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Analyses of the spatial localization and the functions of bacteria in host plant habitats through in situ
identification by immunological and molecular genetic techniques combined with high resolving micro-
scopic tools and 3D-image analysis contributed substantially to a better understanding of the functional
interplay of the microbiota in plants. Among the molecular genetic methods, 16S-rRNA genes were of
central importance to reconstruct the phylogeny of newly isolated bacteria and to localize them
in situ. However, they usually do not allow resolution for phylogenetic affiliations below genus level.
Especially, the separation of opportunistic human pathogens from plant beneficial strains, currently allo-
cated to the same species, needs genome-based resolving techniques. Whole bacterial genome sequences
allow to discriminate phylogenetically closely related strains. In addition, complete genome sequences
enable strain-specific monitoring for biotechnologically relevant strains. In this mini-review we present
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Opportunistic human pathogens
Metagenome and transcriptome analyses
N-acyl-homoserine lactones
high resolving approaches for analysis of the composition and key functions of plant microbiota, focusing
on interactions of diazotrophic plant growth promoting bacteria, like Azospirillum brasilense, with
non-legume host plants. Combining high resolving microscopic analyses with specific immunological
detection methods and molecular genetic tools, including especially transcriptome analyses of both
the bacterial and plant partners, enables new insights into key traits of beneficial bacteria-plant interac-
tions in holobiontic systems.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction and historical aspects of the discovery of department at the University of Bayreuth, Germany, initiated a ser-

endophytes with focus on Azospirillum and related diazotrophs

More than one decade ago, the hologenome theory was intro-
duced to express the tight interaction of microbes with animals
and plants as basis for a better adaptation to changing environ-
mental conditions with implications for co-evolution and specia-
tion [1]. Holobionts are multicellular eukaryotic organisms living
together in a symbiont-like manner with different types of external
and internal microorganism (e.g. endophytes), which contribute
essential life traits [2,3]. A more recent study concludes, that in
order to understand speciation in the frame of the hologenome
concept holobionts do not necessarily need to be viewed as units
of selection, but it is sufficient to consider them as units of tight
co-operation of eu- and prokaryotic organisms [4]. Looking back,
it took a long time until this detailed view of omnipresent organis-
mic interactions was established by firm evidence, because the
appropriate methodological approaches had not been available.
First evidences for bacterial endophytes, i.e. bacteria colonizing
the interior of plants, were already published in the late 19th cen-
tury. In 1887, M. L. V. Galippe reported the isolation of bacteria
from the interior of different plants and postulated soil as origin
of these bacteria [5]. Since he could not further prove their location
and identity, these findings were heavily criticized. However, Hell-
riegel and Wilfarth demonstrated in 1888 the presence of endo-
phytic bacteria within root nodules of legumes and their
contribution of nitrogen for plant growth (reviewed by R.H. Burris)
[6]. The general concept of the ‘‘rhizosphere” as the habitat where
plant roots attract beneficial and pathogenic soil microbes by their
exudates was finally coined by L. Hiltner in 1904 [7]. He found that
microbes were enriched around the roots, but also recognized
bacteria-like bodies within roots, which he called ‘‘bacteriorhiza”
[8]. This term was coined in analogy to the term ‘‘mycorrhiza”,
which had been defined in 1885 for filamentous organisms within
roots by Albert Bernhard Frank, a German botanist and biologist. In
1893, Hiltner and Nobbe developed the first efficient Rhizobium-
based inoculants, which they called ‘‘Nitragin”, based on their dis-
covery of host specificities in Rhizobium-legume symbioses [9].
However, Hiltner was not successful to establish plant growth pro-
motion by bacterial inoculation of non-leguminous plants. His
quite early death in 1923 and the difficult post-world war situation
in Germany contributed to slow down scientific progress in this
field. For many decades no further major breakthrough on plant
growth promoting bacteria was reported. Only in the 1970s new
interest arose on plant beneficial bacteria after the isolation and
introduction of Azospirillum spp. by Döbereiner and Day [10]. In
the 1980s for example Baldani and coworkers [11,12], and Caval-
cante and Döbereiner [13] from EMBRAPA-Agrobiologia, Seropé-
dica, RJ, Brazil, isolated and characterized new diazotrophic
bacteria from roots of different important crop plants. The high
engagement and dedication for their science in combination with
establishing a worldwide cooperation including sharing newest
results as well as newly isolated strains by Johanna Döbereiner
helped enormously in developing this field of research. Most
recently, a book describes Johanna Döbereineŕs life as highly
engaged scientist [14]. In 1981, Walter Klingmüller, head of genetic
ies of six biannual workshops entitled ‘‘Azospirillum: Genetics,
Physiology and Ecology” bringing together the international
research community on Azospirillum and related microorganisms
– the last two workshops were organized by Istvan Fendrik, Mad-
dalena del Gallo and Jos Vanderleyden [15–20]. While the first four
workshops were focused on research about Azospirillum spp.,
increasing interest and research activities also on other plant-
growth promoting bacteria led to a broadening of the subject in
the workshops V and VI. The articles in the corresponding proceed-
ing books not only document the groundbreaking establishment of
molecular genetic tools for Azospirillum by several research groups
and discoveries of new endophytic diazotrophic bacteria, but also
most interesting work by different groups on outstanding physio-
logical properties, like e.g. the cyst-formation of Azospirillum spp.,
and early field application trials [15–20]. In parallel, an interna-
tional symposium series ‘‘Biological Nitrogen Fixation with Non-
Legumes” started in 1979; the XVIth symposium of this series
was held in August 2018 in Foz de Iguacu, Brazil, attracting more
than 300 participants (www.mpcp2018.com.br). Quite recently,
the current status of research on endophytic diazotrophic rhi-
zobacteria was also summarized by Reinhold et al. [21] and Kandel
et al. [22].

