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Abstract

Motivation: The conformational B-cell epitopes are the specific sites on the antigens that have immune functions. The
identification of conformational B-cell epitopes is of great importance to immunologists for facilitating the design of
peptide-based vaccines. As an attempt to narrow the search for experimental validation, various computational models
have been developed for the epitope prediction by using antigen structures. However, the application of these models is
undermined by the limited number of available antigen structures. In contrast to the most of available structure-based
methods, we here attempt to accurately predict conformational B-cell epitopes from antigen sequences.

Methods: In this paper, we explore various sequence-derived features, which have been observed to be associated with the
location of epitopes or ever used in the similar tasks. These features are evaluated and ranked by their discriminative
performance on the benchmark datasets. From the perspective of information science, the combination of various features
can usually lead to better results than the individual features. In order to build the robust model, we adopt the ensemble
learning approach to incorporate various features, and develop the ensemble model to predict conformational epitopes
from antigen sequences.

Results: Evaluated by the leave-one-out cross validation, the proposed method gives out the mean AUC scores of 0.687 and
0.651 on two datasets respectively compiled from the bound structures and unbound structures. When compared with
publicly available servers by using the independent dataset, our method yields better or comparable performance. The
results demonstrate the proposed method is useful for the sequence-based conformational epitope prediction.

Availability: The web server and datasets are freely available at http://bcell.whu.edu.cn.

Citation: Zhang W, Niu Y, Xiong Y, Zhao M, Yu R, et al. (2012) Computational Prediction of Conformational B-Cell Epitopes from Antigen Primary Structures by
Ensemble Learning. PLoS ONE 7(8): e43575. doi:10.1371/journal.pone.0043575

Editor: Gajendra P.S. Raghava, CSIR-Institute of Microbial Technology, India

Received December 16, 2011; Accepted July 26, 2012; Published August 21, 2012

Copyright: � 2012 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the National Science Foundation of China (60970063, 61103126, http://www.nsfc.gov.cn/), the Ph.D. Programs Foundation of
Ministry of Education of China (20090141110026, 20100141120049, http://www.moe.gov.cn/), Program for New Century Excellent Talents in University (NCET-10-
0644, http://www.moe.gov.cn/), Natural Science Foundation of Hubei Province (No. 2011CDB454, http://www.hbstd.gov.cn/) and the Fundamental Research
Funds for the Central Universities of China (6081007, 3101054, http://kfy.whu.edu.cn/). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhangwen@whu.edu.cn

Introduction

Antigen-antibody interaction is a critical event in the immune

process, and it can elucidate the underlying mechanism of immune

recognition. The sites on antigens recognized and bound by B cell-

produced antibodies are well known as B-cell epitopes [1]. The

location of B-cell epitopes is useful for synthesizing peptides that

can elicit the immune response with specific cross-reacting

antibodies. For this reason, the identification of B-cell epitopes

facilitates the design of the potentially safer peptide-based vaccines

[2,3]. B-cell epitopes can be classified into two categories: linear

(continuous) epitopes and conformational (discontinuous) epitopes

[4]. Linear epitopes are formed by continuous amino acid

sequences, while conformational epitopes consist of residues that

are distantly separated in the sequences but spatially proximal.

Recently, with the development of information science,

computational methods for epitope recognition become an

alternative to the wet experimental techniques, in order to save

time and reduce cost. The study on linear epitope prediction

started in 1970s, and some methods were proposed by using amino

acid propensities [5–11]. In the last few years, machine learning

methods were introduced into the linear epitope prediction with

high accuracy [12–17]. Although the majority of all epitopes

(about 90%) are conformational, the study on them began fairly

late.

In the prediction work, conformational epitopes are usually

defined based on the antigen-antibody distance. Specifically, the

distance between two residues is measured by the minimal

Euclidean distance between the centers of any of their non-

hydrogen atoms, and an antigen residue separated from any
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antibody residue by a distance less than 4Å is defined as an epitope

residue. Actually, the conformational epitopes in the computing

community are structural epitopes. The computational methods

help immunologists to identify the promising candidate residues

that can constitute the epitope for the real application. Therefore,

the development of computational methods is aimed to narrow the

search for experimental validation, instead of replacing the

experiments.

