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Introduction
Melanoma incidence is rising worldwide. In the Netherlands, 
the incidence per 100,000 went up from 12.8 in 2001 to 
19.7 in 2011 (world-standardized rate) and mortality increased 
by 44%.1 Worldwide, over 55,000 people died from melanoma 
in the year 2012.2 Most melanoma patients are diagnosed 
with local disease and treated with resection of the primary 
tumor only. Most of these patients are then cured, but about 
15% will develop one or more recurrences.3 Until a few years 
ago, treatment options for (distant) metastatic melanoma were 
limited, and three‐year overall survival (OS) was only about 
15%.4 In the past few years, the number of treatment options 
for metastatic melanoma has increased with immunothera-
peutic drugs such as ipilimumab and nivolumab and targeted 
drugs such as BRAF and MEK inhibitors. These expensive 
drugs greatly improve survival for subgroups of patients, but 
in view of the limited funds available, cost‐effectiveness needs 

to be evaluated.5–7 In addition, expensive forms of diagnostics  
such as next-generation sequencing and FDG‐PET‐CT are 
becoming available. It is important to evaluate whether it 
would be cost‐effective to include these diagnostics in the care 
for melanoma and whether the timing of their use in the dis-
ease process may be optimized.

To evaluate cost‐effectiveness in cancer, Markov‐type 
mathematical models are often used.8–11 Health states in 
these models are usually based on the observed clinical states. 
In  cancer treatment, these are primary tumor, local and 
regional recurrence, distant metastasis, and death.12–15 The 
times at which patients remain in these states are equivalent 
to  recurrence-free survival (RFS), distant recurrence-free sur-
vival (DRFS), progression-free survival (PFS), disease-specific 
survival (DSS), and OS. Times at which clinical states are 
observed, however, largely depend on the timing of examina-
tions and the choice of diagnostic tests.
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Most cost‐effectiveness models in oncology do not attempt 
to model the whole disease and care pathway, but only com-
pare interventions within a single-treatment line. When a new 
treatment is evaluated, the surveillance schedule, imaging tech-
niques, and other tests are kept same. If one of these change, 
the model would need to be redone. A  better solution would be 
to construct a model of  underlying disease including an overlay 
of diagnostic testing that can be applied at adjustable intervals. 
Such models already exist for another aspect of cancer care, 
namely, screening.16–19 These models simulate the underlying 
tumor growth or their precursors and interact with the screen-
ing models, in which frequency and timing of testing, test char-
acteristics, and follow‐up procedures are specified. However, 
such  models do not exist for disease progression and care after 
 diagnosis. Although models including the whole cancer treat-
ment pathway exist,20,21 a description of the underlying disease 
is required to investigate the full impact of new diagnostics, 
treatments, follow‐up, and downstream treatment effects. For 
recurrence and surveillance of colorectal cancer (CRC), a mod-
eling approach roughly comparable with the approaches used in 
cancer screening has been applied by Rose et al.22

For melanoma, we present in this study the development of 
a framework based on underlying tumor growth;  MAICare – 
an acronym for “Microsimulation for the Assessment of 
 Individualized Cancer Care”. The model allows for studying 
the effects of altering complex patterns of care in melanoma. 
We describe the structure and the required parameters of 
the model, the underlying assumptions, and the calibration 
procedure. Finally, we present the results of a first calibration 
of the model using the available Dutch and  German data.

Methods
Model framework. We developed a microsimulation 

framework to simulate the progression of melanoma. Essen-
tially, health trajectories of individual melanoma patients are 
simulated from first diagnosis until death. The framework 
is structured in such a way that it can be adjusted to differ-
ent treatments, altered surveillance schemes, and new diag-
nostics. It consists of two components, namely, the disease 
model and the clinical management module (Fig. 1). The 
model has been coded in C++ and has a Microsoft Excel 
user interface.
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Figure 1. structure of the model framework. the model consists of two components, a disease model and a clinical management module. the disease 
is modeled at two levels, including the level of the tumor and the level of the patient. the tumor level describes the progression of disease, the patient 
level, the clinical observed states, and the quality of life. the clinical management module consists of the interventions in the disease process, consisting 
of diagnostic techniques, treatments, and surveillance strategies.
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Disease model. The disease model is composed of two levels: 
the tumor level and the patient level. The tumor level describes 
underlying, and often unobservable, tumor growth and metas-
tasis. The patient level contains clinically observable events 
such as recurrence of disease, progression, and death. The for-
mer level is nested within the patient level, and the two levels 
of the disease model interact. For example, size and location at 
the tumor level influence the chance to become symptomatic 
and, as such, be diagnosed with recurrent disease.

Tumor level. Tumor growth is largely unobservable, but 
increasingly more is known about the process of growth, pro-
gression, and metastasis. We modeled tumor growth accord-
ing to the current theory of rate‐limiting steps (Fig. 2).23–27 
Tumor growth is simulated via three Markov chains, indicat-
ing recurrence on the local recurrence site, on regional sites, 
and progression and metastasis on distant sites, in agree-
ment with the TNM staging classification.4 Local recurrence 
denotes the growth of a tumor within 4 cm of the primary 
tumor. Regional recurrence indicates the growth of one or 
more metastases in the regional lymph nodes. Distant recur-
rence indicates the growth of one or more metastases at dis-
tant sites and/or organs. Growth of tumors on local, regional, 
and distant recurrence sites are simulated in parallel.

