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Metal-organic frameworks (MOFs) have been extensively used as modified materials of
electrochemical sensors in the food industry and agricultural system. In this work, two
kinds of copper-based MOFs (Cu-MOFs) with a two dimensional (2D) sheet-like structure
and three dimensional (3D) octahedral structure for H2O2 detection were synthesized and
compared. The synthesized 2D and 3D Cu-MOFs were modified on the glassy carbon
electrode to fabricate electrochemical sensors, respectively. The sensor with 3D Cu-MOF
modification (HKUST-1/GCE) presented better electrocatalytic performance than the 2D
Cu-MOF modified sensor in H2O2 reduction. Under optimal conditions, the prepared
sensor displayed two wide linear ranges of 2 μM–3mM and 3–25mM and a low detection
limit of 0.68 μM. In addition, the 3D Cu-MOF sensor exhibited good selectivity and stability.
Furthermore, the prepared HKUST-1/GCE was used for the detection of H2O2 in milk
samples with a high recovery rate, indicating great potential and applicability for the
detection of substances in food samples. This work provides a convenient, practical, and
low-cost route for analysis and extends the application range of MOFs in the food industry,
agricultural and environmental systems, and even in the medical field.

Keywords: copper-based metal-organic frameworks, electrochemical sensor, hydrogen peroxide, dairy products,
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INTRODUCTION

Hydrogen peroxide (H2O2) is widely used in the food industry, medical field, textile industry, and
paper industry (Zhang and Chen, 2017). Generally, H2O2 works as an antibacterial agent, bleaching
agent (Kang et al., 2010), stabilizer, and preservative (Singh and Gandhi, 2015) in dairy products.
Based on the laws and the rules, manufacturers are not allowed to add H2O2 in excess. H2O2 in
abnormal level will damage human health, resulting in Alzheimer’s disease, cancer, and
cardiovascular diseases (Upadhyay et al., 2014; Akyilmaz et al., 2017; Nascimento et al., 2017).
Therefore, it is important to detect H2O2 in dairy products to protect public health and normalize the
production with some benefits (Tang et al., 2010; Karimi et al., 2018). Nowadays, many analytical
methods have been applied for the detection of H2O2, such as high-performance liquid
chromatography (Ivanova et al., 2019), spectrophotometry (Li et al., 2017a), chemiluminescence
(Li et al., 2017b), colorimetry (Dominguez-Henao et al., 2018; Yao et al., 2020), fluorescence (Pundir
et al., 2018), and electrochemistry. Nevertheless, some of them are time consuming, of high
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consumption, and need advanced instruments or experienced
and professional staff (Sun et al., 2016). Among them,
electrochemistry has drawn attention due to rapid response
(Ammam and Fransaer, 2010), high selectivity (Conzuelo
et al., 2010), simple operation (Stankovic et al., 2020), and
real-time detection. Electrochemical methods can be used as
an alternative to other techniques as a result of their limited
drawbacks. Dong et al. designed ZnFe2O4/SWCNTs/GCE as a
new sensor for the electrochemical detection of pesticides in
apples, tomatoes, leeks, and water samples (Dong et al., 2017).
Vinitha Mariyappan et al. synthesized Gd2S3/RGO hybrid
composites and modified on the surface of the glassy carbon
electrode (GCE) to serve as an electrochemical platform for the
detection of carbofuran in potatoes and river water samples
(Mariyappan et al., 2021). Therefore, the electrochemical
method is a promising strategy for the detection of H2O2 in
dairy products.

A metal-organic framework (MOF) is a crystalline porous
material constructed by coordination of metal ions or clusters
with polytopic organic ligands (Furukawa et al., 2013). They
possess many promising features like tunable structures, active
sites, rapid electron transmission, and high surface area (Lee et al.,
2009; Gu et al., 2014). MOFs have been extensively used in
electrochemical applications (Chen et al., 2020; Lu et al., 2020;
Wei et al., 2020), gas storages (Hinks et al., 2010; Zhang et al.,
2020), and biomedical fields like wound healing (Fu et al., 2020;
Chen et al., 2021), enhanced cancer therapy (Luo et al., 2019),
imaging (Lu et al., 2018), antibacterial agents (Qi et al., 2020), cell
detection (Shi et al., 2021), and drug delivery (Simon-Yarza et al.,
2018) because of excellent physical and chemical properties. In
addition, MOFs with catalytic activity have become an ideal
modified material of electrochemical sensors for detection in
real samples (Guo et al., 2020; He et al., 2020; Liu et al., 2020;
Zhang et al., 2021). For example, Luan et al. prepared iron-based
MOFs with modification (NMOF-Pt-sDNA) to detect kanamycin
in milk samples (Luan et al., 2017). Zeng et al. modified copper-
based metal-organic frameworks (Cu-MOFs) as a template to
construct a nonenzyme electrochemical unit for H2O2 sensing in
milk and human serum samples (Zeng et al., 2019). However,
MOFs with different structures present a unique
electrocatalytic property. Morphology and structure strongly
affect their chemical and physical properties (Sun et al., 2020).

