes to predict ACC patients’
outcomes.

.ere are several reported risk models based on multiple
genes having the prognostic value in ACC patients with
bioinformatics methods. For example, the study of the
weighted gene coexpression network analysis and algorithm
analysis constructed a gene coexpression network associated
with tumor grade and poor prognosis in ACC. Results have
accentuated 12 hub genes with good distinctive power for
malignancy and correlated with unfavorable prognosis and
tumor stages [18]. Fu et al. reported that the immune risk
signature based on 30 immune-associated genes linked to OS
could predict prognosis for patients with ACC [19]. In our
research, by using the bioinformatics analysis, we first built a
novel hypoxia-related signature including only three genes
and demonstrated that the hypoxia risk signature had a
powerful value in predicting ACC patients’ survival.
Compared with the above models consisting of many genes,
it is convenient for physicians to apply our risk model in
clinic, which contains only three hypoxia-related genes.
Moreover, the hypoxia genes involved in the risk signature
were identified through univariate and multivariate Cox
regression analyses together with the LASSO regression
analysis, suggesting that genes participated in the signature
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Figure 3: Correlation between hypoxia-associated gene and stages of ACC. (a) Heatmaps of expressional profiles of 3 hypoxia-associated
genes at different stages from TCGA cohort. (b) .e expressional levels of hypoxia-associated genes in ACC patients at different stages.
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had explicit power compared with other known biomarkers
in predicting prognosis for ACC.

According to previous studies, the three genes (cyclin
A2, COL5A1, and EFNA3) included in our risk signature
were involved in tumorigenesis and hypoxia microenvi-
ronment. .e expression of ephrin-A3 (EFNA3), a member
of the ephrin family, significantly increased under the is-
chemic-hypoxic condition [20]. EFNA3 has been reported to
promote the metastatic ability in breast cancer [21]. Cyclin
A2 (CCNA2) belongs to a strongly conserved cyclin family,
promoting cell cycle transition in cancers. .ere is accu-
mulating evidence demonstrating the correlation between
CCNA2 and tumorigenesis of numerous cancers, including
lung cancer, breast cancer, and pancreatic ductal carcinoma
[22–24]. Moreover, CCNA2 has been implicated in the
metastasis, recurrence, and poor prognosis of ACC [25].
Collagen, type V, alpha 1 (COL5A1), one of the collagen
family, can promote tumor growth as an oncogenic protein

in cancers [26]. As hypoxia is known to be linked with more
violent cancer phenotypes, we further examined the pre-
dictive performance of the hypoxia signature for ACC pa-
tients’ OS. In our study, the hypoxia risk signature
established by 3 hypoxia-associated genes was an inde-
pendent factor in predicting OS for ACC, further supporting
the idea that the hypoxia risk signature can offer a more
targeted and powerful prediction than a single biomarker.
Additionally, nomogram constructed in our study could be a
more classification tool for allowing clinicians to make more
accurate predictions of ACC survival.

Hypoxia is one of the characteristics of malignant tumor,
which results from the imbalanced oxygen supply. Apart from
promoting malignant tumors development and progression,
hypoxia also takes part in antitumor immune effects through
reducing proliferation of lymphocytes, including T cells,
B cells, and natural killer (NK) cells [27]. Consistent with the
previous study, our findings revealed that the content of
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Figure 5: Development of a predictive nomogram for ACC patients in TCGA cohort. (a) Nomogram for predicting prognosis of ACC
patients in TCGA cohort. (b)–(d) Calibration plots for predicting probabilities of the nomogram at the 1, 3, and 5 years.
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resting NK cells increased in the high hypoxia risk group, and
the proportion of activated NK cells declined, presenting an
immune suppressive condition in the high-risk group of ACC
patients. Immunotherapy has paid more and more attention
for which can present an antitumor role in the process of
cancer treatment. Whereas, according to recent studies, tu-
mor cells can avoid the immune response by utilizing various
immune checkpoints, which can play a crucial part in cancer
immunotherapy, including programmed death-1 (PD1),
PDL1, andCTLA4. A previous study demonstrated that PDL1
is expressed in the cytomembrane of cancer cells. Meanwhile,
high PDL1 mRNA expression was correlated with longer
disease-free survival (DFS) [28]. Consistent with the above
findings, the lower expression of immune checkpoint PDL1
and CTLA4 in the high-risk group was linked with the poor
prognosis in our study.

As far as we know, this is the first study aiming at
developing and validating a hypoxia risk signature in
ACC. Our results revealed that the signature could be
utilized as a promising tool for predicting prognosis and
reflecting the immune microenvironment in ACC. Dif-
ferent from previous studies, this model focused on
hypoxia-associated genes. However, some limitations in
our study should be noted. Owing to the limited number
of ACC patients, we could not conduct a further stratified
analysis, which is one limitation of our study. More
prospective research studies with larger sample are needed
for further validation of the prognostic performance.
Besides, the definite function of the hypoxia signature was
not verified by functional experiments. .us, several
further steps must be completed before these findings can
be extended to clinical practice.
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Figure 6: Hypoxia-associated signaling pathways screened by GSEA. (a) Gene sets enriched in the high-risk group performed by GSEA in
TCGA cohort. (b) Gene sets enriched in the high-risk group performed by GSEA in GEO cohort.
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Figure 7: Correlation of hypoxia risk signature with immunity microenvironment. (a) Presence of immune cellular infiltration in the high/
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