The challenge for pioneering research on endophytic dia-
zotrophs and other plant growth promoting bacteria was not only
to understand the biochemical and genetic processes characteriz-
ing the basis for plant growth promotion, but also the ecology of
the interaction with their host plants as fundament of the benefi-
cial action. The ultimate applied goal was to use these bacteria as
so-called ‘‘biofertilizer” or ‘‘biostimulants” towards the establish-
ment of sustainable agricultural management. In the 1980s, sub-
stantial agronomic applications were still far away on the
horizon, while within the last ten years several Azospirillum
brasilense strains [23] and other PGPRs including biocontrol-
active Gram-positive bacteria [e.g. [24]] have been applied
successfully in agro-biotechnology worldwide. However, in this
mini-review, the vast development of Gram-positive inoculants
has not been covered. It is still a key issue to provide unequivocal
evidences for the colonization and localization of the bacteria as
well as their in situ activities in the rhizosphere and within the
plant. Serological and molecular genetic techniques suitable for
these in situ analyses have been developed over the years, but
always have to be adapted for successful identification, localiza-
tion and quantification of bacteria in their specific association with
plants. In addition, key functions in the beneficial interaction of
rhizobacteria with plants needed to be identified. Moreover, the
development of culture independent approaches was necessary
to overcome the bias of studying only culturable members of the
plant microbiome. In this review, a number of techniques and
approaches are presented from a historical to current develop-
ment perspective, which allows the detailed analysis of the com-
position of beneficial plant microbiota – even down to the level
of monitoring specific inoculant strains - and their functions lead-
ing to plant growth promotion. Furthermore, a scientific based
distinction of plant beneficial from opportunistic human patho-
genic bacteria is addressed.
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Techniques for resolving the diversity and function of the plant
microbiome at highest resolution

Serological techniques coupled with confocal laser scanning
microscopy (CLSM) as identification and quantification tools

The prerequisite of creating antibodies is the availability of bac-
teria in pure culture, which certainly is a limitation for the applica-
tion of this approach, since many plant-associated bacteria are
difficult to cultivate. After developing fluorescent-labeled mono-
clonal antibodies against A. brasilense Sp7 which are directed
against EPS-cell surface compounds [25,26], confocal laser scan-
ning microscopy (CLSM) was successfully used by Schloter et al.
in 1993 for the first time to produce clear images of these bacteria
being embedded in the rhizoplane matrix [27]. Using the confocal
technique as well as silver enhancement of the antibody detection,
the root colonization pattern of the plant growth promoting
Rhizobium leguminosarum bv. trifolii R39 was characterized in dif-
ferent gramineaeous plants in 1997 by Schloter et al. [28]. In the
same year, Yanni et al. [29] could also demonstrate the endophytic
colonization of rice by the N2-fixing symbiont Rhizobium legumi-
nosarum bv. trifolii strain C6 in Egyptian berseem clover (Trifolium
alexandrinum) applying immunofluorescence techniques. This
demonstrated for the first time an intimate colonization also of rice
by Rhizobium. In the case of A. brasilense, monoclonal antibodies
against the putative endophytic strain Sp245, isolated from surface
disinfected wheat roots [30,31], demonstrated a different coloniza-
tion pattern of roots by the strains Sp7 and Sp245: strain Sp7 col-
onized wheat roots mostly at the root-surface, while strain Sp245
was able to enter the root, colonizing the apoplast tissue in wheat
roots [32]. In addition, also quantitative colonization data of Sp7
and Sp245 in wheat plants could be obtained by the
ELISA-technique, confirming the microscopic evidences of different
colonization patterns [32]. Furthermore, in situ expression of speci-
fic enzymes (e. g. nitrogenase) in different rhizobacteria colonizing
their host plant could be achieved using this technique [33].