CEP [18] is the pioneer method for prediction of conforma-

tional epitopes, which uses the residue solvent accessibility.

DiscoTope [19] exploits the surface accessibility, spatial in-

formation and amino acid statistics information to identify

epitopes. PEPITO [20] combines amino acid propensities and

half sphere exposure values at multiple distances to make

prediction. ElliPro [21] is constructed using Thornton’s pro-

pensities and residue clustering. In SEPPA [22], two concepts ‘unit

patch of residue triangle’ and ‘clustering coefficient’ are introduced

to describe the local spatial context and spatial compactness.

EPITOPIA [23,24] combines structural and physicochemical

features, and then uses naive Bayes classifier to make prediction.

EPCES [25] uses the consensus score of several structural and

physicochemical terms. EPSVR [26] uses support vector machine

and combines various features for prediction. EPMeta [26] is

a meta method that combines the outputs from existing servers.

Liu et al. [27] adopted the logistic regression to predict the

conformational epitopes. Zhang et al. proposed a random forest-

based method by dealing with the imbalanced dataset and

combining various features [28].

Although some structure-based computational methods have

been developed for the epitope prediction, the application of these

methods is undermined by the limited number of available antigen

structures, and the experimental techniques that determine

structures are costly and time-consuming. Recently, instead of

making predictions based on structures, Ansari [29] made the first

attempt on sequence-based conformational epitope prediction,

and developed a server named ‘CBTOPE’.

In the paper, we follow the work pioneered by Ansari [29], and

focus on two aspects concerning the sequence-based prediction.

One is to explore more potential sequence-derived features

relevant to conformational epitopes. The other is to effectively

use various features which may share redundant information. In

order to address these issues, we evaluate several sequence-derived

features, which are ever used in the epitope prediction or similar

tasks. Second, we consider the ensemble learning technique that

can incorporate useful features, and the weighted scoring

approach is adopted to build the prediction model.

Methods

Dataset
To our knowledge, there are two benchmark datasets widely

used in the recent studies [23,24,25,26]. One is Rubinstein’s

bound structure dataset [23,24]; the other is Liang’s unbound

structure dataset [25,26]. We compile 83 antigen sequences and

48 antigen sequences (named as ‘bound sequence dataset’ and

‘unbound sequence dataset’) respectively from above structure

datasets, and used them as the main dataset.

In order to fairly compare our proposed method with a pre-

viously developed sequence-based CBTOPE [29], the sequence

dataset that constructs CBTOPE server (named ‘main dataset’ in

[29]) is adopted as well.

Moreover, to fairly test different public servers, we adopt

Liang’s independent dataset [26], which contains 19 antigen

structures with annotated real epitopes. Antigen structures are

used to test the structure-based servers; the corresponding

sequences are used to test the sequence-based servers.

Instance Generation
The overlapping residue segments are generated from the

antigen sequences, by using a sliding window of the length L. For

simplify, let L to be an odd integer. For a sequence with N residues,

a total of N2L+1 segments are extracted, and each segment is

labeled as positive or negative according to the state of its central

residue (epitope residue or non-epitope residue). Obviously, there

are much more negative instances than positive instances, and the

instances are seriously imbalanced.

In order to deal with first tL=2s and last tL=2sresidues of the

antigen sequences, tL=2s symbols ‘X’ are added at terminals of

sequences. An example is shown by Fig. 1.

Features
In order to apply machine learning techniques, the residue

segments should be represented as feature vectors by using amino

acid descriptors. In this paper, besides three groups of features

(physicochemical propensities, sparse profile and amino acid

composition) adopted in the CBTOPE [29], we evaluate more

sequence-derived features. All features are described as follows.