Each Markov chain consists of the tumor growth states 
as follows: absent, dormant, micro, and macro. The absent state 
represents no tumor; the dormant state represents no demon-
strable tumor, but circulating tumor cells; the micro state repre-

sents a small tumor without any vascularization (,2 mm); and 
the macro state represents a larger tumor with vascularization. 
To account for the fact that tumor detectability by imaging 
techniques depends on size, the macro state was divided into 
three sub states, ie, macro small (2–5 mm), medium (5–8 mm), 
and large (.8 mm). In time, a growing macro tumor will 
become symptomatic, also in the absence of diagnostic testing. 
Therefore, an additional tumor state was added, namely,  
macro symptomatic.

State transitions on the tumor level take place as follows. 
After initial diagnosis and treatment, there is the probability 
that a patient is cured from the disease. In that case, the three 
tumor chains are set to absent. If the patient is not (entirely) 
cured by treatment, the starting states of the tumor chains are 
drawn. There are four options such as follows: dormant on all 
three chains, and micro on one of the three chains while the 
remaining two chains are set to dormant. That is, at most on 
one chain, a micro tumor remains after treatment. Once the 
starting states for the tumor growth chains have been drawn, 
growth is simulated by a survival function. Parameters in the 
function are current tumor growth state, phase of disease 
(with the values stage I, stage II, stage III, local recurrence, and 
regional recurrence), and optionally additional patient features 
(see Appendix 1). Each transition between two tumor growth 
states is determined by a new random draw, and we assume 
that there is no correlation between transition times within or 
between chains. After each recurrence and treatment for this 
recurrence, the simulation of tumor growth is repeated.

Patient level. The patient level of the disease model con-
sists of the clinical disease phases that are used in practice to 
describe the extent and progression of disease in an individual 
patient. For melanoma, like in most cancer types, these are 
staged at initial diagnosis, ie, stages I, II, III, and IV, recur-
rence, ie, local, loco‐regional, regional recurrence, and distant 
metastasis. In addition to the clinical disease phase, a patient 
has additional features, namely, sex, age, and WHO perfor-
mance score.28 These features may influence the tumor growth 
rate on the tumor level. Transitions on the patient level occur 
only indirectly, namely, when a growing tumor has become 
symptomatic or when tumor growth has been detected during 
surveillance in the clinical management module.

The final end point in the model is death. Death due to 
melanoma can occur only in patients with metastatic  disease. 
From the moment of detection of a tumor on the distant 
chain, either by surveillance or by symptoms, time to death is 
drawn based on prognostic factors such as sex and age at diag-
nosis. The timing of death due to other causes is drawn, for 
each patient, at the start of the simulation. Death due to other 
causes depends on sex and age and is based on death rates 
 published by Statistics Netherlands.29 The simulated patient 
dies from the death cause that comes first in the model.

Note that there is no health state for cure of disease in the 
model. Patients may be classified as cured of disease, retro-
spectively, if there has been no recurrent disease after treatment 
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Figure 2. The simulation cycle. Patients enter the model at first 
diagnosis, they then undergo additional diagnostic testing. If necessary, 
the stage is adjusted, and a treatment is selected and applied. this 
process is either completely successful, ie, all tumors and metastases 
have been detected and successfully treated, all tumor growth states 
are set to absent, and no tumor growth ensues. or a metastasis 
is missed during the diagnostic process and/or a treatment is not 
completely successful, at least one tumor chain is set to the dormant 
or higher state and tumor growth ensues. at set intervals, surveillance 
has place, which entails the types of diagnostic tests that are done and 
their detection rates. this results in either detection of a recurrence, 
or no detection, after which tumor growth proceeds. If a tumor grows 
but remains undetected during surveillance, it will eventually become 
symptomatic and a recurrence is registered. after a recurrence has 
been registered, the cycle restarts. Patients undergo further diagnostic 
tests and receive treatment, and a surveillance strategy is applied.
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during the remaining lifetime. Furthermore, note that by 
using this definition of cure of disease, the proportion of cured 
patients does not correspond with the proportion of individuals 
for whom all three tumor growth chains have been reset to the 
absent state after treatment. After all, a patient in whom the 
tumor growth states have been set to dormant after treatment 
may not experience a recurrence within their lifetime.

clinical management module. The clinical management 
module consists of a diagnostics, treatment, and surveillance 
segment. In contrast to the disease model, parameters and 
schedules in the clinical management module can be changed 
by the ones used to simulate different healthcare scenarios.

