
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23244  | https://doi.org/10.1038/s41598-021-02708-y

www.nature.com/scientificreports

Artificial intelligence‑based 
automatic assessment of lower 
limb torsion on MRI
Justus Schock1,2,5, Daniel Truhn3,5, Darius Nürnberger2,3, Stefan Conrad4, 
Marc Sebastian Huppertz3, Sebastian Keil3, Christiane Kuhl3, Dorit Merhof2 & 
Sven Nebelung3*

Abnormal torsion of the lower limbs may adversely affect joint health. This study developed and 
validated a deep learning-based method for automatic measurement of femoral and tibial torsion 
on MRI. Axial T2-weighted sequences acquired of the hips, knees, and ankles of 93 patients (mean 
age, 13 ± 5 years; 52 males) were included and allocated to training (n = 60), validation (n = 9), and 
test sets (n = 24). A U-net convolutional neural network was trained to segment both femur and tibia, 
identify osseous anatomic landmarks, define pertinent reference lines, and quantify femoral and 
tibial torsion. Manual measurements by two radiologists provided the reference standard. Inter-
reader comparisons were performed using repeated-measures ANOVA, Pearson’s r, and the intraclass 
correlation coefficient (ICC). Mean Sørensen-Dice coefficients for segmentation accuracy ranged 
between 0.89 and 0.93 and erroneous segmentations were scarce. Ranges of torsion as measured 
by both readers and the algorithm on the same axial image were 15.8°–18.0° (femur) and 33.9°–
35.2° (tibia). Correlation coefficients (ranges, .968 ≤ r ≤ .984 [femur]; .867 ≤ r ≤ .904 [tibia]) and ICCs 
(ranges, .963 ≤ ICC ≤ .974 [femur]; .867 ≤ ICC ≤ .894 [tibia]) indicated excellent inter-reader agreement. 
Algorithm-based analysis was faster than manual analysis (7 vs 207 vs 230 s, p < .001). In conclusion, 
fully automatic measurement of torsional alignment is accurate, reliable, and sufficiently fast for 
clinical workflows.

Torsional deformities of the lower limbs are defined as abnormal rotation of the proximal bone axis versus the 
distal bone axis and may adversely affect joint health directly or indirectly. In addition to hip, knee, and ankle 
pain, torsional deformities predispose to gait abnormalities such as “in-toeing” or “out-toeing” and are associ-
ated with tripping, patellar malalignment and dislocation as well as other osseous deformities that may persist 
into adulthood1. Moreover, torsional deformities have been implicated in the etiopathogenesis of slipped capital 
femoral epiphysis2, femoroacetabular impingement3, Legg–Calvé–Perthes disease4, developmental dysplasia of 
the hip5, and osteoarthritis6.

Exact quantification of torsional deformities is a prerequisite for successful operative treatment and favourable 
long-term outcomes7. Originating in the 1970s, torsional alignment has traditionally been measured by computed 
tomography (CT)8. To reduce radiation exposure to the paediatric patient population, Magnetic Resonance 
Imaging (MRI) techniques have evolved9 to be diagnostically equivalent with traditional CT techniques while 
fitting into tight clinical schedules10,11.

For both CT and MRI, accuracy and reliability are challenged by substantial intra- and inter-reader variability 
that may be as high as 10.8° and 15.6°, respectively12, which may be largely attributed to inconsistent level, obliq-
uity, and method of selecting the respective reference lines8,10. Yet, even with à-priori selected axial or oblique 
images, the variability persisted8,13, highlighting the difficulty of correctly and reliably identifying pertinent axes 
in 3D objects (such as bone) using 2D images.