Physicochemical propensities: lots of studies have suggested the

close relationship between physicochemical propensities of amino

acids and location of epitopes [5–11]. These physicochemical

propensities are flexibility scale [5], hydrophilicity scale [6],

surface exposed residue scale [7], polarity scale [8], beta-turn scale

[9] and accessibility scale [10].

Sparse profile: sparse profile is a widely used representation of

amino acids. Each amino acid type (20 common types in all) can

be represented by a 20-bit binary string, in which the value at one

bit is 1 and others are 0.

Amino acid composition: according to the previous study [23],

some amino acid types are significantly overrepresented in

epitopes, and others are underrepresented, thus the amino acid

composition can be used to differentiate epitope regions from non-

epitope regions. Here, we use the amino acid composition of the

residue segments (also called as sliding windows or samples)

extracted from the whole sequences. Ansari et al. [29] evaluated

the feature in their sequence-based work, and proved its

usefulness.

Amino acid function group: since contacts between antibodies

and the antigens are mostly determined through functional

moieties of the R-groups, functional moieties can influence the

location of antibody-antigen binding sites [30,31]. According to

different R-groups, 20 amino acid types are classified into 13

classes (class 1: R, K; class 2: E, D; class 3: S, T; class 4: L, V, I;

class 5: Q; N; class 6: W, F; class 7: A; class 8: C; class 9: G; class

10: H; class 11: M; class 12: P; class 13: Y). In order to take Ag-Ab

interaction into consideration, we present a novel feature named

Figure 1. An example of adding ‘X’s at both terminals of
a sequence. 7 ‘X’s are added at the left terminal of the given sequence
(L= 15), the segment with the central residue ‘K’ is presented as
‘XXXXXXXKVFGRCEL’.
doi:10.1371/journal.pone.0043575.g001
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‘amino acid function group’, and use 13-bit binary strings to

represent 13 functional classes.

Amino acid functional composition: by incorporating both

amino acid function group and amino acid composition, we

present a novel feature ‘amino acid functional composition’, which

represents the percentage of each amino acid functional type in

a sequence.

Evolutionary profile: Rubinstein studied the evolutionary

conservation of epitopes [32], and revealed that epitopes are

significantly less evolutionarily conserved than non-epitope

regions. Therefore, the evolutionary conservation can help to

differentiate epitopes from non-epitope regions. Here, the

evolutionary conservation is represented by the position-specific

scoring matrix (PSSM), which is obtained by aligning the target

sequence against NCBI non-redundant reference sequences with

PSI-BLAST tool. For an amino acid sequence with L residues, the

PSSM has L rows and 20 columns. PSSM values in each row are

rescaled to [0, 1] by the standard logistic function:

f (x)~
1

1ze{x

When using the evolutionary profile, a residue is represents by

its corresponding 20-dimensional row vector in the matrix. This

feature is widely used in the epitope prediction [23,24,25,26] or

similar tasks [33,34,35,36] (protein-DNA binding prediction and

protein-protein binding prediction).

Amino acid pair profile: The amino acid pair profile is usually

observed to be associated with the protein functions [15,23].

Amino acid pair profile of a sequence represents the percentage of

each amino acid pair type.

Although structural information cannot be directly obtained

from antigen sequences, some state-of-the-art tools can help to

predict it. Here, the SABLE program [37] is adopted, for the

online server and the standalone tool are publicly available [38].

With the given sequences as input, the software can predict the

secondary structures and relative accessible surface areas (RASA)

of residues. The predicted SS of a residue is denoted as H, E or C

(helix, sheet, coil), and (1, 0, 0), (0, 1, 0) and (0, 0, 1) are

respectively used to represent three types. The predicted RASA

of a residue is a real value between 0 and 100, representing the

percentage of exposed area of the residue over its full area.

