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Mycobacterium avium, an opportunistic intracellular pathogen, is a member of the non-
tuberculous mycobacteria species. M. avium causes respiratory disease in
immunosuppressed individuals and a wide range of animals, including companion dogs
and cats. In particular, the number of infected companion dogs has increased, although
the underlying mechanism of M. avium pathogenesis in dogs has not been studied.
Therefore, in the present study, the host immune response againstM. avium in dogs was
investigated by transcriptome analysis of canine peripheral blood mononuclear cells. M.
avium was shown to induce different immune responses in canine peripheral blood
mononuclear cells at different time points after infection. The expression of Th1-
associated genes occurred early during M. avium infection, while that of Th17-
associated genes increased after 12 h. In addition, the expression of apoptosis-related
genes decreased and the abundance of intracellular M. avium increased in monocyte-
derived macrophages after infection for 24 h. These results reveal the M. avium induces
Th17 immune response and avoids apoptosis in infected canine cells. As the number of
M. avium infection cases increases, the results of the present study will contribute to a
better understanding of host immune responses toM. avium infection in companion dogs.

Keywords: Mycobacterium avium, host immune response, Th17, apoptosis, dog
INTRODUCTION

Mycobacterium avium is a member of the most common non-tuberculous mycobacteria complex
that causes chronic respiratory disease in humans (Prevots and Marras, 2015; Yano et al., 2017).
Although M. avium primarily infects humans and pigs, it has also been reported to infect several
other mammalian species, such as cattle, sheep, horses, cats, and dogs (Pavlik et al., 2000; Campora
et al., 2011). Other Mycobacterium species have been reported as common etiological agents of
canine mycobacteriosis; however, dogs are known to be resistant to M. avium (Carpenter et al.,
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1988; Shackelford and Reed, 1989; Horn et al., 2000; Greene,
2006). Nonetheless, some type of breeds are more susceptible to
M. avium, and an increasing number of cases of M. avium
infection in dogs have been reported, several of which have
shown granulomatous inflammation in infected organs, such as
lung, liver, bone marrow, intestine and lymph nodes (Kim et al.,
1994; Haist et al., 2008; Campora et al., 2011; Kim et al., 2016;
Ghielmetti and Giger, 2020). The increase in such cases suggests
the possibility of a potential public health risk attributable to M.
avium infection in dogs. However, the mechanism underlyingM.
avium infection in dogs remains to be elucidated.

Typically, the host immune response attempts to defend
against M. avium together with macrophages and T
lymphocytes early during an infection. T cell immune
responses are important in regulating pulmonary M. avium
complex (MAC) infection, with T helper 1 (Th1) responses
playing an important role in increasing macrophage
bactericidal capacity, while T helper 17 (Th17) differentiation
induces neutrophilic pulmonary inflammation (Matsuyama
et al., 2014; Shu et al., 2018). Th1 cells eradicate mycobacteria
by producing various cytokines (Haverkamp et al., 2006). Tumor
necrosis factor (TNF) induces antigen-specific CD4+ cells that
produce IFN-g early during an infection. IFN-g is well known to
limit Mycobacterium infection by inhibiting outgrowth (Patel
et al., 2005). These cytokines are essential for protecting MAC
early during an infection by developing cell-mediated
immune responses.

Th17 cells are important for establishing a protective immune
response toMycobacterium (Kozakiewicz et al., 2013). Th17 cells
can accumulate Th1 cells in infected tissues and enhance the
antimycobacterial response with Th1 cells (Weaver et al., 2013;
Cruz et al., 2015b). Th17 cells produce the lineage-specific
cytokines IL-17A and IL-17F as well as other cytokines (IL-6
and GM-CSF) and chemokines (CXCL1, CXCL2, CXCL5, and
CXCL8) (Jasenosky et al., 2015; Lombard et al., 2016).
Importantly, IL-17 enhances the migration of neutrophils to
the inflamed sites for the early clearance of bacteria by inducing
CXC chemokines during Mycobacterium infection. However,
Th17 cells have a pathological role rather than a protective role
under Th1-diminished conditions after M. avium infection
(Matsuyama et al., 2014; Xu et al., 2016). In particular, IL-17
plays crucial roles in chronic inflammation and is important for
the formation and maintenance of granulomas in mycobacterial
infection sites (Ostadkarampour et al., 2014; Li et al., 2016). IL-
1b, IL-6, and IL-23 induce the Th17 pathway and form
granulomas with IL-17 (Stark et al., 2005). In addition, IL-17
contributes to the persistence of M. avium in macrophages via
the NF-kB and MAPK signaling pathways (Vázquez et al., 2012).
These cytokines are important for the immune response to
chronic pulmonary Mycobacterium infection.