Two-dimensional metal-organic frameworks (2D MOFs) with
ultrathin thickness morphology and an ultrahigh surface area
possess many accessible active sites on their surface. Thus, the
catalytic and sensing applications could benefit from the inherent
properties of 2DMOFs (Zhao et al., 2015; Zhao et al., 2018). Three-
dimensional metal-organic frameworks (3D MOFs) with diverse
morphology present outstanding chemical and physical properties
in detection (Xue et al., 2019). It is meaningful to explore different
structures of MOFs based on the same metal ions and study their
electrochemical catalysis and other properties to investigate the
mechanism.

As a typical series of MOFs, Cu-MOFs have been reported for
many years. A classic version of 2D Cu-MOFs named Cu–TCPP
has been successfully developed and applied in optoelectronic
materials, catalysis, and sensing (Lu et al., 2016; Wang et al.,
2016). Cu–TCPP has a large specific surface area, tunable pore
size, 2D planar structure, and perfect nanostructure. Cu-TCPP is
composed of Cu2+ as metal ions and tetrakis (4-carboxyphenyl)
porphyrin (TCPP) as organic ligands (Dong et al., 2020).
Porphyrin is a member of heterocyclic compounds with a
conjugated structure. On the other hand, porphyrins are one
of the substances with peroxide mimicking enzyme activity (Ma
and Zheng, 2020). The surfactant, such as polyvinylpyrrolidone
(PVP), plays a significant role in 2D MOF synthesis. On the one
hand, the surfactant prevents theMOF layers from stacking in the
vertical direction which is contributed to form ultrathin MOF
nanosheets. On the other hand, PVP would maintain the as-
synthesized MOF nanosheets in stabilization, preventing their
aggregation (Zhao et al., 2018). According to previous reports
(Bai et al., 2019; Ma et al., 2020), Cu-TCPP has been applied for
the detection of H2O2 in real samples, showing the potential of
fabricating electrochemical sensors to detect H2O2. One of the
most representative Cu-MOFs with a 3D structure named
HKUST-1 or MOF-199 was first reported and synthesized by
the Hong Kong University of Science and Technology in 1999
(Chui et al., 1999). The main structural characterization of
HKUST-1 is a copper dimer with a copper–copper distance of
0.263 nm. The material is composed of twelve oxygen atoms,
obtained from the carboxylate groups of the four 1, 3, 5-
benzenetricarboxylate (BTC) ligands, which are bound to the
four coordination sites of each of the three Cu2+ ions. The
presented paddle-wheel units form a face-centered crystal

SCHEME 1 | Schematic illustration of Cu-MOFs detecting H2O2 from the milk sample using the electrochemical method.
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lattice with Fm-3m symmetry which possesses a three-
dimensional porous network with a bimodal pore size
distribution (Hartmann et al., 2008; Kim et al., 2012; Loera-
Serna et al., 2012). It had an amount of open coordination sites,
which was beneficial for detection (Li et al., 2018a). This kind of
classic MOFs has been widely used in gas storage, biomedical
field, and substance detection (Azad et al., 2016; Tan et al., 2017).
However, there are little reports of pristine HKUST-1 as modified
materials to construct an electrochemical sensor for the detection
of H2O2 (Zhang et al., 2013; Yang et al., 2015). We are interested
in investigating the comparison of 2D Cu-MOF (Cu-TCPP) and
3D Cu-MOF (HKUST-1) in H2O2 sensing.