Diagnostics. The diagnostic segment specifies which diag-
nostic tests are used and at which time point. It includes a list 
of possible diagnostic techniques such as physical examination, 
imaging techniques, and sentinel lymph node biopsy (SLNB). 
Each test has detection and miss rates specific to each tumor 
growth state and recurrence site on the tumor level. These 
rates are based on the values found in the literature.30–34

Treatment. Different types of treatment (surgery, radio-
therapy, and drug therapy) can be specified in the model, as 
well as decision rules that govern the choice of treatment for 
a specific patient. As a result of treatment, the three tumor 
chains are (re)set. Resetting each chain is done according 
to a probability distribution that specifies the proportion 
of patients who transition to the absent or dormant state, or 
remain in an active (micro) state for each relevant treatment 
choice. For an individual, we denote the resulting set of states 
for the three tumor chains as the tumor starting state distribu­
tion. Once the starting states after treatment have been drawn, 
growth is simulated.

In addition to influencing the tumor starting state distri-
bution, treatment choice may influence the tumor growth rate, 
ie, the rate of transitioning between consecutive tumor growth 
states. This influence takes the form of a hazard ratio (HR) that 
is added to the parametric time‐to‐event function, as described 
in Appendix 1. At present, care (and the corresponding dis-
ease progression) according to the current clinical guidelines 
is assumed in the model. That is, the HR for treatment in the 
time‐to‐event functions describing tumor growth is currently 
set to 1, indicating that current care is the reference strategy. 
To evaluate the comparative (cost‐)effectiveness of an alterna-
tive treatment choice for a specific patient population, the HR 
relative to current care for that population is to be specified.

Surveillance. The surveillance segment specifies the 
decision rules that describe which test is applied when (see 
Appendix 2). A typical surveillance strategy states the time 
points at which surveillance takes place, the total number of 
surveillance visits planned, and the tests performed during 
surveillance. These strategies are specified separately for stage 
IA, stages IB–IIC, stage III, local recurrence, and regional 
recurrence, because guidelines and clinical practice data indi-
cate that different intervals for surveillance visits and different 
diagnostic tests are used for different stages of the disease.

The detection of recurrent tumors that are present at 
the tumor level causes a transition in the health state of the 
individual at the patient level, with the particular health 
state depending on the site(s) of recurrent tumor(s). After 
initial detection of the recurrent tumor, further diagnos-
tic testing and treatment for the recurrence or metastasis is 
initiated. The treatment upon detection of recurrence may 
be specified as a function of site of recurrence, previously 
administered treatments, and other features of the patient 
or the tumor, such as age, performance status, and genetic 
mutations. It is possible to specify the proportion of patients 
who refrain from treatment after the detection of a recur-
rence. This proportion may differ depending on the number 
of past treatments.

Simulation cycle. Figure 2 depicts the simulation cycle, 
illustrating the order of the different simulation steps. Below 
we describe the clinical management module, with the rel-
evant assumptions, inputs, and the output.
1. Patients enter the model at first diagnosis. A patient is 

generated by drawing sex, age, stage, and additional stage-
specific characteristics such as presence of ulceration, 
according to (conditional) probabilities that are directly 
taken from routinely collected data from the Dutch cancer 
registry. Using data from Statistics Netherlands, time to 
death due to other causes is drawn, conditional upon sex 
and age at diagnosis.

2. Based on the patient characteristics, further diagnostic 
tests are selected, for example, like SLNB, and a treat-
ment is assigned. Based on the test results and treatment, 
the starting states of the local, regional, and distant chain 
on the tumor level are drawn.

3. Subsequently, at the tumor level, tumor growth is simu-
lated from the starting states drawn in the previous step, 
taking the impact of the choice of treatment on the 
tumor growth rates into account. There are two options 
as follows.
a. All three chains are in the absent state: No growth is 

simulated. The only transition to occur is death due 
to other causes (drawn during step 1).

b. The three chains are all in the dormant state or one 
of the three chains is in the micro tumor growth 
state. Growth is simulated based on the tumor 
growth model.

4. Based on the phase and the chosen treatment, a sur-
veillance schedule is selected, in agreement with the 
Dutch guidelines. At each scheduled surveillance visit, 
detection rates of planned diagnostic tests are applied 
to a patients’ true underlying tumor state on each of the 
three chains. This may result in the detection of a recur-
rence or of progression of disease. Surveillance contin-
ues until the end of the surveillance schedule as specified 
in the  clinical management module, until a recurrence 
is detected or until the death of other causes, whatever 
comes first. Note that, if not detected by surveillance, 
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recurrent or progressive disease may also be detected 
through  symptoms. This occurs when a patient enters the 
state symptomatic tumor on any of the three chains.

5. When a patient enters the recurrence state on the patient 
level, the type of recurrence is determined by the chain that 
first reached the symptomatic state, or in case of detection 
during surveillance the severest type of  recurrence. In case 
of a local or regional recurrence, the patient goes back to 
step 2 and proceeds through the model as described in 
steps 2–5. In case of progression to metastatic disease, 
time to death of melanoma is drawn.

Further information about the implementation of the 
model, the user interface, and internal versus user-defined 
model parameters can be found in Appendix 3.

Model parameters and McMc calibration procedure. 
The model framework is specified by quantifying the follow-
ing groups of parameters.
1. The parameters in the growth function that specify the 

rate of transitioning between the five tumor growth states 
dormant, micro, macro small, macro medium, and macro 
large and the decision rules for the choice of treatment.