M. avium is an intracellular pathogen that primarily affects
macrophages (Thegerström et al., 2012), where infected
macrophages undergo apoptotic cell death to minimize tissue
injury and decrease pathogen viability (Behar et al., 2010).
However, M. avium survives intracellularly and replicates
within macrophages by preventing the phagosome maturation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
process (Early et al., 2011).Mycobacterium inhibits the apoptosis
of macrophages via several mechanisms involving TNF-,
caspase-, NO-, and cathepsin-related mechanisms (Rojas et al.,
1998; Chen et al., 2006; O’Sullivan et al., 2007). In particular, M.
avium has been reported to inhibit bacterial programmed cell
death induced by both the extrinsic pathway through caspase 8
activation and the intrinsic apoptotic pathway through caspase 3
activation (Sharbati et al., 2011; Kabara and Coussens, 2012).
Furthermore, IL-17A has also been reported to be associated
with the inhibition of apoptosis by a p53-dependent mechanism
during Mycobacterium infection (Cruz et al., 2015a).

As is the case for M. avium infection of several mammalian
species, the host response of infected dogs should be studied to
estimate the possibility of M. avium infection. In the present
study, we elucidated the host responses in canine peripheral
blood mononuclear cells and monocyte-derived macrophages
upon infection with M. avium. Our results revealed that the T
cell response shifts from a Th1 to a Th17 cell response according
to the time of infection and that the expression of apoptosis-
related genes decreased as intracellular M. avium proliferates in
macrophages. The results of the present study will promote a
better understanding of the host immune responses toM. avium
in dogs and highlight the potential risk of mycobacterial
infections in various species.
MATERIALS AND METHODS

Bacterial Strains and Cultivation
M. avium subsp. hominissuis strain 104 was kindly provided by
Prof. SJ Shin from the College of Medicine, Yonsei University in
Seoul, Korea.M. avium was cultured on Middlebrook 7H11 agar
supplemented with OADC (BD Biosciences, CA, USA). After 7
days, the cells were cultured in Middlebrook 7H9 broth for 5
days. Cultures at an optical density of 0.45 at 600 nm (9.2 × 108

CFU/ml) were generated after vigorous vortexing for 30 s to
remove clumps.

Blood Cell Isolation
Blood samples were collected from six healthy Beagle dogs in
accordance with the Guide for the Care and Use of Laboratory
Animals and the Animal Welfare Act in the animal facility of the
2nd Research Center at Genia (Eumsung, Korea). Blood was
collected from unanesthetized dogs by professional veterinarians
with permission approved by the Institutional Animal Care and
Use Committee (IACUC) at Genia (IACUC number; ORIENT-
IACUC-19026). Whole blood was diluted 1:3 in RPMI 1640
(Gibco, NY, USA) containing 20% of inactivated fetal bovine
serum (FBS; Gibco) and added to a gradient with 1.077 g/ml of
histopaque (Sigma Aldrich, Taufkirchen, Germany). Peripheral
blood mononuclear cells (PBMCs) were collected via density
gradient centrifugation (400 × g for 30 min) using leucoseptube
(Greiner Bio-One, Kremsmünster, Austria). Then, the PBMCs
were washed twice with DPBS containing 5% FBS, 1% penicillin/
streptomycin, and heparin (2,000 U/ml) and centrifuged at
250 × g for 5 min, after which the cells were resuspended in
January 2021 | Volume 10 | Article 609712
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RPMI 1640 containing 20% FBS and 1% penicillin/streptomycin
and cultured for 24 h at 37°C.

Cell Culture and Polarization
PBMCs were seeded into 24-well plates (ThermoScientific, MA,
USA) and cultured for 12 h in RPMI 1640 supplemented with
10% FBS, after which they were used for RNA-Seq analysis after
M. avium stimulation. The protocol described by Goto-Koshino,
Yuko, et al. was used to culture canine macrophages from blood-
derived monocytes (Goto-Koshino et al., 2011). Adherent cells
that strongly adhered to the plastic base offlasks were considered
monocytes and collected (Delirezh et al., 2013; Heinrich et al.,
2017). Canine monocytes were stimulated with 1 µg of PMA to
induce macrophage differentiation for an additional 6 days.
Then, canine monocyte-derived macrophages (MDMs) were
seeded into the wells of plates (ThermoScientific) containing
the same medium supplemented with 10% FBS to stabilize
the cells.