In this study, two kinds of different structures of Cu-MOFs
were synthesized successfully. As shown in Scheme 1, the 2D Cu-
MOF and 3D Cu-MOF were coated on the surface of GCE to
construct electrochemical sensors, respectively. The HKUST-1/
GCE displayed a better catalytic ability and electrochemical
performance than Cu-TCPP/GCE in H2O2 reduction because
of the three-dimensional structure and better conductivity.
Besides, 3D Cu-MOF/GCE (HKUST-1/GCE) had two wide
linear ranges of 2 μM–3 mM and 3–25 mM, and the limit of
detection (LOD) was 0.68 μMwith high sensitivity and selectivity.
Based on these satisfactory results, the HKUST-1/GCE was
successfully used for detecting H2O2 in milk samples. These
results indicated the influences of structures and morphology
of MOFs in electrochemical catalysis and made a great difference
in the detection of substances. It pointed out the significance of
investigating the morphology of MOFs for further exploring and
studying the mechanism.

METHODS AND MATERIALS

Materials and Reagents
Copper nitrate hydrate [Cu (NO3)2·xH2O], trimesic acid
[C6H3(CO2H)3], sodium sulfate anhydrous (Na2SO4), citric
acid monohydrate (C6H8O7·H2O), and ascorbic acid
(C6H8O6) were obtained from Aladdin Reagent Co., Ltd.
(Shanghai, China). Polyvinylpyrrolidone [PVP, molecular
weight (Mw) � 40,000] was obtained from Sigma–Aldrich
Co., Ltd. Tetrakis (4-carboxyphenyl) porphyrinabsolute
(TCPP) was obtained from Tokyo Chemical Industry Co.,
Ltd. Sodium chloride (NaCl), disodium hydrogen phosphate
(Na2HPO4), potassium chloride (KCl), potassium dihydrogen
phosphate (KH2PO4), potassium ferricyanide [K3Fe(CN)6], and
potassium ferrocyanide trihydrate [K4Fe(CN)6·3H2O] were
obtained from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Ethanol absolute (EtOH) and N,
N-dimethylformamide (DMF) were bought from Tianjin
Damao Chemical Reagent Co., Ltd. Nafion (5%) was brought
from Alfa Aesar Co., Ltd. Hydrogen peroxide (H2O2) and
methanol (CH4O) were purchased from Guangzhou
Chemical Reagent Co., Ltd. (Guangzhou, China). The
phosphate buffered saline (PBS) (pH 7.2, 0.1 M) was
prepared by mixing with 11.36 g Na2HPO4, 2.72 g KH2PO4,
0.20 g KCl, and 8.00 g NaCl into 1,000 ml ultrapure water.
Ultrapure water (18.2 MΩ; Millipore Co., United States) was

used to prepare all solutions. All solutions were stored at room
temperature at 25 ± 2°C for further use. All reagents are of
analytical grade without further purification.

Apparatus and Instrumentation
Scanning electron microscopy (SEM) images were photographed
by a scanning electron micrograph (SEM, Hitachi Regulus 8230,
Japan). Transmission electron microscopy (TEM) images were
taken by a transmission electron microscope (JEM 1400, Japan).
Fourier transform infrared (FT-IR) spectra were conducted on a
Fourier transformation infrared spectrometer (IR, EQUINOX 55,
Germany). X-ray powder diffraction (XRD) patterns were
recorded on a PANalytical instrument (Empyrean,
Netherlands) to examine the crystal phase of the samples. The
surface composition and valence states were studied by X-ray
photoelectron spectra (XPS, Nexsa, Thermo Fisher Scientific,
United States). All electrochemical experiments were studied
by a CHI 660E electrochemical workstation (Shanghai CH
Instruments Co., China). The traditional three-electrode
system was employed in this research. The bare or modified
glassy carbon electrodes, platinum electrode, and saturated Ag/
AgCl electrode were served as working electrodes, counter
electrodes, and reference electrodes, respectively.

Synthesis of 2D Structure Cu-MOF
The synthesis process was based on a previous report (Ma and
Zheng, 2020). First, 25 mg of Cu (NO3)2·xH2O and 100 mg PVP
were dissolved in 60 ml solution containing DMF and Ethanol
absolute (V: V � 3:1) under stirring condition. Second, 60 mg of
TCPP was added to the above solution and further ultrasonicated.
Finally, the solution was poured into a Teflon autoclave heating
for 4 h using the solvothermal method at 80°C. The red product
was centrifuged, washed, dried, and stored at room temperature.
The red product was named Cu-TCPP or 2D Cu-MOF.