2. The proportion of patients for whom the growth state at 
the tumor level is reset to absent, dormant, or micro.

3. The decision rules for the timing and the type of test 
applied during surveillance after treatment. 

4. The test positivity rate for each test specified during 
diagnosis or surveillance, dependent on tumor state, site 
of the tumor, and other relevant patient and/or tumor 
features.30–34

The parameter groups 3 and 4 are quantified on the basis 
of literature estimates, clinical guidelines, and real world data 
on clinical practice. Parameter groups 1 and 2 are essentially 
unobservable and cannot be quantified directly on the basis 
of patient data. Values for these parameters are obtained by 
calibration, in such a way that model predictions for a large 
sample of patients are in agreement with a number of observed 
targets. These targets are data on RFS, DRFS, PFS, and OS. 
Preferably these are obtained from patient-level data, but it is 
 possible to use survival estimates from the literature as well.

To calibrate the group 1 and group 3 parameters, an auto-
matic MCMC calibration procedure with rejection sampling 
was implemented.35 As five different unobservable tumor 
states are included in the model, an infinite number of fitting 
parameter sets may be obtained and parameter values may not 
converge. To limit the number of fitting parameter sets and 
eliminate illogical parameter combinations, one restriction 
was added to the calibration procedure; the assumption that, 
on average, dwelling times in the macro growth states only 
decrease with larger sizes.36 Thus, the hazard rate (HR) for the 
transition from micro to macro small, HRmicro–macro small, 
must be higher than HRdormant–micro. Likewise HRmacro 
small–macro medium must be higher than HRmicro–macro 
small, and HRmacro medium–macro large must be higher than 
HRmacro small–macro medium. This restriction did not apply 
to HRmacro large–symptomatic. An example of the resulting 
growth curve is depicted in Figure 3. The shape of the curve 
is broadly comparable with the Gompertzian growth curve 
described in the literature.36

The calibration procedure results in a prespecified  number 
of parameter sets that all lead to model predictions in agreement 
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with the calibration targets. These parameter sets can be used 
to simulate alternative treatment scenarios in such a way that a 
credible range for model‐based outcomes can be obtained.

Model Assumptions
At present, the simulated population in the MAICare frame-
work is the Dutch patient population, with baseline TNM 
staging and additional features as registered in the Dutch 
 cancer registry between 2006 and 2011. Only one treatment 
arm, ie, current care, is currently simulated by the model. 
Decision rules for diagnostic testing, treatment, and surveil-
lance were based on current Dutch guidelines. Sensitivities and 
specificities found in literature were transformed to detection 
and miss rates for the diagnostic tests and imaging techniques 
in the model.37–39 We assumed that no local recurrence could 
occur after treatment in stage III, local recurrence, or regional 
recurrence. Thus, only two tumor chains (regional and dis-
tant) were simulated after stage III, namely, the regional and 
the distant chain.

data for calibration
With respect to OS, we used the stage‐specific OS in 
Dutch melanoma patients from the Dutch Cancer Registry 
(2000–2012) as calibration data.1 No data on time to recurrence 
are yet available for the Dutch melanoma patient population. 
However, detailed data on melanoma progression,  stratified 
according to stage at diagnosis is available from a large 
 German cohort.40 These data were presently used to calibrate 
stage-specific RFS in the model, as well as OS after local, 
regional, and distant recurrence.41,42 In addition, as a valida-
tion step, we compared the stage-specific OS to that of Dutch 
Registry data.1

Analyses
The calibration of a microsimulation model is always an itera-
tive process. In principle, the calibration was done in the 
stepwise fashion described below, but occasionally, we had to 
return to a previous step to achieve a better fit.
1. We established starting state distributions after treat-

ment in accordance with literature and expert opinion. 
Also, we set the probabilities of detection for each sur-
veillance test, based on literature and expert opinion.

2. We started a calibration round for the tumor growth 
parameters by fitting the stage I, II, and III RFS output 
of our model to RFS curves based on German data.40 We 
carried out the calibration procedure with a patient popu-
lation of size 250,000. Model fit for RFS was assessed 
at 6 months, and after that yearly up till 10 years after 
diagnosis. Based on discussions with clinical experts, 
we assumed a median dormancy state duration between 
1.5 and 3 years and used this as an additional calibra-
tion target. We started with calibration of the tumor 
growth parameters scale and shape, the proportional haz-
ards for phase of disease: stages I, II, and III at diagnosis 

(reference stage I) and the tumor growth transitions to  
micro (reference transition), macro small, macro medium, 
macro large, and symptomatic. We started the calibra-
tion algorithm using betas [ln(HR)] of zero as starting 
values. We ran the calibration procedure five times, 
to manage the correlation between draws. Para meter  
sets that resulted in a binomial deviance statistic of over 
3.84 (P , 0.05) on any of the RFS targets over time 
were excluded.

3. We calibrated the parameters of the time to death of 
melanoma model that becomes active after diagnosis of 
 metastatic disease. Calibration targets were again taken 
from German data and consisted of OS in stage IV/ 
metastatic patients.41,42 We calibrated the scale, shape, 
and the proportional hazards for M‐status [M1a (refer-
ence), M1b, and M1c] in the same manner as we cali-
brated the tumor growth parameters.

