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ABSTRACT

Introduction: Real-world evidence is important in regula-
tory and funding decisions. Manual data extraction from
electronic health records (EHRs) is time-consuming and
challenging to maintain. Automated extraction using natural
language processing (NLP) and artificial intelligence may
facilitate this process. Whereas NLP offers a faster solution
than manual methods of extraction, the validity of extracted
data remains in question. The current study compared
manual and automated data extraction from the EHR of
patients with advanced lung cancer.

Methods: Previously, we extracted EHRs from 1209 pa-
tients diagnosed with advanced lung cancer (stage IIIB or
IV) between January 2015 and December 2017 at Princess
Margaret Cancer Centre (Toronto, Canada) using the
commercially available artificial intelligence engine, DAR-
WEN (Pentavere, Ontario, Canada). For comparison, 100 of
333 patients that received systemic therapy were randomly
selected and clinical data manually extracted by two trained
abstractors using the same accepted gold standard feature
definitions, including patient, disease characteristics, and
treatment data. All cases were re-reviewed by an expert
adjudicator. Accuracy and concordance between automated
and manual methods are reported.

Results: Automated extraction required considerably less
time (<1 day) than manual extraction (w225 person-hr).
The collection of demographic data (age, sex, diagnosis)
was highly accurate and concordant with both methods
(96%–100%). Accuracy (for either extraction approach)
and concordance were lower for unstructured data ele-
ments in EHR, such as performance status, date of diagnosis,
and smoking status (NLP accuracy: 88%–94%; Manual ac-
curacy: 78%–94%; concordance: 71%–82%). Concurrent
medications (86%–100%) and comorbid conditions
(96%–100%), were reported with high accuracy and
concordance. Treatment details were also accurately
captured with both methods (84%–100%) and highly
concordant (83%–99%). Detection of whether biomarker
testing was performed was highly accurate and concordant
(96%–98%), although detection of biomarker test results
was more variable (accuracy 84%–100%, concordance
84%–99%). Features with syntactic or semantic variation
requiring clinical interpretation were extracted with slightly
lower accuracy by both NLP and manual review. For
example, metastatic sites were more accurately identified
through NLP extraction (NLP: 88%–99%; manual: 71%–
100%; concordance: 70%–99%) with the exception of lung
and lymph node metastases (NLP: 66%–71%; manual:
87%–92%; concordance: 58%) owing to analogous terms
used in radiology reports not being included in the accepted
gold standard definition.

Conclusions: Automated data abstraction from EHR is
highly accurate and faster than manual abstraction. Key
challenges include poorly structured EHR and the use of
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analogous terms beyond the accepted gold standard defi-
nition. The application of NLP can facilitate real-world evi-
dence studies at a greater scale than could be achieved with
manual data extraction

� 2022 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Real-world evidence; Real-world data; Natural
language processing; Health records; Artificial intelligence;
Validation
Introduction
Real-world data describe patient health and experi-

ences outside of a structured clinical trial setting. As
patients receive medical care, large quantities of health
care data are generated through the maintenance of
health records, which has been accelerated by the
widespread adoption of electronic health record (EHR)
systems over the past decade. The currently accepted
standard for generating real-world data from structured
and unstructured EHR fields is manual data abstraction.
Whereas this approach has been proven effective, there
are drawbacks, such as being time-consuming, labor-
intensive, and expensive, making it an arduous process
that is highly susceptible to human error. These draw-
backs often limit the scale and scope of real-world evi-
dence studies.

To overcome these barriers, natural language pro-
cessing (NLP) has been explored as an alternate method
of data extraction from health records.1,2 NLP-based data
extraction can provide results more rapidly and on a
larger scale than could be achieved through manual
extraction. However, uncertainty remains surrounding
the validity of NLP-based extraction results, especially in
the context of free-text or dictated clinical notes.3–6

Recently, the commercially available artificial intelli-
gence (AI) engine, DARWEN (Pentavere, Ontario, Can-
ada), was evaluated against manual extraction of EHR
data from a tuberculosis clinic, successfully extracting
data from free-format clinical notes. The AI NLP method
generated rapid results that were also accurate.2

Extracted features were grouped to evaluate their ac-
curacy on the basis of linguistic and clinical complexity
into groups of “simple,” “moderate,” and “complex” var-
iables. To answer clinical questions, however, it is
important to be able to investigate each of these features
individually or grouped on the basis of the research
question at hand. To this end, we compared NLP-based
extraction with manual data extraction of clinical
features from EHRs of patients with advanced lung
cancer at a feature level.