Synthesis of 3D Structure Cu-MOF
The synthesis process was based on the preceding article (Wu
et al., 2013). First, 1.82 g copper nitrate (Cu (NO3)2·xH2O) and
0.875 g trimesic acid (C6H3(COOH)3) were dissolved in 50 ml
absolute methanol under ultrasonication to get blue and
transparent solutions, respectively. Second, the copper nitrate
solution was added to the trimesic acid solution. Third, the
mixture solution was kept at room temperature for 2 h until
3D Cu-MOF precipitation was finished. The blue product was
centrifuged and washed with methanol two times. Lastly, the blue
product named HKUST-1or 3D Cu-MOF was dried in vacuum
condition for use.

Preparation of the Cu-MOF-Modified
Electrode
Prior to modification, the bare GCE was polished with 0.05 mm
Al2O3 powder and rinsed with deionized water and ethanol under
ultrasonication for 2 min to get a mirror-like state. The mirror-
like GCE was dried in nitrogen stream for use. 1 mg of 2D Cu-
MOF or 3D Cu-MOF was dispersed in the solution containing
ultrapure water and 5% Nafion solution (V: V � 2:0.004). 6 μL of
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2D Cu-MOF or 3D Cu-MOF (1 mg/ml) dispersion was coated
onto the surface of bare GCE and dried using an infrared lamp.
The obtained electrodes are named Cu-TCPP/GCE and HKUST-
1/GCE.

RESULT

Morphological, Structural, and
Compositional Characterization of
HKUST-1 and Cu-TCPP
The morphology, chemical composition, crystal structures, and
functional groups of HKUST-1 and Cu-TCPP were characterized
by scanning electron microscopy (SEM), transmission electron
microscopy (TEM), X-ray photoelectron spectroscopy (XPS),
powder X-ray diffraction (XRD), and Fourier transform
infrared (FT-IR) spectroscopy. Figures 1A,B are the SEM

images of HKUST-1. The prepared HKUST-1 displayed a
uniform and octahedral structure with the size range of
1–3 μm. Figures 1C,D are the SEM image and TEM image of
Cu-TCPP, respectively. The obtained Cu-TCPP displayed a two-
dimensional and layer-by-layer structure with a wrinkled surface,
indicating that the 2D Cu-TCPP nanosheets with an ultrathin
structure had a large surface area. The two kinds of Cu-MOFs
were consistent with the previously reported one (Wu et al., 2013;
Ma and Zheng, 2020). Supplementary Figures S1A–D show the
powders and solutions of Cu-MOFs.

In order to determine the crystal structures of the prepared
Cu-MOFs, X-ray diffraction (XRD) was carried out. It can be seen
from Figures 2A,D that 2D Cu-MOF exhibited a peak at 2θ � 20°

which can be indexed as the (002) crystal plane of Cu-TCPP (Ma
et al., 2019). The XRD pattern of HKUST-1 exhibits peaks mainly
at the range of 2θ � 5°–20°, corresponding to the previous report,
indicating successful synthesis (Wu et al., 2013). It represented a
microporous coordination with the cubic crystalline structure.

FIGURE 1 | (A) SEM image of HKUST-1. (B) A magnified SEM image of HKUST-1. (C) SEM image of Cu-TCPP. (D) TEM image of Cu–TCPP.

FIGURE 2 | (A) XRD pattern of Cu-TCPP and HKUST-1. (B) FT-IR pattern of Cu-TCPP and HKUST-1. (C) XPS pattern of Cu-TCPP and HKUST-1.
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The intense peaks in the XRD demonstrated high crystallinity of
the synthesized HKUST-1 samples (Sofi et al., 2019). In
addition, the FT-IR spectra were used to identify the
functional groups present in the samples. The pattern is
shown in Figure 2B. The spectra of 2D Cu-MOF and 3D
Cu-MOF presented two strong peaks at around 1,400 and
1,620 cm−1, and another strong peak at 3,500 cm−1 was
contributed by 3D Cu-MOF. The FT-IR spectrum of 3D Cu-
MOF demonstrated an almost isobidentate behavior of COO
moiety since bands at 1,645, 1,620, 1,570, 1,550, 1,445, and
1,375 cm−1 are characteristics of this coordination mode. The
latter due to the fact that aniso-bidentate dicopper (II)
carboxylate, a type of monomeric clusters, is present in the
frameworks (Loera-Serna et al., 2012). Furthermore, the XPS
was employed to study the chemical composition and states of
Cu-MOFs. The surface characteristics of the synthesized
samples were analyzed by XPS. Figure 2C demonstrates a
full survey of 2D Cu-MOF and 3D Cu-MOF including Cu
2p3, O 1s, N 1s, and C 1s. In the Cu 2p3 region, the
HKUST-1 and Cu-TCPP materials show peaks around

900 eV. These results confirmed that two kinds of Cu-MOFs
were prepared successfully (Fan et al., 2019).