4. Finally, we calibrated the model against the OS after a 
local or a regional recurrence.3 Model parameters that 
were calibrated in this step are the proportional hazards 
for phase of disease (local, recurrence, or regional recur-
rence) and the tumor starting state distribution after 
treatment for stage III or a regional recurrence.

5. After calibration to OS after local and regional recur-
rence, we checked whether stage-specific OS matched 
with that of Dutch Registry data. Because no satisfy-
ing fit was obtained, we systematically varied the tumor 
starting state distributions after treatment for stage III 
and after treatment for regional recurrence. The propor-
tion of patients that started in the absent state was kept 
as in step 1 (0.35 for stage III, and 0.1 for regional recur-
rence), but the proportion of individuals in whom the 
tumor state was set to dormant, micro regional, and micro 
distant was varied. For these three proportions, both 
for stage III and for regional recurrence, a total of 1134 
 scenarios were explored. The only constraint was that the 
sum of three was 0.65 in stage III and 0.9 in regional 
recurrence. All analyses were run with a patient popula-
tion of size 250,000.

results
The tumor starting state distributions after treatment are 
shown in Table 1. Note again that these are mostly based on 
expert opinion. Only the tumor starting state distributions 
after treatment for stage III and after regional recurrence were 
obtained by calibration. The proportion of individuals with 
all tumor chains set to absent after treatment decreases con-
siderably with the severity of disease phase. Particularly after 
treatment for recurrent disease, the chance to be free from any 
remaining tumors is small.

The probabilities of detection per surveillance test, depen-
dent on tumor site and growth state, can be found in Table 2.

The best fitting set of parameters for the tumor growth 
model is given in Table 3. Mean tumor growth state transition 
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times in stage I as predicted by this model are shown in 
 Figure 3. Note that the shape of the curve is in agreement 
with the current theory of cancer growth according to rate‐
limiting steps.

Model fit with regard to RFS in stages I, II, and III for 
the best fitting set of parameters for the tumor growth model 
is shown Figure 4A, B, and C, respectively. The model‐based 
predictions did not differ significantly from the German 
 calibration data. The best fitting parameter set for the stage IV 
time‐to death of melanoma model is shown in Table 4. Model 
fit with regard to stage IV/metastatic OS for M1a, M1b, and 
M1c is shown in Figure 4D, E, and F, respectively. Again 
model‐based predictions did not differ significantly from the 
calibration data. With respect to OS after local recurrence and 
OS after regional recurrence, the difference between model 
predictions and the German calibration targets was again not 
statistically significant (figures not shown). Finally, model‐
based OS from diagnosis of stage I, II, and III and the cor-
responding Dutch cancer registry data are shown in Figure G, 
H, and I, respectively. Herein, model‐based predictions did 
differ significantly from the data, because the sample size of 
the cancer registry data results in extremely small confidence 
intervals. Nevertheless, the predictions were reasonably close 
to the observed OS curves for the Netherlands.

discussion and conclusion
We have introduced a new modeling framework for simulat-
ing melanoma care and progression, MAICare, which stands 
for “Microsimulation for the Assessment of Individualized 
Cancer Care”. The framework was developed with a focus 

on melanoma care, but generalizability to other solid tumor 
types was a guiding principle during the development. We 
presented a calibration procedure to quantify the model and 
demonstrated that acceptable model predictions for a range of 
health outcomes can be achieved using literature‐based sum-
mary statistics.

Parameter calibration is an approach used for many com-
plex models in order to quantify internal, unobservable, model 
parameters. We carried out a first model calibration for the 
Dutch patient population. Because of a lack of Dutch data on 
intermediate outcomes, we used German data on RFS and 
OS after recurrence. In addition, we did not have patient‐level 
data to our disposition, and as such, we were forced to make 
many simplifying assumptions. Nevertheless, we were able 
to calibrate the model such that model‐based predictions for 
stage‐specific OS closely approached Dutch registry data. For 
future use of the model in, for example, health‐economic anal-
yses, however, it is recommended to carry out a more detailed 
calibration using patient‐level data specifically for the Dutch 
patient population. For this purpose, a large retro spective study 
in 1000 melanoma patients has been initiated. These data will 
deliver detailed information on number, location, and timing 
of consecutive recurrences, allowing full model calibration.

Another disadvantage of the present model is the fact 
that the stage IV/metastatic disease model is calibrated 
against care data from the years 1996 and 2010, as reported 
in the  literature.42 This essentially means that the meta-
static model reflects treatment with surgery, radiotherapy, 
and primarily dacarbazine; from start of treatment, only 
time to death from melanoma is simulated. Multiple treat-

Table 1. tumor growth starting state distributions, after treatment according to the Dutch treatment guidelines.

All ChAInS MICRo

AbSEnT doRMAnT loCAl REgIonAl dISTAnT REFEREnCES

Phase of disease stage I, at diagnosis 0.8 0.13 0.01 0.04 0.02 Based on expert opinion and literature35

stage II, at diagnosis 0.45 0.3 0.05 0.15 0.05 Based on expert opinion and literature35

stage III, at diagnosis 0.35 0.2 0 0 0.45 Calibrated3

Local recurrence 0.2 0.7 0 0.05 0.05 Based on expert opinion and literature35

regional recurrence 0.1 0.85 0 0 0.05 Calibrated3

 

Table 2. Probability of detection during surveillance.