Monoclonal or mono-specific polyclonal antibodies are also
unique tools to easily enrich and cultivate a high diversity of
root-associated bacteria of the same or closely related species from
the root and the rhizosphere using the antibody based immuno-
trapping technique [34]. For example, antibodies against whole
cells of a rhizosphere isolate of Ochrobactrum anthropi were coated
on microtiter plates, followed by adsorption of soil extracts. After
proper washing steps, the bound bacteria were desorbed with
0.1 M KCl-solution. This resulted in a more than 100-times enrich-
ment of this specific group of bacteria and isolates of this particular
species could be easily obtained. Thus, the influence of the crop
plant, management practices, and ecotoxicological effects of
applied agrochemicals on the micro-diversity spectra of Ochrobac-
trum anthropi communities in soils and the rhizosphere could be
isolated and studied [35]. Even isolates of closely related new spe-
cies could be retrieved using the immuno-trapping approach [36].
The application of this immuno-enrichment technique turned out
to enable access to a hidden bacterial micro-diversity and should
be applied more generally. In this straightforward approach, a
greater diversity of saprophytic and beneficial rhizobacteria of
specific species may be achieved.

Ribosomal RNA as identification marker with limitations to separate
closely related strains

The establishment of a phylogenetically based natural system of
organisms for the domains Archaea, Bacteria and Eucarya by Carl R.
Woese, Otto Kandler and Mark L. Wheelis in 1990 [37] was the
landmark for a molecular approach to the phylogeny of Bacteria
and Archaea. The 16S rRNA genes of Bacteria rapidly became the
gold standard of molecular phylogenetic analysis, because the ribo-
somal RNA is present in all organisms and its sequence has highly
conserved and variable regions. This facilitates the design of pri-
mers or oligonucleotide probes, usually 16–20 nucleotides long,
with specificities to different taxonomic levels: probes complemen-
tary to conserved regions of the 16S or 23S rRNA will identify all
bacteria of a high taxonomical rank, e.g. family or domain level,
while for targeting bacteria on genus or in some cases - if a differ-
entiation is possible - even species level, probes need to target
highly variable regions of the rRNA specific to the taxonomic group
of interest. In addition, the rRNA genes are expressed at very high
levels in physiologically active cells (with copy numbers up and
over 10.000), are more stable compared to mRNA due to their sec-
ondary structure and are therefore good targets for labelling the
bacteria with fluorescent probes. Consequently, cells with low
activity have usually low rRNA contents, resulting in low fluores-
cence labeling due to an insufficient number of target sites for the
probes. This means on the one hand that positively labeled cells
are very likely also functionally relevant for the analyzed habitat,
but on the other hand also implies that this method is of limited
use for targeting bacteria with low physiological activity. In addi-
tion, the cell wall penetration of applied probes has to be optimized,
i.e. due to their differences in cell wall structure, Gram-negative and
Gram-positive cells need to be treatedwith different fixation proto-
cols to enable the phylogenetic probes to get into the cells [38].
Despite some obvious limitations of this approach, so-called ‘‘phy-
logenetic stains” became rather quickly a widely employed tool to
identify single cells using the Fluorescence In Situ Hybridization
(FISH) technique [39]. In combination with flow cytometry, FISH
was successfully applied to quantify single cells [40] or to identify
and localize bacterial consortia in complex natural habitats with
the help of highly resolving confocal laser scanning microscopy
and differentially labeled sets of oligonucleotide probes [41].

The first application of the FISH-technique coupled with CLSM-
application to characterize plant microbiota was to identify and
localize A. brasilense strains in the rhizosphere of wheat [42]. The
inoculated A. brasilense bacteria colonizing the root surface and
intercellular spaces in the epidermis had swollen cyst-likemorphol-
ogy harboring high ribosome content, which verified earlier evi-
dences from light and electron-microscopic scanning [42]. The
productive cooperation with the institute of Prof. Karl-Heinz Sch-
leifer (TUMünchen), coming from the ‘‘phylogenetic school” of Prof.
Otto Kandler (LMU München), was very helpful to establish the
FISH-technique for rhizosphere research. It could further be demon-
strated that A. brasilense strain Sp245 could colonize wheat roots
also endophytically. Some root hairs or intercellular spaces in the
root cortex and even cortical cells were heavily colonized by
the strain Sp245 showing high staining intensity with the
rRNA-targeted oligonucleotide probes reflecting high physiological
activity of the bacteria [42]. A combination of a differentially
fluorescence-labeled monoclonal antibody against A. brasilense
Wa3, and a species-specific oligonucleotide for A. brasilense
revealed a different colonization profile of the strains Wa3 and
Sp245 [43]. In the 1990s, when six Azospirillum specieswere known,
all Azospirillum spp. could be clearly distinguished using a set of dif-
ferentiating oligonucleotide probes [44]. At present, 19 different
Azospirillum species are known and validly published, which makes
it difficult to clearly allocate new isolates to one of these very closely
related species by 16S rRNA sequences and 16S rRNA directed
probes. Although the larger 23S rRNA gene and the 16S-23S rRNA
intergenic regions provide higher separating power, these different
species are impossible to separate with individual species-specific
probes. The present solution of differentiation and even
strain-specific identification is provided by the increasingly avail-
able whole genome sequences. Based on the comparison of the
different available whole genome sequences within one species,



Fig. 1. CLSM-image with adult sugarcane (green) samples, viewing unspecific
fluorescence signals in magenta ([46]).