Electrochemical Performances of Modified
Electrodes
To observe the electrochemical performances of bare GCE, Cu-
TCPP/GCE, and HKUST-1/GCE, Cyclic voltammetry (CV)
and Electrochemical impedance spectroscopy (EIS) were
applied to assess their properties. Typically, the EIS plot is
composed of a semicircular portion corresponding to the
diffusion-limited process and the electron transfer-limited
process. The charge transfer resistance (Rct) of the electrode
is appropriate to the semicircle diameter. Figures 3A,B are the
CV pattern and EIS pattern of different modified electrodes,
respectively. Figure 3A illustrates the CV curve of the bare
GCE, Cu-TCPP/GCE, and HKUST-1/GCE. Bare GCE
demonstrated the highest redox peak current among three
kinds of electrodes in the solution of 5 mM K3 [Fe (CN)6]/
K4 [Fe(CN)6] containing 0.5 M KCl. After coating 6 μL (1 mg/

FIGURE 3 | (A, B) CV curves and EIS curves of GCE, Cu-TCPP/GCE, and HKUST-1/GCE. (C) CV curves of Cu-TCPP/GCE in the aqueous solution containing
5 mMK3 [Fe(CN)6]/K4 [Fe(CN)6] and 0.5 MKCl with different scan rates (20, 40, 60, 80, 100, 120, 140, 160, 180, and 200 mV/s). (D) The linear relationships between the
electrocatalytic peak current with a square root of the scan rate. (E) CV curves obtained by HKUST-1/GCE with different scan rates. (F) The linear fitting program of the
reduction peak current with a square root of the scan rate obtained by HKUST-1/GCE.
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ml) 2D Cu-MOF and 3D Cu-MOF suspension, both the peak
current of Cu-TCPP/GCE and HKUST-1/GCE was decreased
clearly. The results of EIS measurement matched well with the
CV measurement. The EIS diagrams of GCE, Cu-TCPP/GCE,
and HKUST-1/GCE are given in Figure 3B. The HKUST-1/
GCE had better electrochemical behavior than the Cu-TCPP/
GCE with a lower resistance than Cu-TCPP. The Rct value of
Cu-TCPP/GCE could reach around 1,500 Ω which is 500 Ω
more than the HKUST-1/GCE. Compared with 2D Cu-MOFs,
3D Cu-MOFs exhibit unique chemical and physical properties
in electrochemical detection. It could be contributed by the 3D
Cu-MOF with a porous structure and rapid icon reaction
kinetics to make it possible for fast electron transmission.
The Cu2-clusters in HKUST-1 are coordinated via
carboxylate groups to form a so-called paddle-wheel unit
which makes it possible to access the unsaturated metal sites
to boost up the performance in electrochemical sensing (Kim
et al., 2012; Cortes-Suarez et al., 2019). All these
electrochemical results obtained by EIS and CV
measurements have proved that the electrodes modifications
were successful.

Furthermore, we studied the influences of scan rates on
electrochemical performances. At the range of scan rates from
20 to 200 mV/s, two kinds of modified electrodes exhibited a
similar tendency. With the increase of scan rates, the redox
current increased as shown in Figures 3C,E. Two kinds of
modified electrodes presented a good linear relationship
between the reduction peak current and the square root of
scan rates as shown in Figures 3D,F. The linear relationship
of Cu-TCPP/GCE andHKUST-1/GCE is Y (μA) � -20.26–4.062X
(mV1/2*s1/2), (R2 � 0.9957), Y (μA) � -16.61–4.414X (mV1/2*s1/2),

and (R2 � 0.9921), respectively. A good linear relationship with
the square root of the scan rate indicated fast transfer kinetics and
a typical diffusion-controlled electrochemical process.

