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Abstract: Detection of illicit drug residues from wastewater provides a new route toward community-
level assessment of drug abuse that is critical to public health. However, traditional chemistry
analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry
(HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and
convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced
Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved
quantitative analysis through principal component analysis and partial least-squares regression. The
SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles
on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in
artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based
on training data from artificially contaminated tap water, we predicted the fentanyl concentration in
the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison,
the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific
value of the concentration since the concentration was too low. In addition, we further proved the
validity of our SERS sensing technique by comparing SERS results from multiple sewage water
treatment plants, and the results are consistent with the public health data from our local health
authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its
feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess
public health.

Keywords: fentanyl; surface-enhanced Raman scattering; plasmonic nanoparticles; point of care;
public health

1. Introduction

The prevalence of drug abuse and the epidemic level of opioid misuse urgently
calls for a comprehensive approach to assess trends in drug abuse and understand the
effectiveness of prevention and treatment programs. However, many current surveillance
methods of drug use such as surveys, data on overdose incidence, and crime data have a
two-year lag before data are available. The other limitations of widely used data sources
include lack of geographic resolution, coverage of the selected population, and exclusion
of a large portion of the drug-using community. Compared with traditional surveillance
techniques, rapid assessment of drug abuse from municipal wastewater [1–6] is a new
strategy that can overcome many limitations. For instance, municipal wastewater testing
methods are readily scalable and anonymous and can eliminate self-reporting surveys, map
drug consumption, and can provide an early warning in the constantly changing landscape
of substance abuse for proactive responses. High-performance liquid chromatography in
tandem with mass spectrometry (HPLC-MS) [7–11] is the most widely used wastewater
sensing technique, which can detect various drugs including opioids in the wastewater

Biosensors 2021, 11, 370. https://doi.org/10.3390/bios11100370 https://www.mdpi.com/journal/biosensors

https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://doi.org/10.3390/bios11100370
https://doi.org/10.3390/bios11100370
https://doi.org/10.3390/bios11100370
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bios11100370
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios11100370?type=check_update&version=3


Biosensors 2021, 11, 370 2 of 10

stream and can differentiate between drugs that were discarded and drugs that were
metabolized. Such extraordinary analytical techniques can be adopted to address practical
questions and dynamic monitoring of illicit drug use. Specifically, wastewater analysis
can reveal the collective drug habits of communities, providing a more accurate picture
than self-reported surveys or traditional methods of drug use statistics. It can also alert
communities about raising problems in their earlier stage instead of relying on emergency-
room statistics and overdose deaths. However, HPLC-MS is an expensive laboratory
chemistry analytical technique, which is ill-suited to large-scale, frequent monitoring of
illicit drugs in municipal wastewater. It demands labor-intensive sample collection and
preparation, expensive reagents and columns, substantive operator expertise, and multiple
resources for analysis and calibration. As a comparison, electrochemistry sensors are cost-
effective and easy to operate [12–16]. Nevertheless, these sensors cannot probe fingerprints
of illicit drugs and lack the necessary specificity for accurate analysis. In summary, there
is an unmet need in sensor technologies to address these technological deficiencies and
translate wastewater testing into practical insights.

Surface-enhanced Raman scattering (SERS) spectroscopy has become a powerful opti-
cal analytical technique due to its high selectivity and ability to obtain vibrational spectra of
target molecules at very low concentrations [17–19]. Raman peaks are unique and represent
the signatures of the vibrational bonds, and therefore Raman spectroscopy is particularly
suitable to detect illicit drugs [20–26]. Compared with other drug sensing methods, SERS
techniques can provide exclusive advantages including ultra-high sensitivity [27–29], high
specificity [30,31], easy sample preparation, low cost, and rapid testing. Especially, the
successful commercialization of portable Raman spectrometers in recent years not only
significantly reduces the equipment cost compared with bench-top Raman microscopes but
also enables a point-of-care (POC) sensing capability, which is much superior to traditional
laboratory analytical techniques.