Random Forest and Imbalanced Data
Random forest (RF) is a machine learning method developed by

Leo Breiman and Adele Cutler [39], which can be used for both

classification and regression. Typically, a random forest (RF) is

made up of many decision trees, which are constructed in the

following way: the sampling technique is adopted to generate

multiple samples from the dataset, and trees are constructed on

these samples by selecting split features from a small random

subset of features. The average vote of all trees is reported as the

Figure 2. The model based on data bootstrap for the imbalanced dataset.
doi:10.1371/journal.pone.0043575.g002
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random forest prediction. RF has been widely used in the

bioinformatics, and successfully solves lots of problems

[40,41,42,43]. Here, the random forest is used as the classification

engine due to its efficiency and good generalization capability.

In fact, a great number of real datasets are imbalanced, in which

the instances from one class take majority of the data. As shown in

Fig. 2, a strategy based on the data bootstrap is used to deal with

the imbalanced data. Thus, a model which consists of n random

forests is constructed. When predicting an instance, votes yielded

by n random forests are used as the predicted result. There is

a parameter n which represents data sampling times, and it is set as

the ratio of the number of positive instances divided by number of

negative instances. The data bootstrap procedure and random

forests are implemented by WEKA package [44], and default

parameters are adopted.

The Ensemble Model for Conformational Epitope
Prediction

Ensemble learning is a useful technique that aggregates multiple

machine learning models to achieve overall prediction accuracy as

well as better generalization [45]. Recently, there is an increasing

use of ensemble learning methods in the field of bioinformatics

[46–49], because of their unique advantages in dealing with high-

dimensional and complicated data. In this paper, we use the

ensemble learning technique to exploit various features, and then

develop the sequence-based prediction model.

Since a sequence segment can be encoded into different feature

vectors by using different features, multiple classifiers can be

constructed and used as the sub-classifiers for ensemble learning.

In order to integrate various features, the ensemble model can be

constructed by combining the outputs of different sub-classifiers.

Fig. 3 shows the general flowchart of an ensemble model. Various

strategies can be used to combine the sub-classifiers. Here, we

adopt a simple strategy named weighted scoring, and the similar

strategy is ever used in the protein-protein prediction [49]. The

weighted scoring approach includes two steps: data normalization

and score combination.

Given an instance, each sub-classifier will produce a score, and

then these scores are normalized by the Z-score function, and

transformed by tanh function [50].

Score~tanh(
Score{m

s
)

where m and s are the mean and the standard deviation of scores

produced by the sub-classifiers.

Further, a weight is assigned to the normalized score yielded by

a sub-classifier, and the sum of weighted scores is adopted as the

final prediction.

final score~
Xn

i~1
wi|scorei

Where wi is the weight for the scorei from sub-classifier #i,Pn
i~1 wi~1 and wi§0.

In order to deal with the first tL=2sand last tL=2s resides of an

antigen sequence (the window length is L), the composition profile-

based model is used.

Performance Evaluation Metrics
The performance of the models is evaluated by the leave-one-

out cross validation (LOOCV). With respect to our study, the

LOOCV procedure is slightly different. Each time, the sequences

from n-1 antigens are used to train the model, and the sequences

from one antigen (an antigen may have multiple chains) are used

to test the model.

The performance of models is measured by several metrics, i.e.

sensitivity (SN), specificity (SP), accuracy (ACC), F-measure (F)

and area under ROC curve (AUC). Here, AUC is used as the

primary evaluation metric, for it can measure the general

performance of models regardless of any threshold.

SN~
TP

TPzFN

SP~
TN

TNzFP

ACC~
TPzTN

TPzTNzFPzFN

precision~
TP

TPzFP

recall~
TP

TPzFN

F~2 � precision|recall

precisionzrecall

where TP, TN , FP and FN are the number of true positives, the

number of true negatives, the number of false positives and the

number of false negatives.

Results and Discussion

In this section, we evaluate various features and identify the

candidate features for the sequence-based prediction. Further, we

investigate how to build the high-accuracy and reliable model

based on these features.

The Evaluation of Various Features
Before building prediction models, a fixed-length window is

shifted over antigen sequences to generate overlapping segments as

instances. Since the window length may influence the performance

of models, the window lengths ranging from 5-residue to 15-

residue are considered. Table 1 and table 2 demonstrate the

prediction performance of individual feature-based models on the

bound and the unbound sequence dataset.