Electrochemical Property of Different
Modified Electrodes Toward H2O2
To measure the electrocatalytic activity of the two kinds of
different structure Cu-MOFs toward H2O2 detection, CV
measurements were carried out to study the modified
electrodes in 0.1 M N2 statured PBS solution with or without
10 mM H2O2. As shown in Supplementary Figure S2, three
kinds of electrodes exhibited different current responses to H2O2.
Whether 10 mM H2O2 was present or not, the bare GCE
performed no significant response. Both Cu-TCPP/GCE and
HKUST-1/GCE showed an obvious current response,
indicating that Cu-MOFs had excellent catalytic performance
toward H2O2 reduction. For comparison, Supplementary
Figures S2B,C demonstrate the electrocatalytic activity of
different structures of Cu-MOFs under the absence and
presence of 10 mM H2O2. In the 0.1 M N2 saturated PBS
containing 10 mM H2O2, the reduction peak current of
HKUST-1/GCE could reach nearly 200 μA, which was far
beyond the peak current of other two kinds of electrodes.
Supplementary Figure S2D is the histogram of the reduction
peak current of the electrodes modified by different materials in
0.1 M N2 statured PBS with or without 10 mM H2O2.

To further evaluate the Cu-MOF-modified electrodes, we
applied a range of concentrations of H2O2 in 0.1 M N2

saturated PBS to measure their electrocatalytic performance as
depicted in Figure 4. Figures 4A,C show the CV curves obtained

FIGURE 4 | (A) CV curves of Cu-TCPP/GCE for different H2O2 concentrations (2, 4, 6, 8, and 10 mM) with a scan rate of 100 mV/s. (B) The linear relationships
between the electrochemical peak current and H2O2 concentration of Cu-TCPP/GCE. (C) CV curves of HKUST-1/GCE for different H2O2 concentrations (2, 4, 6, 8, and
10 mM). (D) The linear relationships between the electrochemical peak current and H2O2 concentration of HKUST-1/GCE.
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from H2O2 catalysis by the Cu-MOFs. As displayed in Figures
4A,C, with the H2O2 concentration increased from 2 to 10 mM,
the catalytic reduction current obtained by Cu-TCPP/GCE and
HKUST-1/GCE increased significantly. It represented that the
prepared electrochemical sensors had a good ability for the H2O2

electrochemical catalysis. Compared with the peak current of the
Cu-TCPP/GCE and HKUST-1/GCE at each H2O2 level, HKUST-
1/GCE had a better electrochemical performance. Furthermore,
Cu-TCPP/GCE and HKUST-1/GCE displayed a great linear
relationship between the H2O2 concentration and reduction
current. The linear equation of Cu-TCPP/GCE was Y (μA) �
-8.788–1.195X (mM) (R2 � 0.9988), and the linearity of HKUST-
1/GCEwas Y (μA) � -46.34–14.75X (mM) (R2 � 0.9993) as shown
in Figures 4B,D, respectively. Supplementary Figure S3
demonstrates the catalytic reduction currents obtained from
two kinds of modified electrodes at different H2O2

concentrations.

Amperometric Measurement of H2O2
In order to assess the applicability of the HKUST-1/GCE for the
electrochemical detection of H2O2, amperometric measurement
was used to study the response toward H2O2 in 0.1 M N2

saturated PBS. Applied potential will make a great difference
to the current response in electrochemical detection. To
investigate the optimum potential toward H2O2 reduction, I-t
curves were obtained by applying different potentials as shown in
Supplementary Figure S4. With continuous injection of 0.4 mM
H2O2, the current responses were enhanced with an increasing
potential from −0.3 to −0.6 V. Although the HKUST-1/GCE
presented the best catalytic activity at the potential of −0.6 V,
the background is too high to affect the detection. The potential of

−0.3 and -0.4 V could not be selected as the optimal potential
because of the low current responses. For these reasons, −0.5 V
was chosen as an ideal working potential in the following
experiment.

Figures 5A,C display the amperometric current response of
the quantitative detection of H2O2 on HKUST-1/GCE. Under the
sequential injection of different concentration of H2O2 to 0.1 M
N2 saturated PBS with stirring at an ideal potential of −0.5 V, the
current responses increased clearly. Figure 5A shows the
amperometric I-T curve at the H2O2 concentrations from
2 μM to 3 mM. The insets of Figure 5A show the amplified
image of the current response at the low concentration from 2 to
40 μM. Figure 5C describes the amperometric I-T curve at the
H2O2 concentrations from 3 to 25 mM. Furthermore, the current
responses increased and reached a stable state within 10 s after
each step of H2O2 injection, indicating the rapid response of
HKUST-1/GCE in the electrochemical detection of H2O2.