Materials and Methods
Study Setting

A cohort of 1209 patients diagnosed with advanced
lung cancer (documented as stage IIIB or stage IV at
diagnosis) was identified through an institutional cancer
registry. DARWEN identified a subset of patients who
were diagnosed and treated at the Princess Margaret
Cancer Centre (PM) between January 2015 and December
2017, allowing for a minimum of 2 years of follow-up. The
resulting study cohort consisted of 333 adult patientswith
advanced lung cancer who had received any systemic
treatment at PM during this time (Fig. 1). DARWEN
extracted data from EHRs of these patients between their
dates of diagnosis until March 30, 2019. This study was
conducted in alignment with the approved protocol by the
University Health Network Research Ethics Board. As this
is a retrospective review of patient records, individual
patient consent was waived.

NLP Approach
Pentavere’s commercially available AI engine, DAR-

WEN, was used for NLP-based data extraction.7–10 This AI
engine combines linguistic (lexical, syntactic, and seman-
tic) rules-based algorithms, machine learning models, and
neural networks to extract relevant data from structured
and unstructured EHR fields. DARWEN’s capabilities have
been previously described in detail.2 Key innovations
since then include the use of transformer-based models
for classification and named entity recognition, and new
techniques to facilitate and acceleratemodel trainingwith
low volumes of training data.

Establishing the Ground Truth. All feature definitions
and the ground truth were developed and modified
through an iterative process whereby initial definitions
were established in partnership with an expert clinical
team from the PM. These definitions were then manually
tested using a subset of data to identify any discrep-
ancies between the definitions and the actual text, which
were resolved with further input from the clinical team.
This process allowed for multiple points of clinical input
and resulted in a comprehensive final set of definitions
that captured clinically relevant language for each
feature (Supplementary Table 1).

Training and Fine-Tuning Algorithms. DARWEN’s al-
gorithms were pretrained on other data sets and were
thenfine-tuned using a subset of patients from the present
cohort of 333 patients.2 Algorithms were tuned on the
basis of the feature definitions until accuracy, precision
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(positive predictive value), recall (sensitivity), and F1-
score targets were achieved. Accuracy measured the
overall effectiveness of the NLP algorithm by calculating
the ratio of correctly predicted outputs as a proportion
of the total. F1 score is the harmonic mean of precision
and recall and was used to evaluate the performance of

the algorithm
�
F1 score ¼ 2 � precision � recall

precision þ recall

�
. Algorithm

precision and recall were balanced on a case-by-case ba-
sis, favoring precision over recall, when necessary, as
dictated by research needs. Once the stability of these
targets was confirmed on other subsets of unseen data
from the study cohort, the algorithms were run on the
entire study cohort (n ¼ 333) and the results were
independently validated as described below.

Independent Manual Validation
The independent manual validation of these algo-

rithms included 100 randomly selected patient records
from the study cohort, which were not used for algo-
rithm training or fine-tuning. Two trained manual
abstractors from PM used the final set of feature defi-
nitions to extract clinical features from these same 100
patients. A third expert adjudicator reviewed the EHRs
in the case of disagreements between abstractors or
discrepancies between NLP and manual methods.

Clinical Features
Data extracted (described further below and in

Supplementary Table 1) included patient demographics,
smoking status, date of diagnosis, Eastern Cooperative
Oncology Group (ECOG) performance status closest to
date of diagnosis, tumor pathologic subtype, biomarker
testing, and results, comorbid conditions, number, and
location of metastases, types of systemic therapy, and
line of therapy (grouped by first-line or any line), and
concomitant immunosuppressive medication.

DARWEN extracted patient demographics, including
date of birth and sex, from unstructured clinical notes.
Date of birth and date of diagnosis, extracted from pa-
thology reports,were used to calculate age at diagnosis. All
mentions of smoking status were extracted from un-
structured clinical notes and contextualized to the date of
diagnosis. ECOG was extracted longitudinally, with cor-
responding timestamps, from the date of diagnosis to the
end of the study period. For the analyses included in this
study, the ECOG status documented the closest to each
patient’s date of diagnosis was used. All tumor histologies
identified as lung-related within pathology reports or
unstructured clinical notes were extracted and grouped
into adenocarcinoma, large cell, non–small cell, small cell,
or squamous carcinomas (based on the American Joint
Committee on Cancer, eighth edition). All documented
biomarker tests and results were extracted from pathol-
ogy reports or clinical notes, specifically for ALK, BRAF,
EGFR, KRAS, programmed death-ligand 1 (PD-L1), and
ROS1. PD-L1 resultswere extracted on the basis of explicit
mention of positive or negative findings (e.g., “patient is
PD-L1–positive”) and the tumor proportion score (TPS)
(PD-L1 <1%, 1%–49%, and �50%); both features were
not always present in the EHRs simultaneously. Any
diagnosis or positive history of the comorbid conditions of
interest were extracted from clinical notes (see
Supplementary Table 2). Any mention of metastases from