Although the performance of individual feature-based models

varies over the increasing window length, an overall tendency can

be observed. Generally speaking, the performance will go up as the

window length increases until reaching a peak, and then it will

decrease. However, there is no consistent optimal window length

(reaching peak performance) for all features. For the bound

sequence dataset, the average performance of all individual

feature-based models reaches peak when using the 9-residue

window. For the unbound sequence dataset, the average

performance of models with the 9-redisue window is close to the

best (yielded by the 11-resuidue window). For simplicity, the 9-

residue window is adopted in the following study.

Prediction of Conformational B-Cell Epitopes
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As shown in Fig. 4, various features can be ranked by the

performance of individual feature-based models. For the bound

sequence dataset, the evolutionary profile, predicted relative

accessible surface area and physicochemical propensities produce

better results than other features. The features can be listed in the

descending order of their performance as evolutionary profile,

predicted relative accessible surface area, physicochemical pro-

pensities, sparse profile, function composition, predicted secondary

structure, amino acid pair profile. The similar conclusion can be

drawn for the unbound sequence dataset.

In the sequence-based prediction, it is necessary to study the

sequence-predicted structural values (by Sable [38]) and evaluate

their effect. The RASA and SS calculated from crystal structures

by DSSP software [51] can be approximately taken as the real

structural value. We use real structural values and sequence-

predicted structural values to build the prediction models, and

make comparison. As expected, the real RASA produces better

results than the sequence-predicted RASA (0.688 versus 0.650 on

the bound dataset). However, the sequence-predicted SS yields

better results than the real SS (0.608 versus 0.509). The results

suggest the sequence-based prediction can reduce the influence of

conformational change in some degree.

The study in the section indicates all features have the ability of

differentiating epitope regions from non-epitope regions. Since the

amino acid functional composition incorporates both amino acid

composition and amino acid group, seven groups of features

including physicochemical propensities, evolutionary profile,

amino acid functional composition, sparse profile, amino acid

pair, sequence-predicted secondary structure and sequence-pre-

dicted relative solvent accessibility are used as candidates for the

development of prediction models.

The Study on the Direct Feature Combination
From the perspective of information science, the combination of

various features can lead to better results than the individual

features. Emerging various feature vectors is an popular way of the

direct feature combination, and its usefulness is proved by many

applications in bioinformatics [25–28] [33–36].

Figure 3. The general schematic diagram of the ensemble model.
doi:10.1371/journal.pone.0043575.g003

Table 1. Performance of individual feature-based models for the bound sequence dataset, evaluated by LOOCV.

Window #1 #2 #3 #4 #5 #6 #7 #8 #9 Average

5 0.604 0.580 0.601 0.601 0.673 0.599 0.583 0.617 0.637 0.611

7 0.617 0.575 0.607 0.609 0.678 0.600 0.578 0.613 0.640 0.613

9 0.632 0.576 0.598 0.609 0.678 0.613 0.589 0.607 0.650 0.617

11 0.622 0.565 0.593 0.597 0.673 0.593 0.564 0.606 0.648 0.607

13 0.633 0.576 0.603 0.599 0.672 0.602 0.5687 0.613 0.657 0.614

15 0.623 0.543 0.603 0.598 0.674 0.600 0.539 0.607 0.662 0.605

Physicochemical propensities (#1), amino acid composition (#2), amino acid function group (#3), amino acid functional composition (#4), evolutionary profile (#5),
sparse profile (#6), amino acid pair profile (#7), secondary structure (#8), relative accessible surface area (#9).
doi:10.1371/journal.pone.0043575.t001

Prediction of Conformational B-Cell Epitopes

PLOS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e43575



However, as shown in table 3, the direct combination of the

high-ranked features cannot produce better results than the best

individual feature-based models for the bound sequence dataset,

and the performance instead decreases. According to the Table 4,

some feature combinations make improvement for the unbound

sequence dataset, but more features cannot necessarily contribute

to better performance. As a result, merging feature vectors can not

effectively utilize various features for the sequence-based epitope

prediction, because of the redundant and even conflicting

information between these features. Therefore, we seek for

another feasible approach to exploit all candidate features.