Fig. 2. Optical sectioning through intact barley (Hordeum vulgare, red) roots
(19 days old) from a monoxenic quarz sand growth system colonized by inoculated
Herbaspirillum frisingense GSF30 fluorescently tagged by a constitutively expressed
chromosomal gfpmut3 gene (green).
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strain-specific sequences could be found for e.g. A. brasilense strain
FP2. Primers derived from these unique regions led to a specific and
quantitative amplification of the target strain even from natural
habitats like soil-grown wheat plants [45]. Thus, whole genome
sequencing is becoming an ever more popular approach and cur-
rently only suffers from a lack of genome information for type and
reference strains in the database.

There are also severe limitations for the application of the FISH-
technique to identify and localize endophytic bacteria. In many
environmental samples and also in adult field grown plants, like
sugarcane, multiple auto-fluorescent objects in the sizes of bacteria
are present in the tissue or within cells [46] (Fig. 1). Therefore, an
alternative labelling method replacing fluorescence was necessary.
Schmidt et al. [47] developed a modification of the CARD-FISH-
protocol using gold-particles resulting in a specific bacterial iden-
tification using scanning electron microscopy as detection method
for the deposited gold-particles. Nevertheless, this technique is
limited to surface scans and therefore thin sections are required
for the analysis of endophytic communities.
Fluorescent protein-tagging for in situ analysis of structural and
functional aspects

A very powerful cell labelling method is the tagging with a con-
stitutively expressed gene coding for a fluorescing protein, like the
green-fluorescent protein (GFP). The basics and variations of this
approach were reviewed by Crivat and Caraska [48]. Several appli-
cations for studying rhizosphere bacteria were reviewed by
Reinhold-Hurek and Hurek [49]. Fig. 2 shows fluorescence-
tagged Herbaspirillum frisingense cells located within root tissue.
Alternatively the tagging gene can be inserted under the control
of a promotor from a gene of interest to study its expression
in situ [50]. Furthermore, a GusA-kanamycin reporter gene was
inserted into the nifH-genes of an A. brasilense wild type and
ammonium-excreting strains to facilitate an expression analysis
in barley roots [51]. Quantitative data can be retrieved even from
field samples, as was demonstrated by You et al. [52]. In a GFP-
tagged Herbaspirillum the expression of nifH was quantified by
RT-qPCR and related to the amount of the tagged bacteria coloniz-
ing rice endophytically.

Concluding this phylogenetic and identification part, it can be
stated that 16S rRNA-based phylogeny is still the prerequisite
for powerful approaches of bacterial identification, including
in situ localization by FISH as well as high-throughput amplicon
sequencing based community analysis (discussed in the next
section), but the applications are limited. Detailed resolution
of diversity and functional aspects in a strain-specific resolution
may also need molecular tagging approaches or advanced bioin-
formatic analyses based on whole genome sequence
information.
Community metagenomics and functional transcriptomics of bacteria
and plants

Undoubtedly, the culture-independent analysis of complex bac-
terial communities associated with plants would not be possible
without using PCR-based amplification of different regions of the
16S rRNA gene. As prerequisite, DNA or RNA needs to be isolated
from plant material and purified to remove plant substances
inhibiting the PCR enzymatic reactions. While a proper quality of
DNA/RNA is quite easily achievable from plant seedlings, especially,
from soil free model experiments, it can be very challenging to
obtain sufficiently pure DNA/RNA in enough quantity from field
grown, adult plants. However, after optimization, this important
initial step of microbial community analysis was achieved in sev-
eral cases. For example, Fischer et al. [53] retrieved many bacterial
16S rRNA sequences fromfield grown sugarcane plants, whichwere
not known from cultivation-based approaches. From their data it
became obvious that a high diversity of diazotrophic bacteria
colonized roots and stems and also a high diversity of nifH-genes
was expressed. However, from the five inoculated strains of
the EMBRAPA-inoculum (Gluconacetobacter diazotrophicus
Pal5T-BR11281, Nitrospirillum amazonense Cbamc-BR11145,
Herbaspirillum seropedicae HRC54-BR11335, Herbaspirillum
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rubrisubalbicans HCC103-BR11504, and Paraburkholderia tropica
PPe8T-BR11366), only Gluconacetobacter diazotrophicus Pal5 was
found to be able to colonize sugarcane roots and stems for several
months [53]. A high diversity of different active Rhizobium and
Bradyrhizobium species was also found in these adult, field grown
sugarcane plants, based on retrieved 16S rRNA. This clear demon-
stration of hitherto only rarely observed diversity of Rhizobium and
Bradyrhizobium strains colonizing sugarcane and other non-legume
plants triggered the attempt to isolate these bacteria in scavenging
experiments with broad host range legumes [54], which resulted
in the successful isolation of a diversity of Bradyrhizobia. The knowl-
edge about the high diversity of uncultured bacteriawithin the plant
microbiota also led to isolation approaches not aiming for single bac-
teria through specific enrichment procedures but forwhole commu-
nities in non-selective complex media. Indeed, this yielded the
growth of bacterial consortia, including species which could not be
isolated from the plant microbial community before. This has been
exemplified for the sugarcane community yielding complex plant
growth promoting consortia [55]. However, as this approach is diffi-
cult and lacks reproducibility, it seems more straightforward to iso-
latemembers of the plantmicrobiota using plant derived cultivation
media and subsequently combining these individual pure isolates
based on functional criteria (so-called ‘‘syncoms”).