RNA Sequencing
Canine PBMCs were infected with M. avium at a multiplicity of
infection (MOI) of one with DPBS added to one plate as a
negative control. Total RNA was isolated at 0, 6, 12, and 24 h
after stimulation using an RNeasy Mini kit (Qiagen, Hilden,
Germany). After the quality of isolated RNA was assessed using
RNA 6000 Nano Chip with an Agilent 2100 bioanalyzer (Agilent
Technologies, Amstelveen, The Netherlands), RNA libraries
were constructed using a QuantSeq 3′mRNA-Seq Library Prep
kit (Lexogen, Inc., Austria). Total RNA was hybridized with an
oligo-dT primer including an Illumina-compatible sequence at
its 5′ end and cDNA library was synthesized using a random
primer. The double-stranded library was amplified with the
complete adapter sequences and the PCR product was purified.
High-throughput sequencing was performed via single-end 75
sequencing using a NextSeq 500 instrument (Illumina Inc.,
CA, USA).

QuantSeq 3′mRNA-Seq reads were aligned using the index of
Bowtie2 (Langmead and Salzberg, 2012), which is generated by
aligning genome assembly sequences or representative transcript
sequences to genome or transcriptome, and the alignment was
also used for the estimation of transcriptional abundance.
Differentially expressed genes were determined by counting the
reads on the unique and multiple alignments using BEDTools
(Quinlan and Hall, 2010) and the read count was processed by
quantile normalization method using EdgeR within R (Team, R
Core, 2016). Functional genes were classified by DAVID (http://
david.abcc.ncifcrf.gov/) and Medline databases (http://www.
ncbi.nlm.nih.gov/). Pathway analysis was performed by
Ingenuity Pathway Analysis (Qiagen Inc., https://www.
qiagenbioinformatics.com/products/ingenuitypathway-analysis)
(Krämer et al., 2013).

Quantification of Gene Expression
RNA-Seq data was validated by RT-qPCR and the correlationa
coefficient between the two analyses was 0.9024 (Supplementary
Figure 1). cDNA was synthesized using a QuantiNova Reverse
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Transcription Kit (Qiagen), and RT-qPCR was performed using
a Rotor-Gene SYBR Green PCR kit (Qiagen). The genes were
amplified with a Rotor-Gene Q real-time PCR cycler (Qiagen).
Amplification conditions were described in Supplementary
Table 1. The gene expression levels were determined via the
2−DDCt method with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as a reference gene. The fold change was determined
based on the relative gene expression level compared to
the control.

Caspase Activity Assay
Canine monocyte-derived macrophages were stimulated withM.
avium at an MOI of 1:1 for 6, 12, and 24 h. Caspase activity was
monitored by measuring the active forms of caspase 3 and
caspase 7 with the Caspase-Glo® 3/7 Assay System (Promega,
WI, USA) according to the manufacturer’s protocol. To identify
the activity of caspases after the induction of apoptosis, cells were
treated with hydrogen peroxide (H2O2) for 30 min before 24 h of
infection with M. avium, which is known to stimulate caspase
activity (Jones et al., 2000; Kabara and Coussens, 2012).
Treatment with 100 µm H2O2 for 30 min was used based on
time course and dose–response curve studies with uninfected
MDMs. Each group was assayed with additional control samples,
including cell medium, reagent, M. avium and negative control
to calculate the RLU values.

Invasion and Proliferation Assay
Bacterial invasion assays with canine monocyte-derived
macrophages were performed as described by Bermudez and
Sangari (Bermudez and Young, 1994; Sangari et al., 2000). Canine
monocyte-derived macrophages were infected for 2 h with M.
avium at an MOI of one. After centrifugation at 400 × g for
5 min, the cells were washed with DPBS and treated with
amikacin at a concentration of 200 µg/ml for 2 h to kill
extracellular bacteria (Bermudez and Young, 1994; Sangari et al.,
2000). The cells were incubated for 4, 12, and 24 h, after which they
were washed, and the viable intracellular bacteria were released by
incubation after treatment of 1% Triton X-100 (Sigma-Aldrich,
MO, USA). Then, the samples were vigorously vortexed and
agitated for 30 s to lyse cells. Bacteria were serially diluted and
then plated onto 7H11 agar plates to enumerate viable bacteria.

Quantification of Cytokines
Canine IL-17, IL-6, IL-10, IL-12, IL-4, IL-1b, and IFN-g were
detected in the supernatants of canine peripheral blood
mononuclear cells at 24 h post M. avium infection using DuoSet®

and Quantikine® ELISA kits (R&D Systems, Minneapolis, MN,
USA), according to the manufacturer’s instruction.