The Performance of Ensemble Learning-based Models
In order to combine various features, we adopt the ensemble

learning technique (described in the ‘Methods’ section) to build the

prediction models. Individual feature-based models are used as the

sub-classifiers, and the weighted sum of outputs given by sub-

classifiers is used as the prediction.

In the paper, the weights assigned to different sub-classifiers can

be determined by the grid search, in which the sum of weights is 1

and step size of weights is 0.05. For the time efficiency, the optimal

weights are determined on the bound sequence dataset (the 9-

residue window is adopted), and are further used for the unbound

sequence dataset and other datasets.

As shown in Fig. 5, the ensemble model can produce

consistently better results than the best individual feature-based

models when using the windows of different lengths. Admittedly,

Table 2. Performance of individual feature-based models for the unbound sequence dataset, evaluated by LOOCV.

Window #1 #2 #3 #4 #5 #6 #7 #8 #9 Average

5 0.572 0.522 0.572 0.575 0.639 0.571 0.546 0.600 0.617 0.579

7 0.592 0.544 0.585 0.592 0.632 0.575 0.522 0.609 0.624 0.586

9 0.603 0.543 0.581 0.585 0.635 0.575 0.531 0.616 0.627 0.588

11 0.606 0.556 0.601 0.597 0.633 0.579 0.541 0.611 0.626 0.595

13 0.606 0.558 0.584 0.583 0.625 0.572 0.543 0.595 0.621 0.588

15 0.604 0.520 0.584 0.581 0.626 0.577 0.554 0.586 0.626 0.584

Physicochemical propensities (#1), amino acid composition (#2), amino acid function group (#3), amino acid functional composition (#4), evolutionary profile (#5),
sparse profile (#6), amino acid pair profile (#7), secondary structure (#8), relative accessible surface area (#9).
doi:10.1371/journal.pone.0043575.t002

Figure 4. The feature rank evaluated by LOOCV (left: bound sequence dataset, right: unbound sequence dataset). Physicochemical
propensities (#1), amino acid composition (#2), amino acid function group (#3), amino acid functional composition (#4), evolutionary profile (#5),
sparse profile (#6), amino acid pair profile (#7), secondary structure (#7), relative accessible surface area (#8).
doi:10.1371/journal.pone.0043575.g004

Table 3. Performance of models based on direct feature
combination for the bound sequence dataset, evaluated by
LOOCV.

Feature F SN SP ACC AUC

A 0.311 0.671 0.675 0.680 0.678

A+B 0.313 0.670 0.685 0.689 0.676

A+B+C 0.311 0.662 0.678 0.685 0.680

A+B+C+D 0.309 0.608 0.723 0.719 0.680

A+B+C+D+E 0.312 0.650 0.695 0.698 0.676

A+B+C+D+E+F 0.309 0.637 0.713 0.711 0.677

A+B+C+D+E+F+G 0.307 0.681 0.658 0.669 0.669

A: evolutionary profiles; B: predicted relative accessible surface area; C:
physicochemical propensities; D: sparse profile; E: function composition; F:
predicted secondary structure; G: amino acid pair.
doi:10.1371/journal.pone.0043575.t003

Prediction of Conformational B-Cell Epitopes

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e43575



the improvement is not significant and quite limited. However,

due to the difficulty of epitope prediction, the reported accuracy of

all existing methods is quite low. Therefore, we have to exploit

useful features to achieve higher accuracy.

More importantly, the weighted scoring-based model has some

advantages. First, the ensemble model provides a flexible frame

that incorporates individual feature-based classifiers. For example,

if we set wi as 1 and others as 0, the ensemble model only uses the

#i feature. Second, the ensemble model can select the features by

itself and integrate them based on the discriminative power.