Our previous publications demonstrate that the diatomaceous earth combined with
silver nanoparticles (AgNPs) provides additional SERS enhancement [32,33]. Briefly, di-
atomaceous earth has naturally formed photonic crystal structures. The two-dimensional
periodic pores embedded within the diatomaceous earth provide additional optical field
enhancement. In addition, AgNPs bring maximal enhancement as the incident laser wave-
length is close to the plasmonic resonance frequency of AgNPs. As a result, the combination
of diatomaceous earth and AgNPs contributes to extremely high SERS enhancement factors.
In this study, we developed a SERS substrate using in situ growth high-density AgNPs
on diatomaceous earth and measured fentanyl residual signals using a portable Raman
spectrometer to prove the feasibility of sewage water sensing. We achieved a fentanyl
detection limit down to 10 parts per trillion (ppt) in artificially contaminated tap water.
Based on chemometric analysis, we formed a prediction model of the fentanyl residue
concentration using principal components analysis (PCA) and partial least-squares regres-
sion (PLSR). Most importantly, we used the developed SERS sensing and data analysis
method to measure the fentanyl residue level in the sewage water from the wastewater
treatment plant of the City of Corvallis, which was 0.8 parts per billion (ppb), and the
mainstream of the Willamette River in Oregon, which was negligible. As a comparison,
Table 1 summarizes the performance metrics of different techniques about sensing fentanyl
quantitatively in a practical environment. Our diatomaceous earth SERS substrate with
a portable Raman spectrometer showed exceeding performance in terms of sensitivity,
sensing time, and cost.
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Table 1. Different methods of sensing fentanyl quantitatively in practical environment.

Methods Sensitivity Equipment Requirement Estimated
Sensing Time

Sensor
Cost Reference

HPLC-MS 30 ppb HPLC-MS 8 min High [34]

Electrochemical 5 ppm Potentiostat A few minutes Medium [35]

Previous SERS 5 ppb 5lb field-usable Raman spectrometer 5 min Low [36]

Our diatomaceous earth SERS 800 ppt Portable Raman spectrometer 2 min Low This work

2. Materials and Methods
2.1. Preparation of the SERS Substrate

Glass slides were cut into 0.5 × 0.5 mm2 pieces and covered by as-prepared diatoma-
ceous earth solution demonstrated in Reference [37]. AgNPs were then synthesized into
diatomaceous earth using the in situ growth method after the samples were dried at 230 ◦C
for 2 h. Based on Equation (1), the in situ growth was performed by the following steps.

Sn2+ + 2Ag+ → Sn4+ + 2Ag (1)

First, samples were immersed into tin (II) chloride (20 mM) and hydrochloric acid
(20 mM) for 5 min to create nucleation sites on the surface and within the pores of diatoma-
ceous earth. Second, samples were immersed into silver nitrate (AgNO3) (20 mM) for
5 min, after being washed by deionized (DI) water three times and dried at 60 ◦C for 5 min.
This step helped to grow Ag seeds on the diatomaceous earth surface. Third, in order to
obtain a mono-layer of uniform AgNPs with high density, the samples were immersed into
the aqueous solution of AgNO3 (5 mM) and ascorbic acid (20 mM) (v:v = 8:1) for 5 min.
Before drying with nitrogen at room temperature, the impurities were removed by rinsing
in DI water and acetone three times. The morphology of the active SERS substrate was
characterized using a scanning electron microscope (SEM), and the results are shown in
Supplementary Materials (SM) Section 1. The prepared SERS substrates were then baked
at 150 ◦C until they were ready for use. For experiments discussed in Sections 3.1 and 3.2,
we fabricated 10 SERS substrates in a single batch. For the comparison of SERS sensing
between different sewage treatment plants in Section 3.3, we fabricated 4 SERS substrates
in another single batch with the same processing parameters and controlled the variance
from the substrate material.