Statistical Analysis
Statistical significance was analyzed by Student’s t-test using
GraphPad Prism version 7.00 (Windows, GraphPad Software, La
Jolla California USA, www.graphpad.com). Significantly
expressed genes were determined at p <0.05. Fold changes are
represented by the mean ratio of gene expression in M. avium-
infected cells/uninfected cells.
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RESULTS

Characterization of Canine Immune
Responses Against Mycobacterium avium
Infection by Differentially Expressed Genes
The transcriptomes of canine PBMCs infected withM. avium for
0, 6, 12, and 24 h were analyzed by RNA-Seq. Sixteen cDNA
libraries from uninfected and M. avium-infected cells were
sequenced. Approximately 92.87% of clean reads were uniquely
mapped onto the canFam 3. A total of 3,366 differentially
expressed genes (DEGs) were significantly expressed in canine
PBMCs-infected with M. avium compared to the uninfected
group (|fold change| ≥ 2.0, normalized data (log2) = 4, p-value
<0.05). The DEGs from the cells infected with M. avium for 6
and 12 h clustered, while those from cells infected for 24 h were
separated from the other groups (Figure 1A). Most DEGs
belonged to the GO term categories immune response and
inflammatory response compared with 0 h-infection. The
percentage of significant DEGs-annotated immune response in
the groups infected for 6, 12, and 24 h were 10.57, 13.58 and
4.91%, respectively. The percentage of inflammatory response
was 11.66, 17.94, and 12.11% at 6, 12, and 24 h.p.i (Figure 1B).

The comparison analysis of canonical pathways showed
that signaling pathways were expressed in relation to cellular
immune responses against M. avium infection (Table 1). The
pathways related to the Th1 response (HMGB1 Signaling,
Neuroinflammation Signaling pathway, TREM1 Signaling,
MIF-mediated Glucocorticoid Regulation, Dendritic Cell
Maturation, and Type I Diabetes Mellitus Signaling) were
activated at 6, 12 and 24 h after M. avium infection. The Th17
response-related pathways (IL-6 Signaling, IL-23 Signaling
Pathway, Role of IL-17F in Allergic Inflammatory Airway
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Diseases, Th17 Activation Pathway, LXR/RXR Activation, and
PPAR Signaling) were commonly expressed at all infection times.
Molecules associated with the inhibition of apoptosis were
expressed in the pathways Small Cell Lung Cancer Signaling, B
Cell Receptor Signaling, and Interferon Signaling.

Proinflammatory cytokines and molecules related to Th1
cells (TNF-a, IL-8, IFN-g, IL-1b, TREM1, and PTGS2)
were upregulated in the pathways HMGB1 Signaling,
Neuroinflammation Signaling Pathway, TREM1 Signaling,
A B

FIGURE 1 | Gene expression analysis of canine peripheral blood mononuclear cells infected with Mycobacterium avium at 0, 6, 12, and 24 h post infection.
(A) Clustering analysis and (B) GO analysis of DEGs in M. avium infected-canine PBMCs (|Fold change| ≥ 2.0, normalized data (log2) = 4, p-value <0.05).
TABLE 1 | Comparison analysis of canonical pathways in Mycobacterium
avium-infected canine peripheral blood mononuclear cells at 0, 6, 12, and 24 h.

Canonical Pathways 0h 6h 12h 24h

PPAR Signaling 1.633 −4.747 −3.651 −2.058
Dendritic Cell Maturation −1.569 4.529 3.452 1.414
TREM1 Signaling −1.265 3.71 3.578 2.353
LXR/RXR Activation 1 −1.897 −3.053 −3.742
Th17 Activation Pathway −0.333 3.71 3.441 2.117
IL-6 Signaling −0.378 3.781 3.124 2.271
Role of IL-17F in Allergic Inflammatory
Airway Diseases

−0.447 3 3.051 2.673

Neuroinflammation Signaling Pathway 0.707 4.906 2.252 1.27
HMGB1 Signaling 1 2.92 3.413 1.718
Phospholipase C Signaling 1.961 2.197 2.694 −1.414
Type I Diabetes Mellitus Signaling 0.447 2.746 2.5 2.5
Interferon Signaling – 3 2.714 2
Osteoarthritis Pathway −0.756 4.025 2.449 −0.471
Cardiac Hypertrophy Signaling (Enhanced) −0.367 3.763 2.251 −1.315
Small Cell Lung Cancer Signaling 0.816 2.121 2.121 2.53
Colorectal Cancer Metastasis Signaling −0.174 2.219 2.546 −2.458
IL-23 Signaling Pathway −0.378 1.941 2.138 2.828
B Cell Receptor Signaling 1.89 2.121 2.694 0.507
Synaptogenesis Signaling Pathway 1.622 1.021 0.289 −4.249
MIF-mediated Glucocorticoid Regulation 1.134 2.309 2.714 1
January 2
021 | Vo
lume 10
 | Article
Canonical pathways are indicated with the z-score from the pathway activation analysis.
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Type I Diabetes Mel l i tus Signal ing, MIF-mediated
Glucocorticoid Regulation, and Dendritic Cell Maturation after
6, 12, and 24 h post infection. Molecules related to the Th17
immune responses (IL-6, IL-23, IL-17A, IL-17F, RORgT, and
IL22) were also commonly upregulated in the following signaling
pathways; IL-6 Signaling, IL-23 Signaling Pathway, Role of IL-
17F in Allergic Inflammatory Airway Diseases, and Th17
Activation Pathway. PPARG, RXRA, NR1H3, and NR1H4, as
nuclear receptors that affect the inhibition of Th17
differentiation, were downregulated in the pathways LXR/RXR
Activation and PPAR Signaling. In the Small Cell Lung Cancer
Signaling pathway, the molecules BIRC2, BCL2L1, and TRAF,
which were commonly upregulated at 6, 12, and 24 h, were
associated with the inhibition of apoptosis. In relation to
apoptosis inhibition, IFI6 of Interferon Signaling and
molecules-related to the PI3K/AKT pathways of B Cell
Receptor Signaling were commonly upregulated at 6, 12,
and 24 h.