TEST TuMoR ChAIn TuMoR gRowTh STATE

doRMAnT MICRo MACRo S MACRo M MACRo l REFEREnCES

Physical examination Local 0 0.2 0.5 0.7 1 Based on expert opinion

regional 0 0 0.1 0.3 0.8

Distant 0 0 0 0.1 0.25

Ct Local 0 0.2 0.5 0.7 1 Based on literature29,30,31,32,33

regional 0 0 0.1 0.3 0.8

Distant 0 0 0 0.1 0.25
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ment lines in the  metastatic phase, with different consecutive 
drugs can presen tly not be simulated in the MAICare model. 
Neverthe less, the  current model provides an appropriate refer-
ence strategy against which to explore the cost‐effectiveness 
of new,  expensive  therapies such as BRAF inhibitors and 
immuno therapeutic drugs.  Furthermore, in the near future, 
the model will be extended to include multiple treatment 
lines using the above‐mentioned retrospective study as well as 
data from the recently initiated prospective Dutch melanoma 
treatment registry.43

The strength of our framework is the fact that we  modeled 
the disease process not only on a patient level but also on a 
tumor level, describing the growth and metastasis of tumors in 
different locations. In addition, we included a separate clinical 
management module that interacts with this disease process. 
This model structure makes it possible to explore the impact of 
simultaneously altering two or more interventions in the care 
process. Furthermore, it is possible to assign molecular features 
to the tumor chains, such that the model may also be used to 
generate hypotheses concerning the potential impact of mole-
cular diagnostics in combination with targeted treatments. For 
example, we envisage exploration of the potential value of next-
generation sequencing and subsequent adaptation and personali-
zation of treatment within the adjuvant or metastatic setting.

The analysis of multiple interventions is useful for the 
optimization of the whole care pathway. Especially when new 
interventions have high incremental costs, it may be helpful 
to modify care on more than one point. For example, many of 
the new cancer treatments for metastatic disease show some 
beneficial effects, but are expensive and response durations are 
limited due to acquired tumor resistance. During treatment 
with these drugs, patients are under surveillance, and usually 
a CT scan is done every three months. If tumor progression is 
detected, the drug treatment is stopped. It has been suggested 

that surveillance using mole cular imaging tests, such as FDG‐
PET‐CT scans, with shorter time intervals, would allow for 
earlier detection of drug resistance and subsequent tumor 
progression. Theoretically, this would make it possible to dis-
continue futile treatment earlier, saving costs and potentially 
improving survival and quality of life37–39. Our model was 
built to explore such hypotheses.

In addition, we argue that the basic model structure of 
the tumor and patient level of the model, combined with the 
clinical management module, can be applied to most types of 
solid tumor cancers. The basis of the model, the tumor growth 
chains, consists of dormant, micro, and macro growth states, 
conform current theory on tumor growth and progression. The 
model can be parameterized to fit the disease course of cancer 
types with a short or possibly absent dormant phase like non‐
small‐cell lung cancer, as well as cancer types with a suspected 
long dormant phase, such as breast cancer. The patient level 
can be adapted to incorporate the characteristics of the  specific 
cancer type, and the clinical management module can be struc-
tured with decision rules based on other care guidelines.

Models describing multiple treatment lines are referred 
to in the literature as whole disease models21 or models that 
describe the full disease course.15 A whole disease model 
describes the preclinical phase of the disease until diagnosis, 
after which multiple treatment lines follow until death. A full 
disease course model describes multiple treatment lines from 
diagnosis till death. An example of a whole disease model is 
the CRC model by Tappenden et al.21 This model includes the 
preclinical phase, after which multiple treatment lines follow. 
Each treatment line is modeled on the results from clinical 
trials and/or cohort studies. The main outcome of the model 
is the incremental cost‐effectiveness ratio, by which the most 
favorable combination of interventions can be determined.

Our model differs from this model in the fact that it does 
not describe the preclinical phase. Another difference is the fact 
that in the Tappenden model, only those treatment and surveil-
lance combinations can be compared that have been investigated 
in practice. Unlike in our model, it is not possible to search for an 
optimal surveillance scheme by adjusting surveillance intervals 
if these strategies have not been tested in real life. The same can 
be said of other models which include  multiple treatment lines, 
such as the model describing the full disease course of myeloma 

Table 3. tumor growth model.

ModEl TYPE wEIbull Ph REFEREnCES

shape 0.59 Calibrated35

Beta Hr*

Constant 0.11 1.12 Calibrated35

Phase of  
disease

stage I, at diagnosis 0 1 Calibrated35

stage II, at diagnosis 0.72 2.05

stage III, at diagnosis 1.42 4.15

Local recurrence 0.2 1.22 Calibrated3

regional recurrence 0.8 2.23

transition Dorm → micro 0 1 Calibrated35

micro → macro s 2.32 10.18

macro s → macro m 4.55 94.49

macro m → macro L 4.85 128.25

macro L → sympt 1.12 3.06

note: *Hr = exp(beta).

Table 4. Death of melanoma model.