Figures 5B,D illustrate a great linear relationship between
concentrations and the current response. The linear regression
equation was Y (μA) � 0.0068–0.0214X (μM) in the H2O2

concentrations of 2 μM–3 mM with a correlation coefficient of
0.9991. Good linearity (from 3 to 25 mM) was Y (μA) �
94.36–26.57X (mM) (R2 � 0.9952). The LOD was found as
0.68 μM with a signal-to-noise ratio of 3. The comparison of
the modified electrodes for the detection of H2O2 in previous
reports is given in Table 1. Compared with other research,
HKUST-1/GCE exhibited good electrochemical catalysis to
H2O2 reduction with an extended linear range and a lower
LOD. The results could be attributed to the 3D porous
structures and fast electron transmission of the materials. All
these synergistic factors ensured the excellent electrocatalytic
performance of the HKUST-1/GCE.

Selectivity and Stability of HKUST-1/GCE
The selectivity of the sensor represents the ability of real sample
detection and practicability. To investigate the catalytic specificity
of HKUST-1/GCE further, amperometric measurement was used
to study the anti-interference capability of HKUST-1/GCE. At the
operating potential of −0.5 V, 1 mM H2O2,10 mM potassium
chloride (KCl), 10 mM sodium sulfate (Na2SO4), 10 mM ascorbic
acid (AA), 10 mM citric acid (CA), ethanol absolute, and 1 mM
H2O2 were injected in 10 ml 0.1 M N2 statured PBS successively.
Figure 6A displays the I-T curve obtained by the catalysis of
H2O2 and some potential interferences. The obvious and rapid
current response occurred when the 1 mM H2O2 was injected
into the PBS. In contrast, no obvious current change could be
observed after ten folds of interfering species injection in the same
solution. Figure 6B displays the current response change of the
H2O2 and other potential interferences. All these results indicated
the HKUST-1/GCE sensor with high selectivity for the
electrochemical detection of H2O2 in the presence of common
interferences.

In addition, we studied the stability of the HKUST-1/GCE
electrochemical sensors using CV measurement in the PBS
solution containing 10 mM H2O2 at the same condition. The
results of the stability of the electrochemical sensor are displayed
in Supplementary Figure S5. The electrochemical current

FIGURE 5 | (A) I-t curve of HKUST-1/GCE to the successive addition of
low concentration of H2O2 in 0.1 M N2 statured PBS at −0.5 V. The inset
shows amagnified image of the I-t curve of low concentration from 2 to 40 μM.
(B) The linear relationship of the response curve of HKUST-1/GCE with
different H2O2 concentrations from 2 μM to 3 mM (R2 � 0.9991). (C)
Amperometric responses of HKUST-1/GCE to the successive addition of high
concentration of H2O2 in 100 mM PBS solution. (D) The linear fitting program
of the reduction peak current of HKUST-1/GCE with different H2O2

concentrations from 3 to 25 mM (R2 � 0.9952).
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responses of the sensors retained 90% of their initial value after
5 days. The result of the experiment indicated the good stability of
the 3D Cu-MOF-modified electrodes.

Real Sample Analysis of Dairy Products
Generally, H2O2 is used as an additive in the food industry for
storage, stability, and other purposes. However, over content
of H2O2 will have a side effect on human beings by causing
many diseases. Thus, there is great importance for rapid and
specific detection of H2O2 in milk samples using a convenient
method. Milk samples were purchased from a local

supermarket. The practical application of the prepared
sensor was carried out to measure the concentration of
H2O2 in milk samples. The standard addition method and
amperometric measurements were used in this experiment
section. The milk samples were diluted 20 times using 0.1 M
N2 saturated PBS (pH 7.2). A range of concentrations of H2O2

(0, 40, 80, and 120 μM) were added to the milk sample,
respectively. Then, milk samples containing different
concentrations of H2O2 were ready for analysis. The I-T
curve obtained by the amperometric measurements was
presented in Supplementary Figure S6. As shown in

TABLE 1 | Comparison of different electrochemical platforms for hydrogen peroxide sensing.