In this era of much-sought standardization, there is a clear need for standardized, accurate, and reproduc-
ible evaluation of lower limb torsion that may be addressed by deep learning. Deep learning techniques refer to 
a subtype of machine learning that rely on computational networks to learn from image data by progressively 
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extracting higher-level features without manual engagement. Such techniques have been applied across the dis-
ciplines, including medical image processing14. In musculoskeletal radiology, the diagnostic possibilities of deep 
learning are ample and include image reconstruction, image data transformation, tissue segmentation, workflow 
support, opportunistic screening, compositional analysis, and disease detection15–21. To our knowledge, deep 
learning techniques have not been studied as a diagnostic support system for the assessment of torsional align-
ment. Against this background, this study’s purpose was to develop, train, and validate a deep learning-based 
diagnostic support system for automatic segmentation and post processing of torsional alignment on MRI. Our 
hypotheses were that (i) lower limb torsion may be accurately and automatically determined on clinical MRI 
studies of the hips, knees, and ankles and that (ii) the torsional angles thus obtained are as accurate as those 
determined manually by radiologists yet at a fraction of the time demand.

Results
Patient characteristics.  Complete MRI studies of 93 patients were included. Patients were children, teen-
agers, and young adults (mean age, 13.1 years ± 5.0 [standard deviation]; range 5–34 years; 52 males). After their 
random allocation to the training (n = 60), validation (n = 9), and test sets (n = 24), demographic details of the 
sets were largely similar (Supplementary Table 1).

Segmentation performance.  Similarity of the automatic and manual segmentation outlines was evalu-
ated on the patients of the test set with two lower limbs each. Mean Sørensen-Dice coefficients to quantify simi-

Figure 1.   Representative cases that challenged correct segmentation and determination of reference lines. 
(a) Motion artefacts during the pelvic MRI scan (a1) caused smearing of the images at the level of the femoral 
head (a2) and neck (a3), erroneous delineation of the femoral head contour (a4), and incorrect identification 
of the femoral neck axis through the greater trochanter (a5). (b) Motion artefacts during the MRI scan of the 
knee (b1) created an artificial protrusion of the medial femur (b2) that did not negatively affect the reference 
line (b3). (c, d) Prominent and variable epiphyseal plates at the tibia (c) or femur (d) were associated with 
inaccurate segmentations (block arrows in c2, d2) that caused misplacement of the reference line (c3) or not (d3). 
(e) Post-surgical changes and fat graft interposition at the anteromedial tibia (°) after physiolysis (e1) caused 
inaccurate segmentation (e2) but did not negatively affect the reference line (e3). (f) At the hip, immature bone 
characterized by the cartilaginous greater trochanter and femoral neck (* in f1) is segmented incorrectly (f2) and 
the femoral neck axis is identified too caudal (f3). (g) Similarly, cartilaginous femoral and tibial condyles (* in g1) 
are characzterized by incorrect segmentations and reference lines (g2, g3). Inset coronal images framed in blue 
indicate the height of the axial slices. Patient age and gender: 9 years and male (a, c), 11 years and male (b, e), 
12 years and male (d), 5 years and male (g).

Table 1.   Mean femoral and tibial torsion as determined by the Lee and ellipses methods. Readers are 
radiologist 1 (R1), radiologist 2 (R2), and the algorithm (Alg). Means (95% confidence intervals) [°]. Statistical 
analysis was performed by repeated measures ANOVA followed by pair-wise Tukey’s post-hoc test. Results of 
the other methods of determining femoral (according to the Reikeras, Tomczak, and Murphy methods) and 
tibial torsion (according to the bimalleolar and talus methods) are detailed in Supplementary Table 2. Adjusted 
p-values with significant differences indicated in bold type.