ModEl TYPE wEIbull Ph REFEREnCES

shape 1.46 Calibrated38,39

Beta Hr*

Constant 0.46 1.58 Calibrated38,39

m status m1a (soft tissue only) 0 1 Calibrated38,39

m1b (lung) 0.02 1.02

m1c (other visceral) 1.87 6.49

note: *Hr = exp(beta).
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by Leunis et al.15 This model lacks the option of simultaneously 
changing diagnostics and  surveillance schedules.

One model that also simulates underlying tumor growth 
is the CRC surveillance and recurrence model by Rose et al.22 
In this model, disease progression is predicted by simulating 
the time to earliest detectability by means of surveillance, 
and from that point onward, simulating the time to which 
the tumor is no longer amenable to curative surgery. Thus, in 
this model, underlying tumor growth is simulated indirectly; 
tumor size is not specified, but detectability is used as a proxy 

instead. Sensitivity and specificity of surveillance techniques 
in the detectable state are specified and may be used to simu-
late the effects of alternative surveillance schemes. 

In conclusion, one aspect of our model structure differs 
notably from most existing disease models. We model under-
lying tumor growth and progression, and its interaction with 
 diagnostics,  treatments, and surveillance, separately. Simula-
tion of underlying  cancer progression has been done before, but 
only in screening  models. Examples are models that describe 
the development of intestinal polyps, and the subsequent  
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Figure 4. model‐based predictions for the best fitting parameter set, resulting from the calibration procedure and calibration data for different model 
outcomes. solid black lines represent the data, light gray lines the 95% CI of the data, and the dark gray dashed lines the simulation model results. 
figures 4A, b, and C show the model fit for RFS for stages I, II, and III, respectively. Figures 4d, E, and F show the model fit for OS for stages IV and 
metastatic m1a, m1b, and m1c, respectively. figures 4g, h, and I show the model fit for OS for stages I, II, and III, respectively.
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carcinoma pathway16,18; models that describe HPV infection, 
CIN development and the subsequent cancer pathway17,44; 
models that describe the formation and growth of tumors in an 
unscreened population for breast cancer19,45,46; and lung cancer.47 
All these models describe the natural history of a cancer type and 
interventions for early detection of cancer or precancer.

Because of the underlying largely unobservable natural 
history component in these screening models, at least part 
of the parameters are obtained by calibration to observed 
outcomes. After calibration, models are validated by 
 comparing model simulation outcomes to studies not used 
in para meterization or calibration of the model. These may 
be cohort  studies found in literature, but also country‐spe-
cific data such as incidence or OS rates. Our model frame-
work was inspired by such screening models, modeling 
tumor growth after initiation of cancer instead of growth 
of precursor lesions. Simulation of tumor growth has been 
done before as a continuous process,19,47 whereas we describe 
growth as a series of rate‐limiting steps. We used this 
approach because it is in agreement with the  current theory 
on cancer growth.23–25

To conclude, the MAICare framework was developed as 
a template for the simulation and evaluation of complex pat-
terns of care in oncology. We described the model components 
and showed that it is feasible to calibrate the model using sum-
mary statistics from different data sources.
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Appendix 1: tumor state transitions
Parameters in the tumor growth model. Essentially, 

two sets of parameters are required to simulate tumor growth 
in the model;
1. A matrix of transition probabilities governing the start-

ing states in the tumor growth model after treatment.
2. A dwelling time distribution that determines the timing 

of transitioning to a subsequent tumor growth state.
transition probabilities. A matrix of transition proba-

bilities pij is specified, where i = 1…7 refers to the seven tumor 
growth states S1…S7 (absent, dormant, micro, macro small, 
macro medium, and macro large) and j = 1,2,3 refers to the 
three recurrence sites of tumor growth R1, R2, and R3 (local, 
regional, and distant). Jointly, these probabilities determine 
the starting states for tumor growth at each site, dependent on 
the treatment given.

dwelling times. The dwelling time Tij, with i = 1…7 for 
tumor growth states S1…S7 and j = 1,2,3 for the three recur-
rence sites R1, R2, R3 is drawn from a dwelling time distribu-
tion, for which parameters may be specified that determine 
the effect on growth speed of current growth state Si, site Rj, 
treatment Tx, and a vector F of clinical and tumor features. 
Note that there are no parameters that determine which state 
the tumor will transition to because there is only a single pos-
sible chain. That is, tumor growth states S1…S7 are consecu-
tive states that each need visiting before a transition to the 
next state is possible. Furthermore, in the current application, 
dwelling times between two consecutive tumor growth states 
are assumed to be independent of times spent in previous 
states, although this can be adapted.

Four different dwelling time distributions are currently 
included in MAICare. Two distributions assume multipli-
cative effects (proportional hazards) of the factors affecting 
dwelling times, namely, the Weibull distribution and the 
Gompertz distribution.

Weibull distribution. With survival function S(t, λ, k) for 
t.0;

S(t, λ, k) = e -tλk

With k . 0 being the shape parameter, and λ . 0 the 
scale parameter.