The crosstalk of beneficial endophytic bacteria and their plant
hosts during the interactions is of key importance to understand
holobiontic interactions and to optimize the efficiency of inocula-
tion trials. Several highlights of important ecophysiological and
interactive traits for plant microbiota and their hosts in a holobion-
tic context could be already identified by metagenomic and espe-
cially transcriptomic studies at both the bacterial and plant side
[56–59]. Metagenome and transcriptome analyses on both bacte-
rial and plant side during the interaction contribute very important
functional information. However, to guarantee the reliability and
reproducibility of these types of results principles for standardiza-
tion have to be followed, as was learned from human microbiome
research [60,61]. Based on frequently expressed genes during the
interaction of plant endophytic bacterial communities in the holo-
biont context, functions like e.g. osmoadaptation, phytohormone
Fig. 3. Phylogenetic tree (ITS-region of the 16S-23S rRNA genes, maximum-likelyhood m
production, oxygen tolerance and quorum sensing are of particular
relevance.

Discrimination of plant beneficial bacteria from closely related
human pathogenic bacteria exemplified by A. brasilense and
Roseomonas fauriae

The rhizosphere is a habitat, which is colonized by a phenotyp-
ically wide spectrum of bacteria: from symbionts to pathogens.
This has been pointed out by Berg et al. [62] and more recently
by Mendes et al. [63], who highlighted the presence of plant ben-
eficial, plant pathogenic and human pathogenic microorganisms
in the rhizosphere. Already Lorenz Hiltner had proposed that many
‘‘wanted or unwanted guests” are attracted by root derived nutri-
ents [7]. Even within a particular rhizobacterial genus, species with
plant beneficial and pathogenic phenotypes are known [64].

In recent years, isolates with almost identical 16S rRNA to A.
brasilense type strain Sp7, which also have high root colonization
potential [65], were retrieved from wounds and other human
sources. These isolates had been originally classified as Roseomonas
fauriae or R. genomospecies 6, but lately they were reallocated to
the A. brasilense species [66], based on wet DNA-DNA-
hybridization analysis using the re-association method according
to Brenner et al. [67]. Also, the ITS region of 16S-23S rRNA genes
and many household genes are almost identical (Fig. 3).

However, recent whole genome DNA-DNA hybridization analy-
ses using a spectrophotometric determination of re-association
kinetics [69] revealed only 61.2% and 54.4% DNA-DNA sequence
identity between A. brasilense Sp7T and Roseomonas fauriae and R.
genomospecies 6 (measurements of DSMZ, Braunschweig, Ger-
many, unpublished) (Table 1). This definitely argues for a phyloge-
netic separation of A. brasilense from these opportunistic
pathogenic Roseomonas bacteria. These results were corroborated
by in silico determinations of ANI-values (Average Nucleotide Iden-
tity) based on whole genome sequences [70]. Based on a concate-
nated phylogenetic analysis of rpoD- and 16S rRNA gene sequences
[70], it was further proposed to separate the A. brasilense strains
into three closely related species: A. brasilense sensu stricto,
ethod with 50% conservation filter) of Azospirillum spp. and Roseomonas spp. [68]



Table 1
Spectrophotometric DNA-DNA hybridization analysis, according to Huss et al. [69] of
A. brasilense Sp7T to several A. brasilense strains, Roseomonas fauriae, and R.
genomospecies 6 (data from Deutsche Stammsammlung für Mikroorganismen and
[68]).