Method

Reader

p-values

Post-hoc test details

R1 R2 Alg Alg vs R1 Alg vs R2 R1 vs R2

Femoral torsion Lee 16.1 (11.6; 20.6) 18.0 (13.2; 22.9) 15.8 (11.0; 20.6)  < 0.001 0.859  < 0.001  < 0.001

Tibial torsion Ellipses 33.9 (30.8; 37.0) 34.3 (30.7; 37.9) 35.2 (31.7; 38.6) 0.311 0.212 0.622 0.877
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larity between manually and automatically segmented femoral and tibial outlines were 0.92 ± 0.02, 0.93 ± 0.03, 
0.93 ± 0.02, 0.93 ± 0.02, and 0.89 ± 0.02 for the proximal femur, the distal femur, the proximal tibia, the distal 
tibia, and the distal fibula, respectively, indicating excellent correspondence in all anatomic regions. Yet, erro-
neous segmentations occurred if (i) image quality was poor secondary to motion artefacts (Fig. 1a1-5, b1-3), if 
(ii) epiphyseal plates were prominent and heterogeneous (Fig. 1c1-3, d1-3), or if (iii) post-surgical changes were 
present, e.g., after physiolysis (Fig. 1e1-3). Erroneous segmentation outlines were also found in the presence of 
immature (pre-formed) bone (Fig. 1f1-3, g1-3). In some instances, incorrect segmentations affected the definition 
of the reference lines (Fig. 1a1-5, c1-3, f1-3, g1-3). At the ankle, all segmentations (48/48 joints) were correct, while 
at the knee (41/48 joints) and hip (42/48 joints), segmentations were partially incorrect because of excessive 
motion artefacts (3 joints), variable bone maturation (8 joints), post-surgical status (1 joint), and inhomogene-
ous bone texture (1 joint).

Quantification of femoral and tibial torsion.  Mean values of femoral and tibial torsion are indicated 
in Table 1 and Supplementary Table 2. Mean femoral torsion as determined by both radiologists varied between 
16.1° (Lee method, R1) and 32.2° (Murphy method, R1), while the algorithm quantified mean femoral torsion 
as 15.8°. Mean tibial torsion was equally variable and ranged from 20.9° (talus method, R1) to 34.3° (ellipses 

Table 2.   Metrics of inter-reader difference and agreement for femoral and tibial torsion as determined by 
the Lee and ellipses methods. Readers were the two radiologists (radiologist 1 [R1], radiologist 2 [R2]) and 
the algorithm (Alg). In a pair-wise manner, absolute differences [°] and agreement were quantified in terms 
of Pearson’s correlation coefficient r and the intraclass-correlation-coefficient (ICC, single scorings [not 
adjusted]). Means (95% confidence intervals). na – not applicable. Results of the other methods of determining 
femoral (according to the Reikeras, Tomczak, and Murphy methods) and tibial torsion (according to the 
bimalleolar and talus methods) are detailed in Supplementary Table 3.

Method Comparison

Absolute difference [°] Pearson’s r ICC

R2 Alg R2 Alg R2 Alg

Femoral tor-
sion Lee

R1 2.6 (1.9; 3.3) 3.3 (2.5; 4.0) 0.984 (< 0.001) 0.968 (< 0.001) 0.974 (0.96, 
0.99)

0.963 (0.93; 
0.98)

R2 na 3.7 (3.0; 4.5) na 0.971 (< 0.001) na 0.966 (0.94; 
0.98)

Tibial torsion Ellipses
R1 5.0 (4.0; 6.0) 4.2 (3.2; 5.1) 0.871 (< 0.001) 0.904 (< 0.001) 0.865 (0.77; 

0.92)
0.867 (0.78; 
0.92)

R2 na 5.1 (4.1; 6.2) na 0.867 (< 0.001) na 0.894 (0.82, 
0.94)