Table 1. Demographics and Disease Characteristics

Characteristic Number of Cases

Accuracy (%)

Concordance (%)NLP Manual

Age at diagnosis 100 100 99.0 99.0
Sex 100 100 100

Male 54
Female 46

Date of diagnosis (±30 d) 100 94.0 83.0 77.0
ECOG PS at diagnosis 93.0 78.0 71.0

0 16
1 54
2 14
3 13
4 1
Unknown 2

Smoking status 88.0 94.0 82.0
Nonsmoker 35
Former smoker 34
Smoker 31

Histologic subtype 98.0 98.0 96.0
Adenocarcinoma 66
Large cell 4
Non–small cell 3
Small cell 21
Squamous 6

First line treatmenta

Chemotherapy 59 95.0 96.0 92.0
Immunotherapy 6 99.0 100 99.0
Targeted Therapy 36 99.0 99.0 98.0

Treatment (any line)
Chemotherapy 69 94.0 94.0 88.0
Immunotherapy 12 98.0 98.0 96.0
Targeted therapy 40 99.0 84.0 83.0

aOne patient received combination therapy as first line treatment.
ECOG, Eastern Cooperative Oncology Group; NLP, natural language processing; PS, performance status.
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the predefined anatomical locations was extracted from
radiology reports at any time point after the date of diag-
nosis. Systemic therapies were extracted from clinical
notes at any timepoint after the date of diagnosis andwere
grouped into chemotherapy, immunotherapy, or targeted
therapy. First-line therapy was identified as the first
treatment(s) a patient received after diagnosis. For ana-
lyses, the line of therapy was categorized as first-line or
any line. Immunosuppressive medications specified as
being of interest by the study investigators were extracted
from the “currentmedications” section of the clinical notes
(Supplementary Table 3).

Statistical Analysis
The results of NLP and manual data extraction were

compared for accuracy against the expert adjudicator’s
final response. The concordance rate was calculated as
the percentage of agreement between the two extraction
methods. When applicable, sensitivity and specificity
were calculated for both methods.
Results
Before extracting data through either method,

clinical gold standard definitions were developed and
used to train both manual abstractors and NLP algo-
rithms. Once trained, NLP-based data extraction for
this study cohort (n ¼ 333) took less than 1 day,
whereas manual data extraction (n ¼ 100) took
approximately 225 hours.

Of the 100 patients included in the validation, 54%
were men, 66% had adenocarcinoma, 70% had an ECOG
of 0 to 1 at diagnosis, and 35% were nonsmokers. All
100 patients received systemic therapy, with 59 on
chemotherapy, 36 on targeted therapy, and six on
immunotherapy in the first-line setting (Table 1).
Demographics and Disease Characteristics
In general, patient demographics were reported with

high accuracy and concordance across extraction
methods as expected, given these elements were
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captured with low linguistic complexity (Table 1). Age at
diagnosis and sex were extracted from unstructured
sources with high accuracy by NLP (100% for both
features) and manual extraction methods (99% and
100%, respectively). NLP and manually extracted data
were 99% concordant for age and 100% concordant for
sex (Fig. 2A-F).

Many disease characteristics were reported with high
accuracy by NLP extraction as they were described using
a limited number of terms. The histologic subtype was
98% accurate across methods and was highly concor-
dant between NLP and manual extraction (96%). NLP
was more accurate than manual extraction for date of
diagnosis (94% versus 83%) and ECOG performance
status (93% versus 78%) with concordance between
methods of 77% and 71%, respectively.

The dynamic nature of some features adds further
complexity. For example, smoking status can change
over time with strict definitions of ex-smokers and
nonsmokers. However, detail in clinical notes may not
accurately categorize patient smoking status. Given these
challenges, manual extraction was slightly more accurate
than NLP for smoking status (94% versus 88%) with a
concordance of 82% between methods (Table 1).