According to the optimal weights, we can approximately know the

components of the ensemble model. Therefore, this ensemble

model is not only easy to implement but also easy to explain.

Besides the weighted scoring, other ensemble learning ap-

proaches such as mean scoring and median scoring are considered.

According to our study, the weighted scoring approach yields best

results among all ensemble approaches. The details of these

approaches are provided in Table S1.

Comparison with other Methods
To our knowledge, there are some conformational epitope

prediction methods with publicly available web servers. These

methods are CEP [18], DiscoTope [19], ElliPro [21], SEPPA [22],

Epitopia [24], EPSVR [25], EPCES [26], EPMeta [26] and

CBTOPE [29]. Except CBTOPE, all methods are trained on the

structures and use the structures to make prediction. Here, we

adopt the most recent methods DiscoTope, SEPPA, Epitopia,

EPSVR, EPCES and CBTOPE as the benchmark methods for

comparison.

As far as we know, some structure-based methods are trained

and evaluated on the bound dataset (DiscoTope, SEPPA,

Epitopia), the others are constructed and tested on the unbound

dataset (EPSVR, EPCES). Therefore, we directly compare our

method with the methods whose LOOCV results for these datasets

are reported. On the same bound dataset and using exactly the

same LOOCV assessment measures, DiscoTope and Epitopia

produce the mean AUC scores of 0.60 and 0.59 (according to

Rubinstein’s study [26]), and BPredictor [28](our previous

method) yields the mean AUC score of 0.633. Here, the proposed

sequence-based model produces the mean AUC score of 0.687.

Additionally, we compare our model with the unbound structure-

based methods. Evaluated by the same unbound dataset and

evaluation measure, EPSVR [25], EPCES [26], and BPredictor

[28] give out the LOOCV AUC scores of 0.670, 0.644, and 0.654,

while the proposed sequence-based model yields the LOOCV

AUC score of 0.651. Although EPSVR produces the best result, it

is important to note that EPSVR adopts the best parameters of

SVR for the LOOCV evaluation. Considering the fact that we use

the default parameters of RF, our sequence-based method

produces the comparable performance. Therefore, when com-

pared with the structure-based methods in terms of LOOCV

evaluation, our method produces better or comparable perfor-

mance.

Currently, only one sequence-based method (CBTOPE) has

been developed by Ansari to predict the conformational epitopes

[29]. In CBTOPE, physicochemical propensities, sparse profile

and amino acid composition are used to encode overlapping

residue segments, thus support vector machine is adopted to

construct prediction models. The amino acid composition-based

model produces the best performance. In our study, we consider

Table 4. Performance of models based on direct feature
combination for the unbound sequence dataset, evaluated by
LOOCV.

Feature F SN SP ACC AUC

A 0.292 0.636 0.643 0.654 0.635

A+B 0.288 0.628 0.653 0.658 0.634

A+B+C 0.283 0.644 0.636 0.646 0.633

A+B+C+D 0.294 0.661 0.637 0.647 0.648

A+B+C+D+E 0.293 0.630 0.653 0.663 0.641

A+B+C+D+E+F 0.289 0.646 0.623 0.638 0.642

A+B+C+D+E+F+G 0.297 0.607 0.669 0.678 0.646

A: Evolutionary profiles; B: predicted relative accessible surface area; C:
predicted secondary structure; C: physicochemical propensities; D: amino acid
function composition; F: Sparse profile; G: Amino acid pair.
doi:10.1371/journal.pone.0043575.t004

Figure 5. The LOOCV comparison between the ensemble model and the best individual feature-based models in terms of different
window lengths. Optimal Weights for sub-classifier: 0.1 for physicochemical propensities, 0.0 for amino acid functional composition, 0.5 for
evolutionary profiles, 0.0 for sparse profile, 0.1 for SS, 0.2 for RASA, 0.1 for amino acid pair profile. AUC scores of the ensemble model using the 9-
residue window: 0.687 for bound dataset, 0.651 for unbound dataset.
doi:10.1371/journal.pone.0043575.g005
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these features as well, and use them as the components of our

ensemble model. The results in the Fig. 5 show the ensemble

model yields better results than any individual feature-based

model. However, the LOOCV scores of CBTOPE are not

reported in [29]. Therefore, we can not directly compare our

method with CBTOPE in terms of LOOCV evaluation. As an

alternative, we try to compare our method with CBTOPE server

in the following independent dataset testing.