Figure 2.   Manual reference measurements to determine femoral and tibial torsion at the levels of the hip, 
knee, and anke. Anatomic landmarks were used to define the reference lines at the hip in line with the 
method suggested by Lee (PF proximal femur). The reference lines at the knee were delineated as the distal 
femoral reference line (DF distal femur) and as the proximal tibial reference line (PT proximal tibia), while 
the reference line at the ankle was determined using the ellipses method (DT distal tibia). The circles indicate 
the (superimposed) femoral head and ellipses along the medial malleolus and fibular notch, while dotted lines 
visualize the horizontal reference lines. Schematics of femur (yellow), tibia (purple), and fibula (light blue) on 
the right indicate the levels of the axial images. 12-year-old female. Please refer to Supplementary Figure 3 for 
a visualization of the other manual reference methods to determine femoral torsion (according to the Reikeras, 
Tomczak, and Murphy methods) and tibial torsion (according to the bimalleolar and talus methods).
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method, R2), with 35.2° determined by the algorithm. Post-hoc testing revealed significant differences between 
the algorithm and both radiologists for all femoral and tibial methods except for the Lee (Alg vs. R1 [p = 0.859]) 
and ellipses methods (Alg vs R1 [p = 0.212]; Alg vs R2 [p = 0.622]).

Inter‑reader agreement and differences.  The absolute inter-reader differences between R1 or R2 and 
the algorithm are detailed in Table 2 and Supplementary Table 3. Because the algorithm was implemented in 
close resemblance with the Lee and ellipses methods, the absolute inter-reader differences were lowest and the 
inter-reader correlations (0.968 ≤ r ≤ 0.971) and ICCs (0.963 ≤ ICC ≤ 0.966) were highest for these two methods. 
With increasing distance to the axial image used for the algorithmic definition of the reference lines, abso-
lute differences increased, and inter-reader ICCs decreased with lowest ICCs found for the Tomczak, Murphy, 
bimalleolar, and talus methods. Irrespective of the method used for defining the reference lines, inter-reader 
correlations between R1 or R2 and the algorithm were very strong 22 as indicated by 0.854 ≤ r ≤ 0.971. Between 
both radiologists, inter-reader agreement was excellent for femoral torsion (ICCs ≥ 0.976) and very high for 
tibial torsion (0.871 ≤ ICC ≤ 0.933), with corresponding mean absolute differences ranging from 2.6° to 3.2° and 
from 3.3° to 5.0°.

Supplementary Figure 1 visualizes inter-reader differences as a function of their means. No systematic bias 
in data distribution was observed.

Time demand.  On average, the algorithm-based analysis of femoral and tibial torsion of one lower limb 
took 7 s on the specialized workstation, which was significantly faster than the two radiologists (R1: 207 ± 17 s; 
R2: 230 ± 18 s; p < 0.001).

Discussion
In this study, we implemented an algorithm that automatically analyses lower limb torsion based on MRI. The 
algorithm performs well in segmenting bone outlines, in identifying relevant anatomy, and in quantifying tor-
sion and thereby renders the automatic measurements of torsional alignment accurate, reliable, stable, and fast 
for clinical workflows.

Recently, applications of machine learning have exploded across the disciplines, including musculoskel-
etal radiology, where they are intended to improve clinical workflows23. Analysis of torsion seems well suited 
because image acquisition is standardized9, clinical relevance is pronounced3, and manual reference methods 
are variable8,10.

With regards to clinical experience and requirements, we intentionally implemented an analysis pipeline of 
sequential segmentation and post-processing to allow the radiologist to review (and confirm) the outputs. For 
segmentations, we used a modified, yet conventional U-net convolutional neural network and found excellent 
segmentation accuracy as indicated by mean Sørensen-Dice coefficients of 0.89–0.93, which is comparable with 
state-of-the-art techniques24. Methodologically, the focus on the Sørensen-Dice coefficient may be justified, yet 
merely numeric considerations fall short on reflecting the algorithm’s performance in challenging anatomies. 
Segmentations were largely correct yet challenged by poor image quality (due to motion artefacts), heterogeneous 
epiphyseal plates (due to partial volume effects), post-surgical changes, and immature bone. These conditions 
were prone to inaccurate segmentations (and, subsequently, inaccurate reference lines) and may be improved 

Table 3.   Description of the methods for manual definition of femoral and distal reference lines as modified 
from8,10. For the reference lines at the knee and ankle, descriptive terminology (instead of the first descriptor’s 
personal name) was used because of as-yet equivocal terminology. Please note that the ellipses method is also 
referred to as the Ulm method or Waidelich method (‡)8,36 and that the algorithmic implementation was most 
similar to the Lee and ellipses methods.