Activation of Signaling Pathways Related
to the Cellular Immune Response Against
Mycobacterium avium Infection
The top 20 canonical pathways showed that canine immune
responses changed over time in response to M. avium infection.
Significant signaling pathways [–log(p – value) ≥ 1.3] were
related to both the Th1 and Th17 responses at 6 and 12 h,
while pathways at 24 h were related to the Th17 immune
response. Then, after 6 h of M. avium infection, Th1 cell-
related pathways (HMGB1 Signaling, Acute Phase Response
Signaling, and NF-kB Signaling) were activated. In addition,
Th17 immune response-related pathways (LXR/RXR Activation,
Role of Macrophages, Fibroblasts ad Endothelial Cells in
Rheumatoid Arthritis, IL-6 Signaling, STAT3 Signaling, LPS/
IL-1 Mediated Inhibition of RXR Function, and PPAR Signaling)
were also activated (Supplementary Table 2).

In canine PBMCs infected with M. avium for 12 h, signaling
pathways related to Th1 immune responses were activated
(HMGB1 Signaling, Acute Phase Response Signaling, Role of
Pattern Recognition Receptors in Recognition of Bacteria and
Viruses, Toll-like Receptor Signaling, and Hepatic Fibrosis/
Hepatic Stellate Cell Activation). In addition, Th17 cell
response-related signaling pathways (The pathways Role of
Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid
Arthritis, IL-6 Signaling, Differential Regulation of Cytokine
Production in Macrophages and T Helper Cells by IL-17A and
IL-17F, Role of Hypercytokinemia/hyperchemokinemia in the
Pathogenesis of Influenza, Role of Osteoblasts, Osteoclasts and
Chondrocytes in Rheumatoid Arthritis, Altered T Cell and B Cell
Signaling in Rheumatoid Arthritis, LXR/RXR Activation, and
Differential Regulation of Cytokine Production in Intestinal
Epithelial Cells by IL-17A and IL-17F) were also activated
(Supplementary Table 3).

Signaling pathways expressed at 24 h post infection were
associated with the Th17 immune response. In addition, the
pathways related to Th17 immune response (Role of Osteoblasts,
Osteoclasts and Chondrocytes in Rheumatoid Arthritis, Role of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid
Arthritis, Differential Regulation of Cytokine Production in
Macrophages and T Helper Cells by IL-17A and IL-17F,
Colorectal Cancer Metastasis Signaling, Differential Regulation
of Cytokine Production in Intestinal Epithelial Cells by IL-17A
and IL-17F, Role of Cytokines in Mediating Communication
between Immune Cells, and Role of Hypercytokinemia/
hyperchemokinemia in the Pathogenesis of Influenza) were
activated. Furthermore, signaling pathways related to apoptosis
(LXR/RXR Activation, LPS/IL-1 Mediated Inhibition of RXR
Function, and FXR/RXR Activation) were inhibited in the canine
PBMCs infected with M. avium for 24 h (Supplementary
Table 4).

Increase of Th17-Related Molecules
in Canine Peripheral Blood Mononuclear
Cells Infected With Mycobacterium avium
Among the Th17-related signaling pathways, ‘Th17 Activation
Pathway’ and ‘Differential Regulation of Cytokine Production in
Macrophages and T Helper Cells by IL17A and IL17F’ were
commonly activated in canine PBMCs at all times of infection
(Figures 2A, B). In particular, the molecules associated with
Th17 immune responses (CSF2, IL22, IL17A, and IL17F) were
highly expressed in the Th17 Activation pathway after 24 h.p.i.
(Supplementary Table 5). Regarding Differential Regulation of
Cytokine Production in Macrophages and T Helper Cells by
IL17A and IL17F, the molecules (CCL3, CCL4, CSF2, CSF3,
IL17A, and IL17F) were activated after 24 h.p.i. (Supplementary
Table 6). The key genes of Th17 pathways including
transcription factors (RORC and RORA), chemokine (CCR6),
cytokines (IL-17A, IL-17F, and IL-23R) were increased after time
of M. avium infection (Figure 2C).