Comorbidities
A total of 16 comorbidities were investigated, 11 of

which were found, extracted and validated from the
study cohorts’ EHRs (Supplementary Table 2). Comor-
bidities are reported in EHRs in a less content-rich and
more straightforward manner. Synonymous terms for
each comorbidity are incorporated into feature defini-
tions and are, therefore, captured highly accurately by
NLP. Comorbidities were reported with 96% to 100%
accuracy for both extraction methods with concordance
ranging from 93% to 100%. NLP extraction of more
frequent comorbidities was more sensitive than manual
extraction (50%–100% versus 20%–100%, respectively)
(Supplementary Table 2). Specificity was more similar
between methods (97%–100% versus 99%–100%,
respectively). In the case of less frequent comorbidities
(i.e., an occurrence of �1), specificity was 100% and
sensitivity ranged from 0% to 100% for both NLP and
manual extraction.
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Treatment Received
Cancer Treatment. Detailed cancer treatment informa-
tion in clinical notes was extracted. These treatments
were then expressed as Boolean variables capturing
whether chemotherapy, immunotherapy, or targeted
therapy were received as first-line therapy or were ever
received throughout the course of the patient’s treat-
ment. By expressing therapeutic information in such a
manner, the variability, and complexity surrounding
documentation of cancer treatments in clinical notes
were mitigated.

Type of first-line treatment (chemotherapy, immuno-
therapy, and targeted therapy) was extracted by both
methods with high accuracy (NLP: 95%–99%; manual:
96%–100%) and concordance (92%–99%; Table 1).
Sensitivity and specificity were high for both methods of
extraction, in which sensitivity ranged from 95% to 100%
(NLP: 97%–100%; manual: 95%–100%) and specificity
ranged from 93% to 100% (NLP: 93%–100%; manual:
100%). Treatments received at any line were also evalu-
ated (Table 1). Both NLP and manual methods performed
well when extracting chemotherapy (n ¼ 69) or immu-
notherapy (n ¼ 12) received at any point (94%–98% ac-
curacy across methods; 88%–96% concordance; 92%–
94% sensitivity; 94%–99% specificity). However, for pa-
tients receiving targeted therapy ever (n ¼ 40), manual
extraction either missed or incorrectly reported 16 cases,
resulting in lower accuracy (84% versus 99%, respec-
tively) and specificity (73% and 100%, respectively) than
NLP-based extraction, with 83% concordance.
Immunosuppressive Treatment. The study cohort was
screened for 11 different immunosuppressive medica-
tions, seven of which were received by patients
(Supplementary Table 3). Although all patients received
systemic therapy (n ¼ 100), only 66 patients received
concurrent immunosuppressive treatment. Dexametha-
sone (n ¼ 54) and prednisone (n ¼ 7) were the most
frequently administered immunosuppressive treat-
ments, with the remaining five medications each only
prescribed to one patient. When screening for the use of
dexamethasone, outputs between extraction methods
were 76% concordant. Manual extraction of dexameth-
asone was more accurate (96% versus 80%) than NLP
extraction, but similar specificity was observed across
methods (100% and 97.8%, respectively). Manual
extraction was also more sensitive (92.6% versus
64.8%) than NLP extraction of dexamethasone. This is
likely because of the inferred use of dexamethasone
as part of chemotherapy treatment protocols, despite a
lack of explicit mention of inclusion within the medical
records. As NLP did not have this clinical insight as part
of the feature definition, this contributed to missed
cases. Prednisone data were reported with 90%
concordance and were more accurately detected by NLP
than by manual extraction (100% versus 90%). NLP
extraction of prednisone data was also more sensitive
(100% versus 57.1%), and more specific (100% versus
92.3%) than manual extraction. Although cyclosporine,
eculizumab, hydrocortisone, hydroxychloroquine, and
methotrexate were taken by one patient each, it is worth
noting that manual extraction of hydrocortisone data
resulted in 14 false-positive results (NLP specificity
100% versus manual 85.9%).

Biomarkers
EHRs were screened for gene and protein alterations

often observed in lung cancer patients. These biomarker
reports are content-rich, and the report structure can
vary both between test types and over time. However,
whether a biomarker was tested is documented rela-
tively clearly and consistently in the clinical records. NLP
detected whether biomarker testing was performed with
98% to 99% accuracy for ALK (n ¼ 71), BRAF (n ¼ 19),
EGFR (n ¼ 72), KRAS (n ¼ 19), PD-L1 (n ¼ 29), and
ROS-1 (n ¼ 4; Table 2). Concordance between the
methods ranged from 96% to 98% across biomarkers.
NLP extraction across all biomarkers for whether testing
was performed resulted in high sensitivity (94.7%–
98.6%, except for ROS-1 with 50%) and high specificity
(96.6%–100%). Manual extraction reported biomarker
testing with 97% to 100% accuracy and was highly
sensitive (89.5%–100%) and specific (96.5%–100%).