2.2. Fentanyl SERS Measurement

Standard fentanyl solution was purchased from Sigma-Aldrich. Tap water was artifi-
cially contaminated with standard fentanyl solution at 1 part per million (ppm), 100 ppb,
10 ppb, 1 ppb, 100 ppt, and 10 ppt by magnetic stirring at 700 rpm to achieve homogeneity.
One sewage sample was first collected from the outlet of the sewage treatment plant in
Corvallis, Benton County, state of Oregon. Its reference sample (mainstream river water)
was collected from Willamette River mainstream. For the comparison between different
sewage treatment plants, we collected another four samples from the Clackamas, Mult-
nomah, Marion, and Benton Counties, respectively. For each solution sample, we used one
SERS substrate. For each substrate, 25 points were measured. The strategy of selecting the
25 points was demonstrated in Supplementary Materials Section 2. The entire detection
process was illustrated in Figure 1 with characteristic SERS spectra on the bottom. Active
SERS substrates were used to detect the fentanyl concentration in artificially contami-
nated tap water, sewage water, and mainstream river water. SERS substrates were soaked
in the analytes for 24 h and then dried under room temperature before measuring the
SERS spectrum with a portable Raman spectrometer (BWS465-5328) equipped with a shaft
(BAC102-532) which has a flat quartz window. All samples were excited by a 532 nm laser
source with acquisition time of 60 s to collect the SERS spectra in the wavenumber range
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of 400 to 1800 cm−1. The laser power and the integral time were set at 20 mW and 60 s,
respectively. The SERS spectra were obtained based on the average of two scanning results.
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Figure 1. Fabrication process of the SERS substrate using in situ growth of AgNPs on diatomaceous
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Raman spectrometer.

2.3. Multivariate Analysis

We employed the BEADS method to conduct baseline estimation and denoising
sparsity [38]. After that, the baseline correction method was used to smooth data. Mean
values of those data points and estimate of the analyte concentration were calculated.
Multivariant chemometric analysis methods based on PCA and PLSR were then used to
extract the features of the SERS spectrum and to establish the relationship between the
features and different fentanyl concentrations. First, the contaminated tap water samples
were analyzed based on the characteristic peak of fentanyl, which forms a relationship
between the peak height and the concentration level. Second, the PCA method was
performed based on those data sets to identify the maximum variations between each data
set. The first three principal components (PCs) were selected as the major parameters.
Finally, PLSR was applied to predict the concentration of target samples.

3. Results and Discussion
3.1. Fentanyl SERS Detection in Artificially Contaminated Tap Water

In order to characterize the sensitivity of the POC sensing technique, active SERS
substrates were first used to detect fentanyl in a set of artificially contaminated tap water
samples with different fentanyl concentrations, as mentioned in the experimental section.
The tap water with fentanyl concentrated from 1 ppm down to 10 ppt was measured,
and the results are plotted in Figure 2a. As a reference, we provided a SERS spectrum of
fentanyl in deionized water in Supplementary Materials Section 3. The labeled SERS peaks
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were the characteristic peaks of fentanyl. A detailed peak assignment is shown in
mboxtabreftabref:biosensors-1367873-t002 [39].
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Table 2. Raman shift assignment of the fentanyl SERS spectra.

Raman Shift/ cm−1 SERS Peak Assignment

920 C–H asymmetric out-of-plane trigonal bend of B2

1280 C3 C–H twisting

1377 C7 C–H bonds

1601 C–C symmetric stretch of B1

In our work, we focused on the peak at 1377 cm−1 since it is the most representative
peak of fentanyl. The results show that the characteristic peak intensity increased as the
concentration of fentanyl increased. For a better illustration, the peak intensity at 1377 cm−1

was plotted versus the concentration of fentanyl with error bars to indicate the fluctuation
of different data points. As shown in Figure 2b, the characteristic peak intensity had a
nonlinear relationship with respect to fentanyl concentrations at low concentrations (below
100 ppb). This nonlinear relationship comes from the Langmuir model which is described



Biosensors 2021, 11, 370 6 of 10

in Equation (2) [40,41]. In this expression, Ca represents the concentration of the analyte,
Imax is the maximum value of the SERS intensity, K is the absorption constant, and I is
the SERS intensity at the concentration Ca. In Figure 2b, since the horizontal axis is in
logarithm scale and the vertical axis is in linear scale, our experimental results followed
the Langmuir model.