The patterns of cytokines observed by gene expression
analysis in canine PBMCs showed they were related to the Th1
and Th17 immune responses. The expression of genes related to
Th1-related cytokines (TNF-a, IFN-g, and IL-12p35) and Th17-
related cytokines (IL-23 and IL-6) were significantly increased in
canine PBMCs after 6 h post infection. The expression of genes
related to Th2-related cytokines (IL-4 and IL-13) and Treg-
related cytokines (IL-10) were slightly increased at 12 h, while
Th17-related cytokines (IL-1b and IL-17) were highly increased
(Fold change; 107.05 ± 7.12 and 73.37 ± 2.04) at that time
(Figure 3). The quantification of cytokines (IL-17, IL-1b, IL-6,
IL-10, IL-4, IL-12, and IFN-g) was measured by ELISA from
supernatant of canine PBMCs infected with M. avium
(Supplementary Figure 2). The results also showed that IL-17
and IL-1b were highly expressed (concentration; 4642.87 ±
604.14 pg/ml and 1566.33 ± 252.73 pg/ml) at 24 h.p.i.

Inactivation of Apoptosis Signaling
and Intracellular Replication
of Mycobacterium avium in Infected Cells
Apoptosis signaling was inhibited in canine PBMCs after 6, 12,
and 24 h post infection (z-score = −.0.408, −1.043, and −1.633).
In particular, the BAX-CYCS-CASP9-CASP3/CASP7 pathways
were inactivated after 24 h.p.i. (Figure 4). Regarding the mRNA
January 2021 | Volume 10 | Article 609712
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hway analysis of ‘Th17 Activation Pathway’ at 12 h.p.i. and
ent proteins with relationships represented by edges. The genes shown
genes were not differentially expressed in this pathway. (C) Gene
fold-change in canine PBMCs infected with M. avium. mRNA
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FIGURE 2 | Activation of Th17 pathways in canine peripheral blood mononuclear cells infected with Mycobacterium avium. (A) Ingenuity pat
(B) ‘Differential Regulation of Cytokine Production in Macrophages and T Helper Cells by IL17A and IL17F’ at 24 h.p.i. Individual nodes repres
in red indicate upregulation, green indicates downregulation, orange indicates predicted activation, and an uncolored node indicates that the
expression levels of Th17 pathways during M. avium infection. RORC, RORA, IL-17A, IL-17F, IL-23R, and CCR6 were indicated by an mRNA
expression in uninfected cells at 0 h was considered 1 as a reference for fold-change in expression. *p < 0.05 and ***p < 0.001.
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abundance for genes in this pathway, caspase 3, caspase 8, caspase 9,
and bax were increased until 12 h.p.i.; however, they were
downregulated after that time (Figure 5A). The activities of
caspase 3/7 in canine monocyte-derived macrophages (MDMs)
infected with M. avium decreased slightly over the course of
infection compared to the uninfected cells (Figure 5B). To
determine whether M. avium was affected by the apoptosis of
macrophages, we measured the activities of caspase 3/7 after
induction of apoptosis with H2O2. Both MDMs infected with M.
avium afterH2O2 treatment andM.avium-infectedMDMswithout
H2O2 showed they lowered the activities of caspase3/7 compared to
the uninfected cells treated with H2O2 (Figure 5C). Cell invasion
was measured by enumerating intracellular bacteria after amikacin
treatment to kill extracellular bacteria. M. avium replicated in
canine MDMs after invasion (Figure 5D), where the percentage
of intracellular M. avium was 26.5 ± 3% in canine MDMs after
4 h.p.i. After invasion, the number of intracellular M. avium
significantly increased in canine MDMs (p < 0.001) after 24 h
post infection. The number of intracellulare M. avium was
shown in Supplementary Figure 3 (4 h; 26,450 ± 3,256 CFU/ml,
12 h; 11,800 ± 3,527 CFU/ml, and 24 h; 17,955 ± 1,542 CFU/ml).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
DISCUSSION