Azospirillum brasilense Sp7T

Azospirillum brasilense FP2 96.5%
Azospirillum brasilense Sp245 54.0%
Azospirillum brasilense NH 56.0%
Azospirillum brasilense Az39 48.3%
Azospirillum lipoferumT Sp59b 28.7%
Roseomonas fauriaeT KACC1694 61.2%
Roseomonas genomospecies 6 CCUG33010 54.4%
Roseomonas mucosaT KACC11684 12.5%
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A. formosense [71] and A. himalayense [72]. Thus, it became appar-
ent, that there is an unresolved micro-diversity within the species
of A. brasilense. In addition, the plant endophytic A. brasilense
strains Sp245, Az39, and strain NH, isolated from salt-affected
wheat rhizosphere from Northern Algeria [73], were all shown to
have DNA-DNA-hybridization values around 50% compared to
the A. brasilense Sp7T (Table 1). Therefore, further DNA-DNA
hybridization studies and whole genome sequence analyses are
necessary to clarify the relationship within A. brasilense and closely
related species and their phylogenetic relationship to R. fauriae and
R. genomospecies 6.

The application of whole genome-based comparative software
tools together with the assessment of the pathogenic potential of
each species [74], finally helped to clarify the difficult case of dis-
tinction between saprophytic or beneficial and pathogenic strains
within the genus Burkholderia. This genus harbored a large number
of species with human pathogenic or opportunistic pathogenic
phenotypes as well as environmental and plant growth beneficial
and symbiotic species. For a long time, there was a situation, when
regulatory authorities banned every environmental release of a
Burkholderia strain, including the beneficial and even symbiotic
ones. Now, based on the available complete genome sequence data,
conserved sequence indels (CSI) were successfully used as molecu-
lar marker for the demarcation of the Burkholderia groups [75].
Finally, there are at present three different genera within the
Burkholderia cluster: (i) Burkholderia, containing the pathogens
and opportunistic pathogens, (ii) Paraburkholderia, comprising
the plant-associated and -beneficial species, and (iii) the Caballero-
nia cluster, a group of environmental species [76]. An even more
complex situation is present within the species Serratia marcescens.
Strains of environmental and nosocomial origins were intermixed
without any handle to separate them based on a strict and efficient
scientific approach. Whole genome multilocus sequence types
(wgMLSTs) and core genome multilocus sequence types (cgMLSTs)
were created with the PHYLIP program UPGMA algorithm creating
two sectors representing strains with environmental or nosocomial
origins [64]. Since there were even genomes identified, which
reflected intermediary genomic situations, there is the chance to
have even closer insights into steps of micro-evolution to optimize
the fitness in an apparently altered habitat.

Major traits of rhizosphere bacteria for efficient root
colonization

Osmoadaptation

Lack of available water is causing stress to each living organism,
because all life processes and essential proteins and cellular struc-
tures are dependent in their native conformation on available
water molecules. Due to their molecular structure, several small
molecules, so-called osmolytes, like proline, glycine betaine,
ectoin, and trehalose are able to replace water molecules to some
degree [77]. During osmoadaptation, organisms activate the syn-
thesis or uptake of these and similar substances within their cells.
Since these osmolytes are functional across different organisms,
microbes and higher organisms can help each other out under
water stress [78]. They also enable to protect salt-sensitive
enzymes and stabilize cellular structures and functions by balanc-
ing the osmotic pressure in plant cells against the outside osmotic
pressure caused by salt or water deficiency. In saline soils, osmo-
tolerance mechanisms are omnipresent. For rhizosphere bacteria,
osmoadaptation has selective power also in non-saline soils,
because salt is being concentrated around the roots during the con-
tinuous uptake of water by the plant, resulting in an accumulation
of ions in the rhizosphere. In addition, during daytime, the transpi-
ration stream causes water deficiency in the rhizoplane, which
may only be replenished during night time by slow diffusion of
water from root-distant soil habitats. This water dynamics and
the increasing salt-pollution of soils made osmo-adaptation and
osmo-tolerance important traits in rhizosphere bacteria [79].
Moreover, the salt-tolerant IAA-producing rhizobacterium A. brasi-
lense NH isolated from salt-affect rhizosphere soil of wheat in
northern Algeria, can replenish specific phytohormones, like indole
acetic acid (IAA, i.e. auxin), which are not sufficiently produced by
salt-stressed root tissues [80]. In salt-affected soils, the 1-aminocy
clopropane-1-carboxylate (ACC)-deaminase activity of rhizobacte-
ria is of particular relevance, because due to this enzymatic activ-
ity, elevated levels of ethylene are reduced in roots, which would
inhibit plant activities drastically [81,82]. It is remarkable that
the occurrence of the ACC-deaminase gene is rather frequent in
plant-associated bacteria from saline habitats and there are indica-
tions of horizontal gene transfer of this beneficial trait [83].