Bone level Method Axial image Description of reference line

Hip/proximal femur

Lee et al.14 That visualizes femoral head center, femoral neck, and cephalic 
junction of greater trochanter (most proximal)

Connection between femoral head center and femoral neck  
center (single image)

Reikerås et al.15 That visualizes the femoral neck at the level where the anterior 
and posterior cortices run parallel

Connection between femoral head center and femoral neck axis 
(superimposed image)

Tomczak et al.16 That visualizes the greater trochanter at the level of the base of the 
femoral neck

Connection between femoral head center and midpoint of the 
greater trochanter (superimposed image)

Murphy et al.17 That visualizes the femoral neck’s base just cranial to the lesser 
trochanter

Connection between femoral head center and midpoint of the 
femoral neck’s base

Knee/distal femur Posterior Condyles18 That visualizes the largest diameters of the femoral condyles Connection between the medial and lateral posterior facets of the 
femoral condyles

Knee/proximal tibia Posterior Condyles18 That visualizes the tibial condyles just cranial of the fibular head Connection between the medial and lateral posterior facets of the 
tibial condyles

Ankle/distal tibia

Ellipses (‡)8,20 That visualizes the most distal tibia Connection of the centers of two ellipses along the medial  
malleolus and along the fibular notch

Bimalleolar8,15 That visualizes the medial and lateral malleoli and the talar dome Connection of the centers of the articulating cortices of the 
medial and lateral malleoli

Talus19 That is just caudal of the tip of the medial malleolus Line along the anterior surface of the talus
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by (i) increasing the number and diversity of image datasets, (ii) implementing pre-defined bone-shape mod-
els, and (iii) strictly controlling image quality. Including more MRI studies with variable (and dysplastic) limb 
shapes into the training set will most likely improve the segmentation performance. Yet, not least due to ordering 
practices of referring orthopedists, overall numbers of torsional MRI studies for adolescents remain low, not just 
at our institution10,11. Including active shape or appearance models may help in generating plausible segmenta-
tions. Traditionally, these models have used pre-defined bone shapes that undergo iterative deformation to fit 
the actual to the ideal bone contours, yet necessitate substantial manual pre-processing25. Recent approaches 
combine shape models with deep-learning techniques26,27 and may provide viable amendments to our method. 
Including control mechanisms of image quality may help exclude MRI studies with poor image quality, yet, for 
the time being, remain the radiologist’s responsibility.

Subsequent algorithmic post-processing was adapted to the specific anatomy. At the hip, the peripheral 
femoral neck was automatically identified and used as the proximal reference line. Our method is closest to the 
method of Lee28 who also used the most proximal axial image (where the femoral neck is narrowest) to connect 
the centres of the femoral head and neck. While our method identified the femoral head to locate the peripheral 
femoral neck, Lee used it as part of the reference line. Also, our method defined the femoral neck axis as the 
reference line, whereas Lee estimated the femoral neck centre as part of the reference line. Despite these differ-
ences, both methods were numerically closely related in terms of mean torsion angles, absolute differences, and 
inter-reader correlations. Notably, inter-method variability was comparable to inter-reader variability, which 
underpins the method’s reliability. Alternative manual reference methods according to Reikeras, Tomczak, or 
Murphy29–31 use more distal axial images for the proximal reference line. Because the distal femoral neck is more 
posterior (versus the proximal femoral neck), femoral torsion was higher and significantly different from our 
method. Nonetheless, inter-method correlation in terms of Pearson’s r was excellent, irrespective of the reference 
method, while ICCs gradually decreased. In our study, Pearson’s r seems the more intuitive measure of associa-
tion than the ICC, because each value is scaled by its own mean and standard deviation for Pearson’s r, while all 
data are pooled for the ICC32.