As the global incidence of non-tuberculous mycobacterial
infection increases, Mycobacterium avium complex (MAC)
organisms have been increasingly isolated from various hosts
(Inderlied et al., 1993; Martı ́n-Casabona et al., 2004). In
particular, M. avium, which causes chronic pulmonary disease,
has been isolated from several mammals (Huchzermeyer and
Michel, 2001). M. avium infection has been reported in a
wide range of animals, including companion dogs and cats
(Pavlik et al., 2000; Campora et al., 2011). Disseminated
M. avium infection in dogs has been consistently reported, and
most cases report granulomatous inflammation in infected
organs (Horn et al., 2000; Campora et al., 2011; Lam et al.,
2012; Kim et al., 2016; Ghielmetti and Giger, 2020). As the
number of cases of M. avium infection in dog increases,
understanding the mechanisms of M. avium infection is
necessary to prevent potential mycobacterial infection. In the
present study, we analyzed host immune responses against M.
avium infection in canine peripheral blood mononuclear cells by
transcriptome analysis.
FIGURE 3 | Different cytokine mRNA expression in Mycobacterium avium-infected canine peripheral blood mononuclear cells. Quantification of the cytokines
IL12p35, IFN-g, and TNF-a (Th1-type), IL-4, and IL-13 (Th2-type), IL-1b, IL-6, IL-17, and IL-23 (Th17-type), and IL-10 and TGF-ß (T regulatory-type), as indicated by
an mRNA fold-change in canine PBMCs infected with M. avium. Cytokine mRNA expression in uninfected cells at 0 h was considered 1 as a reference for fold-
change in expression. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Transcriptomic analysis of canine immune responses to M.
avium showed that they were related to the activation of the Th1
and Th17 immune responses and the inhibition of apoptosis.
The hierarchical clustering analysis showed that these immune
responses were clustered depending on the time of infection. At
an early time of infection, both Th1 and Th17 immune responses
were activated, while signaling pathways expressed at 24 h were
associated with the Th17 immune response. An analysis of
signaling pathways also showed that they were related to the
inhibition of apoptosis.

T cell immunity regulates pulmonary M. avium infection,
with Th1 and Th17 responses being particularly essential during
M. avium infection (Matsuyama et al., 2014). Th1 immune
responses play a critical role in mycobactericidal activities early
during an infection. Th1 responses are important for the
clearance of mycobacteria through the production of cytokines
(Patel et al., 2005; Thegerström et al., 2012). IFN-g inhibits
mycobacterial growth by IFN regulatory factors induced by
infection (Vila-del Sol et al., 2008). TNF-a plays a key role in
increasing host resistance toMycobacterium infection during the
Th1 response (Keane et al., 2001). In the present study,
commonly expressed signaling pathways showed that Th1
immune response-related molecules (TNF-a, IL-8, IFN-g, IL-
1b, TREM1, and PTGS2) were activated. Furthermore, the
observed abundances of mRNA related to T cell responses also
indicated Th1 cell-related molecules (TNF-a and IFN-g) were
significantly activated early in an infection.

Th17 cells play a role in antimycobacterial immunity to
mycobacterial infections, accelerating the accumulation of Th1
cells (Gopal et al., 2012). IL-23, IL-6, and IL-1b produced by
antigen presenting cells induce the Th17 pathway (Shu et al.,
2018). Th17 lineage cytokines (IL-17A, IL-17F, and IL-22) and
chemokines (CXCL1, CXCL2, CXCL5, and CXCL8) are known
to control chronic lung infection caused by mycobacteria
(Busman-Sahay et al., 2015; Lombard et al., 2016; Shu et al.,
2018). In particular, IL-17 promotes the migration of neutrophils
to the inflamed sites for the early clearance of bacteria by
inducing the production of the chemokines CXCL1 and
CXCL5 (Shen and Chen, 2018). In the present study, the
expression of Th17-related mRNA showed that IL-23 and IL-6
were significantly activated early during infection, while IL-1b
and IL-17 were highly activated after 6 h post infection.
Comparison analysis showed that IL-6, IL-23, IL-17A, IL-17F,
RORgT, and IL-22 were commonly activated in Th17-related
signaling pathways.

In the Th1-diminished condition, IL-17 from Th17 cells is
essential for inducing mature granuloma formation according to
the Th17 cell immune response balance (Yoshida et al., 2010). In
the present study, CSF2, CSF3, IL-22, IL-17A, IL-17F, CCL3, and
CCL4 were significantly activated after 24 h.p.i. in the ‘Th17
Activation Pathway’ and ‘Differential Regulation of Cytokine
Production in Macrophages and T Helper Cells by IL17A and
IL17F’ pathways. Cytokine analysis also showed IL-17 and IL-1b
were highly expressed compared to other cytokines at 24 h.p.i.
IL-17 is also known to inhibit the apoptosis of Mycobacterium-
infected macrophages to promote intracellular growth (Vázquez
FI