Among Azospirillum spp. different levels of osmotolerance can
be found [84]. A. halopraeferens has the highest salt-tolerance and
it could be shown that it is able to synthesize glycine betaine or
take up and transform choline into betaine [85], while A. brasilense
is only able to take up betaine glycine [86]. Trehalose is not
significantly used as osmolyte by A. brasilense. However, when
transformed with a plasmid harboring a trehalose biosynthesis
gene-fusion from Saccharomyces cerevisiae, A. brasilense Cd accu-
mulates trehalose under water stress and is able to grow up to
0.5 M NaCl. Furthermore, maize plants inoculated with this engi-
neered bacterium were able to withstand drought stress and
increase its biomass and grain yield [87]. The ability of salt-
tolerant A. brasilense and A. halopraeferens strains to utilize proline
and other amino acids as C-source for growth was only rather lim-
ited [88]. A. brasilense strains with increased NaCl-tolerance could
be isolated which proved to be spontaneously resistant to the toxic
proline antimetabolite dehydroproline under mild salt stress con-
ditions [89]. Another relevant stress adaptation in Azospirillum is
the cyst formation, which occurs when cells are challenged with
nutrient deprivation or desiccation. In Azospirillum this regularly
occurs, when cells are inoculated to roots as was shown in several
independent techniques [42]. The induction of cyst formation can
also be triggered by the application of fructose and nitrate as C-
and N-sources in laboratory media. Malinich and Bauer [90]
recently compared the metabolic and replicative gene expression
by transcriptome analysis in vegetative and cyst states of A.
brasilense.
Phytohormones and other growth enhancers

Besides IAA and derived substances with auxin activity, also
nitrogen oxide (NO) is often found as plant growth regulating com-
pound in rhizosphere bacteria. In the case of A. brasilense, which is
a most successful and widely used PGPR, it is documented that
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besides IAA also NO has a pronounced effect on the stimulation of
root growth [91].

It has been shown in inoculation experiments of mutants,
which produced only very low levels of NO, that root morphology
was almost not changed in contrast to the inoculation with the
NO-producing A. brasilense Sp245 wild type [92]. Similarly,
IAA-deficient mutants lost the activity of root growth stimulation.
The level of IAA-production could be increased in mutants of A.
brasilense SpCd, resistant to the antimetabolite 5-fluor-
tryptophan [93]. Inoculation of maize plants in an axenic system
with the IAA-overproducing mutant FT326 showed root growth
stimulation only at low inoculation densities and very low nitrate
levels compared to the wild type inoculation [94]. In a similar way,
mutants which show ammonium excretion could be selected from
A. brasilense Sp7 by Machado et al. [95] using the antimetabolite
ethylenediamine for ammonium assimilation. Using the
ammonium-excreting mutant HM053 as inoculant for maize or
wheat, nitrogen fixation and N-assimilation in inoculated plants
were changed compared to the wild type inoculation [96,97].

Thus, the application of mutations resulting in drastically
reduced or increased functions or the production of certain effector
molecules are of central importance in the assessment of func-
tional relevance of interaction traits. A detailed collection of phys-
iological properties of Azospirillum spp. by Hartmann and Zimmer
can be found in Yaacov Okon’s book on Azospirillum/plant associa-
tions [98].

Oxygen tolerance

Induction of reactive oxygen species is a key element of defense
reaction of plants. Thus, bacteria which approach plants need to be
equipped with defense measures against these toxic oxygen spe-
cies. In the case of the plant endophytic diazotroph Gluconaceto-
bacter diazotrophicus Pal5, mutants devoid of catalase and
superoxide dismutase were unable to colonize rice roots and to
establish an endophytic life style [99]. Another oxygen defense
mechanism uses O2-diffusion protection by gum production. Con-
sequently, mutants of Pal5 in gum-production lacked endophytic
colonization too [100]. In the case of the interaction of the dia-
zotrophic Burkholderia australis Q208 with sugarcane, a downregu-
lation of reactive oxygen production of plants could be
demonstrated by RNAseq during colonization by B. australis Q208
[59]. On the bacterial side, LPS- and flagella-production, which
are well-known elicitors for pathogen-associated molecular pat-
terns, were reduced in strain Q208 during the root colonization
process. Since also strain Q208 harbors the QS-related genes for
N-acyl-homoserine production [59], which are usually activated
during biofilm production and root colonization, it is quite possible
that they are involved in regulatory processes in the physiological
changes occurring during root colonization and the interaction
with plants (see below).