The effect of current growth state Si, site Rj, treatment 
Tx, and a vector F of clinical and tumor features is included as 
an effect on the scale parameter λ as follows:

λ λ β β β β( , , , )t S R Tx P e i
T

i j
T

j Tx
T

F
TS R Tx F| = + + +

0

The reference for treatment is current care, so in the base‐
case model, βTx is 0. Furthermore, note that the exponential 
distribution is a special case of the Weibull distribution (k = 1).

Gompertz distribution. With survival function S(t, λ, α) 
for t . 0;. S t e e t

( , ( )
λ

λ
α

α

,k) =
- -1

With α . 0 being the shape parameter, and λ . 0 the 
scale parameter.

The effect of predictors on scale parameter λ is modeled 
in the same manner as for the Weibull distribution described 
above.

Two distributions assume additive effects of tumor 
growth state Si, site Rj, treatment, clinical features and tumor 
features on transition times; the lognormal distribution and 
the log‐logistic distribution:

Lognormal distribution. With survival function S(t, µ, σ) 

for t . 0; S t t( , ln( )µ σ φ µ
σ

, ) = - -



1

With µ . 0 being the location parameter, and σ2 the 
variance.

The effect of current growth state Si, site Rj, treatment 
Tx, and a vector F of clinical and tumor features is included as 
an effect on the location parameter µ:

 
µ β β β β β( , , , )S R Tx P S R Tx Fi

T
i j

T
j Tx

T
F
T= + + + +0  48

Log‐logistic distribution. With survival function S(t, a, b) 
for t . 0;

S(t, a, b) = 1+1/atb

With b . 0 being the shape parameter, and a . 0 the 
scale parameter. Scale a is equal to exp(-µ/σ) with the effect 
of predictors on µ as for the lognormal distribution.

Appendix 2: surveillance schedules
Surveillance schedules are specified as follows. First, the 
interval at which surveillance takes place is specified accord-
ing to the phase of the disease (Table A1). Second, for each 
phase of disease, a strategy consisting of a set of tests can 
be chosen for each surveillance visit (Table A2). Finally, 
Table A3 describes the tests that make up each strategy. Third, 
the detection rates for each test are specified (Table 2 in the 
main manuscript).

Appendix 3: for the User
The model has been coded in C++ and has a Microsoft Excel 
user interface. The object-oriented programming language 
provides a fast running simulation; the current melanoma 
application simulates 200,000 patients in 30 seconds on a 
desktop computer.* Time‐to‐event distribution functions were 
implemented using the boost math library.48 For usability, the 
application was embedded in a Microsoft Excel user interface 
(UI) with visual basic. This enables the user to change model 
parameters on worksheets in the UI, and subsequently run 
the model.

We distinguish two types of parameters in the model, 
such as those that can be considered internal to the model 
and those that are to be set by the user. Internal model para-
meters are the parameters that govern transition rates between 
the tumor growth states, the starting state distributions after 

*  Computer with an Intel i5-3470 CPU (3.2 GHz) and 4 GB RAM, system running on 
Microsoft Windows XP.
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treatment, and finally, the parameters in the time to death of 
melanoma model that becomes active once a tumor has metas-
tasized. Values for these parameters are obtained through a 
process of calibration, as described below. Parameters that may 
be adapted by users are (1) the correlated distributions that 
determine the composition of the patient population, (2) the 
life tables describing death of other causes, (3) the HR in the 
tumor growth model that specifies the effect of an alterna-
tive treatment relative to current care. In addition, users may 
change the surveillance schedules and/or test characteristics.

Model output has the form of a patient-level dataset, 
similar to the one that would be obtained from a  longitudinal 

cohort study. That is, the dataset contains transition times 
between health states on the patient level, such as the  timing 
of recurrences and death. In addition, in contrast to real‐world 
data, the model‐based dataset also contains transition times 
on the tumor level, between the tumor growth states on each 
recurrence site. This dataset can be used for analysis in the same 
way as cohort data, and therefore, output is  flexible. Common 
output measures are RFS, DRFS, PFS, DSS, and OS, as well 
as total costs and life years. These can be used to calculate the 
incremental cost‐effectiveness ratios when  multiple care path-
ways are compared.

Table A1. surveillance intervals.

STRATEgY STAgE InTERvAl  
(wEEkS)

1 Ia 52 104 156 208 260 0 0 0 0 0

2 IB-IIIC 26 52 78 104 130 156 182 208 234 260

3 Local/regional  
recurrence

26 52 78 104 130 156 182 208 234 260

4 IIIC/IV/distant  
recurrence

3 6 9 12 15 18 21 24 27 30

5 alternative  
option

Table A2. surveillance strategies.

STRATEgY STAgE STRATEgY

1 Ia 1 1 1 1 1      

2 IB-IIIC 1 1 1 1 1 1 1 1 1 1

3 Local/regional  
recurrence

1 1 1 1 1 1 1 1 1 1

4 IIIC/IV/distant  
recurrence

2 2 2 3 2 2 2 3 2 2

5 alternative  
option

          

Table A3. surveillance tests.

STRATEgY 1 2 3 4 5 6

skin + palpation yes yes yes no no no

CT - abdomen no no yes no no no

CT - head no no no no no no

PET - abdomen no no no no no no

PET - head no no no no no no
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