I = Imax
KCa

1 + KCa
(2)

In addition, the light blue bar at the bottom indicates the background noise level of
tap water, which was obtained from the 0 ppt sample in Figure 2a. As the concentration
went down to 10 ppt, there were some data points overlapping with the tap water noise
bar, which showed the approximate threshold of concentration beyond which the signal
could come from noise. Therefore, the sensitivity of our POC sensing SERS substrate
was determined to be 10 ppt and was stable for at least 48 h based on our discussion in
Supplementary Materials Section 4.

After SERS sensing, we used PCA as a feature extraction technique on these SERS
data. This process was conducted by extracting the PCs of these acquired SERS spectra
from 400 to 1800 cm−1 to account for the effect of concentration levels varying from 1 ppm
to 10 ppt. As shown in Figure 2c, the PCA plot qualitatively demonstrated the separation
among different fentanyl concentrations, where each point represented a spectrum. The
PC1 was the main principal component and accounted for the majority of the score (99.2%).
In the PCA plot, when the fentanyl concentration was low, data clusters were close to
each other. As the concentration increased, the distribution of the clusters was more
separated. Moreover, the slight overlap between 0.01 ppb (10 ppt) and 0 ppb indicated
that the sensitivity of the SERS substrate was around 10 ppt, which matches our estimation
from Figure 2b. Finally, the PC data were fed into a PLSR algorithm, and a 5-fold cross-
validation was performed. In our work, 80% of the data were randomly selected to train
the model and the rest of them were used for testing. As illustrated in Figure 2d, the trained
model received average R2 values of 0.973 and 0.9473 for the training and testing data
sets, respectively. The high R2 values indicated the strong capability of PLSR to quantify
fentanyl concentrations in tap water with high accuracy, especially for a high concentration.

3.2. Fentanyl SERS Detection in Sewage Water from the City of Corvallis

Using the established training model, we measured the fentanyl concentrations in
sewage water and mainstream Willamette River water. In Figure 3a, we show the smoothed
SERS spectra of DI water, tap water, artificially contaminated tap water with 1 ppb fentanyl,
Willamette River mainstream water, and sewage water from the wastewater treatment plant
of the City of Corvallis. We found no fentanyl in DI water, tap water, and Willamette River
mainstream water as no characteristic peak showed up. As a comparison, sewage water
and artificially contaminated tap water shared similar features with a fentanyl characteristic
peak at 1377 cm−1. By looking into the peak intensity at 1377 cm−1, we found that the
sewage water was mostly close to 1 ppb. Moreover, we also detected other chemicals from
the sewage water. For example, the SERS peak located at 840 cm−1 represents pyroborate
vibrations, which is not the chemical bond of fentanyl [42]. However, these chemicals did
not induce obvious interference with our SERS measurements.

To be more precise, we fitted the raw sewage water data set from the City of Corvallis
to the previous PCA-PLSR model. Figure 3b shows the features extracted from the experi-
mentally measured data set. Three clusters represented the Willamette River mainstream,
sewage water, and tap water with 1 ppb fentanyl, respectively. The clusters were close to
each other as they shared many similar features. Interestingly, the cluster of the Willamette
River mainstream is close to the wastewater although we cannot visually see the similarity in
Figure 3a. It is possible that the Willamette River may contain a very low level of fentanyl or
chemicals with similar SERS spectra. Moreover, the cluster of artificially contaminated tap
water with 1 ppb fentanyl close to the wastewater set indicates a similarity in concentration.



Biosensors 2021, 11, 370 7 of 10

By introducing these features into the PLSR model as shown in Figure 3c, the predicted
concentration in sewage water was 800 ppt with an R2 value of 0.9451.
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We also tried to measure the concentration of fentanyl in the wastewater using HPLC-
MS, which is one of the most popular techniques for quantitative chemical analysis. The
results shown in Supplementary Materials Section 5 confirmed the existence of fentanyl in
the wastewater. However, the HPLC-MS was not able to provide an exact value of fentanyl
concentration, but a range below 1 ppb was estimated. Because the concentration was
below the lower limit of quantitation (LLOQ) of fentanyl at 30 ppb using HPLC-MS [34],
such results are expected. As a comparison, our SERS technique, together with the PLSR
analysis, not only identified fentanyl with ultra-high sensitivity but also quantified the
chemical concentration at the range where the HPLC-MS failed to achieve.