Around the knee, the most posterior extensions of the medial and lateral condyles were identified on the 
axial images with the largest convex bone areas and connected as the reference lines. While referencing to the 
posterior condyles is largely consented8–11,28,33 and highly reproducible8,29, some discrepancies remain on the 

Figure 3.   Schematic visualization of the U-net convolutional neural network used for automatic segmentations 
of femur (yellow), tibia (purple), and fibula (light blue). Global information were compressed to a more compact 
global representation. Local information was preserved by skip connections which passed the more detailed 
images directly to the decoder path. Up-sampling was performed by bilinear interpolation followed by 1 × 1x1 
convolutions. The rectified linear unit (ReLU) was applied in all layers except the last, where a Softmax layer 
determined each voxels’ class probabilities. 3D convolutions aimed to reflect the high dimensionality of the MRI 
data. Instance normalization was chosen due to small batch size.
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exact definition of the axial plane34. Our method lends itself more to automation than others that involve distance 
measurements and anatomic considerations11,34.

At the ankle, the tibial and fibular centroids were connected as the reference line. Automatically defining the 
centroids proved reliable and did not result in erroneous segmentations. However, this method may lose accu-
racy in cases with abnormal or displaced fibulae35. Numerically, our method was related closest to the ellipses 
method that connects the centers of two ellipses placed along the medial malleolus and the fibular notch8,36. This 
finding is plausible as both methods use similar axial images, yet inter-reader agreement was slightly lower than 
for femoral torsion. Likely, fitting ellipses to non-spherical geometries to define their centers introduces more 
variability than determining the centroids directly. Alternative manual reference methods such as the bimalleolar 
and talus methods used more distal axial images8,37 and were characterized by lower tibial torsion. In line with 
earlier studies8,34,35, these findings reflect the different axes of the talocrural joint38 and highlight the value of 
methodologic consistency. Most likely, the lower ICCs (and very high Pearson’s r) for the distal methods are 
indicative of differences in reference images, lines, and anatomy.

This study has limitations. First, patient numbers were limited which is mainly due to conservative ordering 
practices that is still heavily reliant on CT and reduces the availability of MRI studies. Second, we only assessed 
T2-weighted sequences that had been acquired using a specific scanner-coil-configuration at a single site, while 
other institutions may use different settings so that variability across vendors, platforms, and sequences remains 
unaccounted for. Consequently, the algorithm’s generalizability (and multi-institutional validation) remain to be 
addressed. Third, even though consecutive patients from the clinical routine were included (and no patients were 
excluded for medical reasons), our results relate to younger patients with non-traumatic torsional deformities 
only, while post-traumatic conditions were not assessed. Fourth, alternative deep learning-based methods that 
derive predictions of torsional alignment directly from the MR images (without necessitating additional bone 
segmentation, landmark identification, and reference line definition as intermediate steps) were not evaluated 
and may improve predictions.

Figure 4.   Algorithm-based identification of proximal and distal femoral and tibial reference lines to determine 
lower limb torsion. (a) At the hip, the femoral head centre was identified and used to define the femoral neck 
axis that served as the proximal femoral reference line. (b, c) Around the knee, the most posterior extensions of 
the medial and lateral femoral and tibial condyles were identified and connected as the distal femoral (b) and 
proximal tibial reference lines (c). (d) At the ankle, the tibial and fibular centroids were connected as the distal 
tibial reference line. RL reference line. MR images are not to scale.
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In conclusion, femoral and tibial torsion can be automatically assessed on clinical MR images of the hip, knee, 
and ankle joints based on U-net convolutional neural networks for segmentation and algorithm-based analyses 
of anatomic landmarks and reference lines. The developed methodology is sufficiently accurate, reliable, and 
fast to enhance clinical workflows.