In order to test real predictive power, our method and the

benchmark servers are tested by an independent dataset, and

results are shown in table 5. Here, we train our sequence-based

models on the bound sequence dataset, the unbound sequence

dataset and Ansari’s sequence dataset respectively, and then use

them to predict the independent dataset. Three models produce

the mean AUC scores of 0.60, 0.601, and 0.632. When compared

with structure-based servers that are constructed on the bound and

unbound datasets, our model can yield better or comparable

performance. Here, we must emphasize, the sequence-based

prediction is an alternative to the structure-based prediction in the

absence of structures. Theoretically, the antigen structure can

bring more information to build robust prediction models.

However, the results suggest the sequence-based method can give

out satisfying results by only using sequence information. Trained

on the same dataset, our model gives out obviously better

performance than the sequence-based CBTOPE (mean AUC

score: 0.632 VS 0.607) for the independent dataset. Specifically,

our model produces better results on 12 out of 19 antigen

sequences (details shown in Table S2). Therefore, our ensemble

model that incorporates various features produces more robust

performance than the CBTOPE which only uses an individual

feature.

According to the pairwise t-student test, the differences between

our method and benchmark servers, as well as the differences

between benchmark servers, are not statistically significant. The

same results are reported in the previous study [26,28]. As far as

we know, the statistical analysis depends on the great number of

samples. However, the limited number of available antigen-

antibody complex structures is one of the main obstacles in the

epitope prediction, thus leads to the result.

Generally speaking, the proposed sequence-based method

produces comparable or better performance when compared with

the structure-based methods, and makes improvement over the

existing sequence-based method. More importantly, our method

can predict the conformational epitopes from primary sequences

in the absence of antigen structures, and has more practical values.

Conclusions
Most conformational epitope prediction models are constructed

on the antigen-antibody structures, and use antigen structures to

make prediction. However, only a small number of antigen

structures are available. Therefore, we attempt to predict

conformational epitopes from antigen sequences. This paper

systematically evaluates several sequence-derived features, and

selects some features as candidates for modeling. In order to

effectively combine candidate features, we develop an ensemble

learning model based on the weighted scoring strategy. When

compared with the existing sequence-based method and structure-

based methods, our method demonstrates comparable or better

performance. In conclusion, our method is a promising tool to

predict the conformational epitopes from antigen sequences. The

web server and datasets are freely available at http://bcell.whu.

edu.cn.
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Table 5. The performance of different servers for the independent dataset.

Server Type
Data for server
construction Server Available Mean AUC

Structured-based Bound structure DiscoTope http://www.cbs.dtu.dk/services/DiscoTope/ 0.579

SEPPA http://lifecenter.sgst.cn/seppa/ 0.589

EPITOPIA http://epitopia.tau.ac.il/ 0.572

BPredictor http://code.google.com/p/my-project-bpredictor/ 0.587

Unbound structure EPCES http://sysbio.unl.edu/EPCES/ 0.569

EPSVR http://sysbio.unl.edu/EPSVR/ 0.606

Sequence-based Sequence dataset CBTOPE http://www.imtech.res.in/raghava/cbtope/ 0.607

Bound sequence Our model1 0.600

Unbound sequence Our model2 0.601

CBTOPE dataset Our model3 0.632

Our model1 is constructed on the sequence dataset compiled from the bound structures; our model2 is constructed on the sequence dataset compiled from the
unbound structures; our model3 is constructed on the dataset, which was used for CBTOPE.
doi:10.1371/journal.pone.0043575.t005
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