3.3. Fentanyl SERS Detection from Different Sewage Treatment Plants

In order to further validate our SERS sensing technique, we conducted the same ex-
periments and qualitative analysis for wastewater from sewage plants in different counties,
including Benton, whose county seat is the City of Corvallis, Clackamas, Multnomah,
and Marion. SERS substrates were fabricated using the same processing parameters as
previous experiments. We also followed the same testing and data analysis procedures.
The SERS results are shown in Figure 4. All four sewage samples showed the distinguished
characteristic peak at 1377 cm−1, which confirmed the existence of fentanyl residue. The
peak intensity for sewage water samples from Clackamas, Multnomah, Marion, and Benton
were 1209.1, 435.6, 359.8, and 294.9, respectively. The intensity of that from Clackamas
was much higher than others, indicating a higher concentration of fentanyl residue in the
sewage. The peak intensities of sewage samples from Multnomah and Marion are close to
each other, indicating similar concentrations of fentanyl residue. The sample from Benton
had the lowest peak intensity among the four, representing the lowest level of fentanyl
residue concentration in sewage water.

In order to verify our SERS sensing results, we referred to the data of drug use from
the Oregon Health Authority (OHA). Based on the most recent data published by the
OHA, opioid (non-tramadol) was distributed to 169.075, 138.325, 137.25, and 92.9 people
on average per 1000 residents in Clackamas, Multnomah, Marion, and Benton Counties,
respectively, from 2019 Quarter 2 to 2020 Quarter 1 [43]. Since fentanyl is one of the most
used opioids (non-tramadol), our SERS results are consistent with the public health data
from the local health authority. It is worth noting that the sewage water samples we
collected from Corvallis, Benton County, in Section 3.3 had lower peak intensity than the
sample we collected about a year before as discussed in Section 3.2, although the two
samples were both collected from the same location. We believe the difference may come
from the COVID-19-related pattern of drug use. Moreover, Benton County has already
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shown a decreasing trend of opioid (non-tramadol) distribution over years based on the
data from the OHA [43], which can explain the lower peak intensity in Figure 4.
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4. Conclusions

In summary, we developed a rapid POC SERS sensing technique with ultra-high
sensitivity to detect fentanyl using a portable Raman spectrometer and PCA-PLSR model.
The SERS substrates were fabricated via in situ growth of AgNPs on diatomaceous earth
films. We achieved an ultra-high sensitivity down to 10 ppt in artificially contaminated
tap water within 2 min in the lab. The PCA-PLSR model predicted the concentration of
fentanyl with good R2 values for both training and testing data sets. Furthermore, our
SERS substrates exhibited a strong sensing capability of fentanyl in sewage water and
detected fentanyl in water from a local wastewater treatment plant. The experimental
results show that the concentration of fentanyl in the sewage water was about 800 ppt
with a high R2 value. We also tested the fentanyl concentration through HPLC-MS. The
result is consistent with our portable SERS’s but only provided a range below 1 ppb since
the concentration was below the LLOQ of HPLC-MS for fentanyl. In addition, we further
demonstrated the validity of our SERS sensing technique by comparing SERS results from
multiple sewage water treatment plants, and the results are consistent with the public
health data from our local health authority. Therefore, we proved that our SERS substrates,
when working together with a portable Raman spectrometer and chemometric analysis
algorithm, can help an ultra-sensitive sensing technique function at a sub-part-per-billion
level to detect the trace level of fentanyl from sewage water, which is crucial to assess
public health.
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diatomaceous earth on glass slides; (c) SEM image of in situ growth AgNPs on diatomaceous earth;
and (d) zoomed-in SEM image of in situ growth AgNPs on diatomaceous earth. Figure S2: The
illustration figure of selecting 25 detection points. Figure S3: The SERS spectrum of fentanyl in
deionized water, with labeled characteristic peaks. Figure S4: Comparison between the original SERS
result and the results after exposing substrate in air for 48 h. Figure S5: HPLC-MS results of Corvallis
wastewater with an inserted zoomed-in image of time range from 6.35 to 6.53.
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