G
U
R
E
4
|
In
ge

nu
ity

pa
th
w
ay

an
al
ys
is
of

‘A
po

pt
os

is
S
ig
na

lin
g’

in
M
yc
ob

ac
te
riu

m
av
iu
m
-in

fe
ct
ed

ca
ni
ne

pe
rip

he
ra
lb

lo
od

m
on

on
uc

le
ar

ce
lls

fo
r
6,

12
,a

nd
24

h.
In
di
vi
du

al
no

de
s
re
pr
es
en

t
pr
ot
ei
ns

w
ith

re
la
tio

ns
hi
ps

re
pr
es
en

te
d
by

ed
ge

s.
Th

e
ge

ne
s
sh

ow
n
in

re
d
in
di
ca

te
up

re
gu

la
tio

n,
gr
ee

n
in
di
ca

te
s
do

w
nr
eg

ul
at
io
n,

or
an

ge
in
di
ca

te
s
pr
ed

ic
te
d
ac

tiv
at
io
n,

bl
ue

in
di
ca

te
s
pr
ed

ic
te
d
in
hi
bi
tio

n,
an

d
an

un
co

lo
re
d

no
de

in
di
ca

te
s
th
at

th
e
ge

ne
s
w
er
e
no

t
di
ffe
re
nt
ia
lly

ex
pr
es
se
d
in

th
is
pa

th
w
ay
.

January 2021 | Volume 10 | Article 609712

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kim et al. Immune Response in M. avium-Infected Dog
et al., 2012; Cruz et al., 2015a). In these studies, IL-17A was
reported to inhibit p53 of the intrinsic apoptotic pathway by
increasing BCL2 levels and decreasing BAX expression, CASP 3
activity, and cytochrome c release. Apoptosis is a bactericidal
mechanism in infected host cells; however, Mycobacterium
survives and replicates within macrophages by preventing
apoptosis through several mechanisms (Rojas et al., 1998;
Chen et al., 2006; O’Sullivan et al., 2007). In particular, M.
avium was recently reported to inhibit bacterial programmed cell
death induced by both the extrinsic pathway though caspase 8
and the intrinsic apoptotic pathway through caspase 3 (Sharbati
et al., 2011; Kabara and Coussens, 2012).

In the analysis of signaling pathways, apoptosis signaling was
inhibited at all times of infection. The BAX-CYCS-CASP9-CASP3/
CASP7 signaling pathway was particularly inhibited at 24 h. The
abundance of caspase 3, caspase8, caspase9, and bax after 24 h was
also downregulated in the observed gene expression profiles.
Furthermore, the activity of caspase 3/7 decreased over time in
canine monocyte-derivedmacrophages infected withM. avium. In
addition, M. avium were internalized into macrophages (26.5%),
and the number of intracellular M. avium cells was significantly
increased during infection over time. These results may indicate
that M. avium replicates in canine macrophages by preventing
apoptosis. However, caspase activity was not significantly down
regulated and genes related to apoptosis signalingwere significantly
increased at the early time of infection, although they were
decreased compared to that observed in uninfected cells after
24 h. Therefore, additional studies are needed to elucidate the
mechanism of apoptosis inhibition after latentM. avium infection.

Although M. avium infection in dogs has increased, canine
immune responses to M. avium have not been studied. In the
present study, transcriptome analysis results showed that canine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
peripheral bloodmononuclear cells expressed genes associatedwith
the activation of the Th1 and Th17 responses and the inhibition of
apoptosis in response to M. avium infection. In addition,
intracellular M. avium cells were observed to replicate in canine
monocyte-derived macrophages. These results could be related to
the case reports of M. avium-infected dogs that showed
granulomatous inflammation in infected tissues. These results
might reveal why M. avium infection in dogs has continuously
been reported although they are known to be resistant to members
of theMycobacterium avium complex. However, additional studies
are needed to assess whether M. avium inhibits apoptosis and
induces the proliferation of Th17 cells during long-term infections.
Nevertheless, the results of our present studywill help to identify the
host responses againstM. avium in various species and understand
the immune response towardM. avium in infected dogs.
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PBMCs. Quantification of mRNA related to apoptosis, as represented by an mRNA fold-change in canine PBMCs infected with M. avium. The mRNA expression in
noninfected cells at 0 h was considered 1 as a reference for the fold-change in expression. (B) Caspase 3/7 activity in canine monocyte-derived macrophages
infected with M. avium. The fold-change was calculated between the cells infected with and without M. avium. (C) Caspase 3/7 activity in M. avium-infected MDMs
with or without apoptosis induction. The fold-change was calculated between the M. avium-infected cells treated with or without 100m H2O2 and the apoptosis-
induced cells. (D) The invasion and replication ability of M. avium in canine monocyte-derived macrophages. Graph showing the percentage of intracellular M. avium
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