Materials and methods
Study design.  This is a retrospective single-center comparative imaging study that was conducted in 
accordance with local data protection regulations. The local ethical committee (Ethical Committee of the Medi-
cal Faculty, RWTH [Rheinisch-Westfälische Technische Hochschule] Aachen University, reference no. 028/19) 
approved the study and waived the requirement to obtain individual informed consent. All pediatric and adult 
patients who had undergone torsional MRI, consisting of stacks through the pelvis, both knees, and both ankles, 
between July 2013 and August 2020 were identified by a database query. Of the 107 patients thus identified, 
14 were excluded because at least one joint was missing (n = 8) or motion artefacts were excessive (n = 6). The 
flowchart is visualized in Supplementary Figure 2. Otherwise, no further exclusion criteria were defined and 
patients with skeletal dysplasia, other skeletal abnormalities, and orthopedic hardware were included to reflect 
clinical reality. Eventually, datasets of 93 patients were included and randomly allocated to strictly separated 
training (n = 60, 65%), validation (n = 9, 10%), and test sets (n = 24, 26%). On the training set, the algorithms 
were developed and trained to perform image segmentation and post processing, while on the validation set, the 
optimal hyperparameters that determine the network’s structure and training were validated. On the test set, the 
optimized algorithm’s performance was evaluated.

Image acquisition.  MR images were acquired on a clinical 3.0 T MRI scanner (Achieva, Philips). Neutral 
position of the supine patient was maintained by extending the knee joints with the patellae facing as anterior 
as possible while position was maintained by sandbags and positioning aids. The inbuilt body coil was used 

Figure 5.   Visualization of the algorithm-based identification of the reference lines. Indicated are the original 
MR images (a1-d1), their segmentation outlines on selected axial images (a2-d2), and the corresponding reference 
lines (a3-d3) as determined by the algorithm. Proximal femur (a), distal femur (b), proximal tibia (c), and distal 
tibia (d). Reference lines and points are blue. For algorithmic details please refer to Fig. 4. Femur (yellow), tibia 
(purple), and fibula (light blue). 19-year-old female.
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for streamlined image acquisition from pelvis to feet while eliminating the need for repositioning. Following a 
triplane localizer sequence, axial T2-weighted non-fat-saturated 2D turbospin-echo sequences were acquired in 
three stacks over the pelvis (both hips), knees, and ankles using the protocol detailed in Supplementary Table 4. 
Centered on the joint, 29 slices were acquired to fully cover each joint.

Manual reference measurements.  Two clinical radiologists (M.H. and S.N., with 1 and 8 years of expe-
rience in musculoskeletal imaging) performed the manual reference measurements on the anonymized test 
set using the RadiAnt DICOM Viewer (version 2020.1.1, Medixant) and its standard image analysis toolbox. 
Established methods of reference were chosen as visualized in Fig. 2 and Supplementary Figure 3. At the hip, the 
reference lines were defined from proximal to distal according to Lee28, Reikerås30, Tomczak31, and Murphy29, 
while at the knee, the posterior femoral and tibial condyles were connected33. At the ankle, reference lines were 
identified using the ellipses, bimalleolar, and talus methods8,36,37. The individual methods to define the reference 
lines are described in Table 3.

Projected angles between the proximal and distal reference lines were determined to calculate torsion. Internal 
(or external) rotation of the distal relative to the proximal bone is reflective of antetorsion (or retrotorsion)9. 
Also, radiologists’ time demand for bilateral measurements of femoral and tibial torsion based on the Lee and 
ellipses methods was measured on eight random MRI studies.

Manual segmentations.  The bone contours of the femur, tibia, and fibula were manually delineated on 
all slices as ‘ground truth’ segmentations. DN (student of the imaging sciences) labeled the bone contours using 
ITK-SNAP software (v3.8, Cognitica; https://​www.​itksn​ap.​org) and its function of semiautomatic segmentation39 
after being trained on five MRI studies by an experienced musculoskeletal radiologist (SN) who also reviewed all 
segmentation outlines for accuracy and consistency.