Electrodes Detection potential (V) Linear range (μM) LOD (μM) References

NC@rGOa −0.4 V (vs. Ag/AgCl) 5–20,000 3.3 Li et al. (2018b)
Ag@ZIF-67/GCEb −0.25 V (vs. SCE) 5–275; 775–2,775 1.5 Dong et al. (2019)

4,775–16,775
C-ZIF-67/GCE −0.35 V (vs. SCE) 2.5–212.5 0.7 Dong and Zheng, (2020)

212.5–1662.5
1662.5–6662.5

HPB/CS/GCEc 0.1 V (vs. SCE) 8–1848 2.6 Sheng et al. (2017)
CuCo2O4 −0.55 V (vs. Ag/AgCl) 10–8900 3.0 Cheng et al. (2020)
Cu-MOF −0.2 V (vs. Ag/AgCl) 1–900 1.0 Zhang et al. (2015)
IE-MoS2(3.0)

d −0.65 V (vs. Ag/AgCl) 0.23–2,200 0.2 Shu et al. (2019)
2,200–14220

Cu-MOF/ERGO/ITOe −0.3 V (vs. Ag/AgCl) 4–17,334 0.44 Golsheikh et al. (2020)
HKUST-1/GCE −0.5 V (vs. Ag/AgCl) 2–3000 0.68 This work

3000–25,000

aNC, nitrogen-rich core-shell; rGO, reduced graphene oxide.
bZIF, zeolitic imidazolate frameworks.
cHPB, hollow Prussian blue; CS, chitosan.
dIE, interlayer-expanded.
eERGO, electrochemically reduced graphene oxide; ITO, indium tin oxide.

FIGURE 6 | (A) I-t curve of HKUST-1/GCE with the successive injection of 1 mM H2O2, 10 mM KCl, 10 mM Na2SO4, 10 mM CA, 10 mM AA, C2H5OH, and 1 mM
H2O2 in 0.1 MN2 statured PBS at an applied potential of −0.5 V. (B)Histogram of the current peak obtained by HKUST-1/GCE of H2O2 and other potential interferences.

TABLE 2 | Detection of H2O2 in the milk sample using HKUST-1/GCE (n � 3).

Sample Added (μM) Average founded (μM) Average recovery (%) RSD (%)

Milk 40.0 40.1 100.2 4.6
80.0 77.7 97.1 6.1
120.0 115.4 96.1 7.7

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7436378

Guo et al. Cu-MOF for Hydrogen Peroxide Detection

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Supplementary Figure S6, no obvious amperometric current
response could be seen at the first injection of the diluted milk
sample without additional H2O2. It proves that the milk
sample does not contain endogenous H2O2. With the
subsequent injection of milk samples containing different
concentrations of additional H2O2, the current response
increased rapidly and obviously, indicating that the sensor
is suitable for H2O2 detection with good adaptability and
practicality in a complex aqueous system. Furthermore, the
standard addition method was carried out to calculate the
relative standard deviation (RSD) and the recovery rate based
on the previous linear regression equation. As shown in
Table 2, the RSD was less than 8%, and the average
recovery rate was 100.2%, 97.1%, and 96.1% (n � 3),
respectively. These results demonstrated that the prepared
sensor is highly reproducible and effective for H2O2 sensing in
milk samples.

CONCLUSION

In summary, two kinds of pristine Cu-MOFs with different
structures were synthesized successfully for the comparison of
morphology and electrocatalytic ability. 3D Cu-MOFs with an
octahedral structure performed lower resistance and higher
current peak response for the electrochemical catalysis of
H2O2 than 2D Cu-MOF, demonstrating that the
morphology of the Cu-MOFs could influence the
electrochemical performance in H2O2 reduction. The
HKUST-1/GCE presented two wide linear ranges
(2 μM–3 mM and 3–25 mM) and a low detection limit of
0.68 μM for H2O2 detection in 0.1 M N2 saturated PBS.
Furthermore, the prepared sensor had been applied for the
detection of H2O2 in milk samples, showing its satisfactory
practicability and prospect. This work provided an idea and
strategy for the electrochemical detection of H2O2. This
sensor had great potential for electrochemical detection in
the food industry and agricultural system to meet the demand
of rapid detection and selectivity in analyses.
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