Bacteria-plant communication with focus on N-acyl
homoserine lactones

Bacterial quorum sensing signals are involved in many impor-
tant ecological functions, like biofilm formation, induction of
antibiotic production and virulence. In Gram-negative bacteria
N-acyl-homoserine lactones (AHL) were often found regulating
these processes through an activation of the luxI/luxR-type regula-
tory circuit [101]. It has been shown using AHL-biosensor con-
structs that the production of AHL-molecules was heavily induced
during the colonization of root surfaces by bacteria harboring the
luxI/luxR-type auto-inducing system [102,103]. The auto-
induction of AHL-synthesis can be activated already in micro-
colonies at the root surface due the spatial accumulation of the
AHL-compounds [103]. However, the excreted quorum sensing
molecules are not only sensed by neighboring rhizosphere bacteria,
but also by the plant hosts [104]. This trans-kingdom signaling
induces different responses in the plants, depending on the type
of AHLs (diffusible, water-soluble AHLs with short C-side chains
or lipophilic, water-insoluble AHLs with C-side chains from 12 to
14 C-units). Water-soluble AHLs are taken up actively into the plant
shoots inducing gene expression of antioxidative and xenobiotic
degradation genes in roots and shoots as well as phytohormonal
changes in the whole plant [105–107]. Also NO-accumulation and
membrane hyperpolarization accompanied by increased K+ uptake
are early events after AHL application to barley roots [108]. In con-
trast, water-insoluble AHLs prime the induction of systemic resis-
tance response in the plant hosts [109] and finally confer
increased resistance towards biotrophic and hemi-biotrophic
pathogens in wheat and Arabidopsis [110,111]. The central involve-
ment of QS-regulation in endophytic colonization of rhizobacteria
could also be demonstrated, when mutants devoid of luxI or luxR
homologous genes were tested for endophytic colonization. For
example, a negative mutant for AHL synthesis of the beneficial root
endophyte Acidovorax radicis N35 had reduced endophytic colo-
nization abilities. In contrast to the wild type, the AHL synthesis
mutant caused induction of the flavonoid biosynthesis genes, which
are known to be part of the plant defense response [112]. Thus, the
AHL-lacking mutant may not be recognized by the plant as benefi-
cial bacterium. Furthermore, an AHL receptor mutant of Gluconace-
tobacter diazotrophicus Pal5 was also no longer able to colonize the
plant host endophytically, since the QS-coordination was not func-
tioning (Hofmann A and Baldani JI, unpublished results). Thus, QS-
signaling in bacteria-plant interactions may not only act through
direct interaction with the plant, but also by establishing and coor-
dinating an adapted gene expression of traits like biofilm formation,
necessary for endophytic colonization. A. brasilense strain Ab-V5
(originally derived from A. brasilense Sp7T), applied in large scale
for about 10 years in Brazilian agriculture, was recently shown to
respond to N-acyl-homoserine lactones (especially 3-oxo-C8-HSL).
It showed increased biofilm and exopolysaccharide formation as
well as cell motility, because it harbours a luxR, but no luxI homol-
ogous gene [113]. Interestingly, while luxI homologues are missing
in A. brasilense, they are present in most of the A. lipoferum strains
[114]. Transconjugants of Ab-V5 carrying a plasmid with the N-
acyl-homoserine lactonase gene abolished the PGPR effect of the
wild type. The functionality of so-called luxR-solos reflect the
release of AHL-mimic compounds by the plant host [115] or by
the accompanying plant microbiome. As one important mechanism
of stimulation of plant performance, AHLs induce priming effects,
which are specific plant responses in the crosstalk of root-
colonizing bacteria with their plant hosts leading to an alert state
towards the attack of plant pathogens. It has been shown that a
wide variety of molecules can induce priming, besides AHLs also
including antibiotically active compounds, like lipopeptides of
pseudomonads and bacilli, as well as certain volatile compounds
[116,117]. The effects of priming are not visible in the absence of
pathogens, but in the situation of pathogen attack, the defense
responses are rapid and enhanced.
Conclusions and further perspectives

Thanks to the great methodological progress in the last two dec-
ades, there are now quite some ‘‘eye-opening insights” into many
structural and functional details of the plant associated micro-
biome and key interactions between the plant microbiome and
the host plant in the holobiont context [118]. However, the com-
plexity of interactions is overwhelming and thus the collection
and careful interpretation of further metagenome and transcrip-



10 A. Hartmann et al. / Journal of Advanced Research 19 (2019) 3–13
tome data needs to be intensified for a deeper understanding. This
should be supported by isolation approaches of novel bacteria
leading to defined inoculation experiments and testing of func-
tional hypothesis with mutant studies. In addition, the improve-
ment of their environmental fitness and key interaction traits
with the plant host (phytohormone production, ammonium excre-
tion) by spontaneous selection or chemical mutagenesis of already
established inoculation strains should be considered, since in some
cases these appeared quite feasible. The final goal is to implement
the knowledge about plant microbiome/host interactions under
field conditions into practical applications. Ideally, this would
mean to utilize synergistic effects in ‘‘synthetic” holobionts, where
a specifically tailored set of beneficial microbes is introduced to
plants which have been improved by selection, breeding or genetic
modification in supporting the beneficial plant microbiome in a
most productive manner. Within the ‘‘Plant Phytobiome” concept
[119] aiming to integrate biological, soil, climate and agricultural
management, a deeper understanding of key interaction and com-
munication processes of the plant and its microbiome within the
holobiontic context is urgently needed.
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