Algorithm‑based segmentations.  For automatic segmentations, we used a U-net convolutional neural 
network as suggested previously40. At a depth of 6, the network was designed with 16 filters per convolution that 
doubled with each pooling layer (Fig. 3). Minor modifications to the original network architecture40 included 
(i) instance normalization instead of batch normalization (due to small batch sizes), (ii) trilinear interpola-
tion for up-sampling followed by 1 × 1 × 1 convolution instead of transposed convolutions (to reduce parameter 
numbers), and (iii) 3D convolutions instead of 2D convolutions (to reflect the higher dimensionality of the MRI 
data). Data pre-processing was implemented based on a self-adapting framework that yields excellent segmenta-
tion results24 and included resampling to the median voxel spacing of 0.6 × 0.6 × 6.5 mm3, cropping, and padding. 
The voxels’ signal intensity distribution was normalized to a mean of 0 and a standard deviation of 1 across the 
whole image.

During training, modelled predictions of segmentations were compared to the ground truth by employing a 
combination of the soft Dice loss on all foreground classes, i.e., femur, tibia, and fibula, and the categorical cross-
entropy loss on all classes24. Calculated loss values were used to optimize the network parameters using stochastic 
gradient descent optimization with adaptive moment estimation (Adam)41 and a learning rate scheduling system 
that avoids local minima by decreasing the learning rate by two on training plateaus through monitoring of the 
moving training loss average. To avoid overfitting, data were augmented by including a random choice of motion, 
ghosting, spiking, and bias-field artifacts42. Training was performed on a state-of-the-art graphic-processing-unit 
(GeForce RTX 3090, NVIDIA) with a batch size of 1 and an initial learning rate of 0.001.

Algorithm‑based analysis of torsion.  After segmentations, femoral and tibial torsion were determined 
based on the proximal and distal reference lines and used to quantify each bone’s torsion. The algorithmic proce-
dures are schematically visualized in Fig. 4 and described in detail in the Supplementary Text 1. In a representa-
tive patient, Fig. 5 visualizes the original MR images, the automatic segmentation outlines, and the correspond-
ing reference lines.

Algorithm availability and time demand.  The algorithm is publicly available on GitHub (https://​github.​
com). Time demand for analysis of torsion in one lower limb (consisting of three MRI stacks) was determined on 
a specialized workstation with a dedicated graphic-processing-unit (Intel-Core i7-9700 K@3.60 GHz, GeForce 
RTX 2080 Ti, NVIDIA) and evaluated against the manual reference measurements using one-way analysis of 
variance (ANOVA).

Statistical analysis.  Statistical analysis was performed by J.S. and S.N. using the Python libraries statsmod-
els and NumPy, GraphPad Prism software (version 9.1.1), and R software (version 4.0.2). The Sørensen-Dice 
coefficient quantified correspondence of manual and automatic segmentation outlines of femur, tibia, and fibula. 
The D’Agostino-Pearson omnibus normality test was used to confirm underlying normality in torsional values. 
Torsional angles are reported for each reader, i.e., radiologist 1 (R1), radiologist 2 (R2), and the algorithm (Alg), 
and for the different methods that were used to select the proximal femoral and distal tibial reference lines. Abso-
lute inter-reader differences were determined using absolute values. Inter-reader correlations and agreement 
were determined using Pearson’s correlation coefficient r and the intraclass-correlation-coefficient (ICC, single 
scorings, not adjusted). Repeated measures ANOVA followed by Tukey’s post-hoc tests were used for pairwise 
inter-reader comparisons. Multiplicity-adjusted p-values are reported throughout to account for multiple com-
parisons against the family-wise alpha error threshold of p ≤ 0.05.

https://www.itksnap.org
https://github.com
https://github.com
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Data availability
The main data supporting the results in this study are available within the paper and its Supplementary Informa-
tion. Any additional datasets generated and analyzed in this study are available from the corresponding author 
on reasonable request.

Code availability
The software routines developed, validated, and implemented are publicly available on GitHub (https://​github.​
com). Any other data for research purposes are available from the corresponding author upon reasonable request.
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