Compared with whether a test has been performed,
the biomarker results may be recorded in multiple lo-
cations within a pathology report, adding a source of
variability to the extraction of these data. NLP extraction
of biomarker test results was highly accurate for ALK,
BRAF, EGFR, KRAS, and ROS-1 (95%–100%) and was
slightly less accurate for PD-L1 status (86%); accord-
ingly, concordance between methods varied across bio-
markers (86-100%). Biomarker status for ALK (n ¼ 8),
EGFR (n ¼ 29), and ROS-1 (n ¼ 1) was reported with
high sensitivity (NLP and manual: 100%) and specificity
(NLP: 98%–100%; manual: 98%–100%) across both
extraction methods (Fig. 3A). Similarly, PD-L1 results
were reported with high sensitivity (n ¼ 20; NLP: 94%;
manual: 100%) but with varying specificity (NLP: 73%;
manual: 100%). Both BRAF (n ¼ 1) and KRAS (n ¼ 3)
status were reported with low sensitivity (BRAF: 0%;
KRAS: 67%) and high specificity (BRAF and KRAS: 100%)
by NLP extraction. Manual extraction of these same
features was highly sensitive (BRAF and KRAS: 100%)
and specific (BRAF: 100%; KRAS: 95%). With few pa-
tients testing positive for BRAF, KRAS, or ROS-1, there is
expected variability in the sensitivity of these extracted
data.



Table 2. Biomarker Testing and Results

Biomarker

Biomarker Testing Performed Biomarker Results Captureda

Number tested

Accuracy (%)

Concordance (%) Positive Cases

Accuracy (%)

Concordance (%)NLP Manual NLP Manual

ALK 71 99.0 97.0 96.0 8 98.6 98.6 97.2
BRAF 19 99.0 98.0 97.0 1 94.7 100 94.7
EGFR 72 98.0 98.0 96.0 29 100 98.6 98.6
KRAS 19 99.0 98.0 97.0 3 94.7 94.7 89.5
PD-L1 29 98.0 100 98.0 20 86.2 100 86.2
ROS1 4 98.0 100 98.0 1 100 100 100
aOut of the corresponding number of patients tested.
NLP, natural language processing; PD-L1, programmed death-ligand 1.
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Metastases
Metastatic sites were detected with varying concor-

dance (70%–99%) between NLP and manual data
extraction methods (Table 3). NLP extraction was more
accurate than manual extraction for the detection of
adrenal (96% versus 77%), brain (99% versus 71%),
and bone (95% versus 81%) metastases. NLP-based
extraction less accurately detected metastases in the
lymph node (66% versus 92%) and lung (71% versus
87%) compared with manual extraction. For all other
metastatic sites, NLP and manual data extraction were
comparably accurate: abdominal (88% versus 86%),
liver (96% versus 95%), pericardium (99% versus
100%), renal (99% versus 99%), and spleen (99%
versus 97%). Whereas NLP-extracted data were re-
ported with high specificity (97%–100%), sensitivity
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Se
ns

iti
vi

ty
Sp

ec
ifi

ci
ty

0
10

20
30

40
50

60
70

80
90

10
0

10
0

90
80

70
60

50
40

30
20

10
0

ALK EGFR ROS1 PD−L1 KRAS BRAF

100 100 100 100 100 100

94.4

100

66.7

100

0

100

98.4 98.4 100
97.7

100 100

72.7

100 100
94.8

100 100

71 72 4 29 19 19
8 29 1 9 3 1

No. Tested Cases:
No. Positive Cases:

NLP data extraction Manual data extraction

A B

Figure 3. Sensitivity and specificity of (A) biomarker status resu
ligand 1.
varied widely (33%–100%; Fig. 3B). Similarly, manually
extracted data was more specific (69%–100%) than
sensitive (10%–100%). Metastases are sometimes re-
ported vaguely in radiology reports, with findings
frequently being reported as being suspicious (and all
the various ways of saying this) but not confirmed.
As such, it can be difficult to identify from a passage of
text alone whether a mass is explicitly considered to
be metastatic. Clinical interpretation by manual ab-
stractors can increase the accuracy of some extracted
features but can also present an opportunity for incor-
rect interpretation of the text. In this study, clinical
judgment exercised by manual abstractors when
reviewing metastases resulted in low sensitivity.
Whereas sensitivity of metastases extracted by NLP also
varied widely, NLP was able to more consistently
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Table 3. Metastatic Sites of Disease

Site of Metastasis Positive Cases

Accuracy (%)

Concordance (%)NLP Manual

Abdominal 15 88.0 86.0 74.0
Adrenal 18 96.0 77.0 73.0
Brain 29 99.0 71.0 70.0
Bone 52 95.0 81.0 76.0
Liver 23 96.0 95.0 91.0
Lung 55 71.0 87.0 58.0
Lymph 57 66.0 92.0 58.0
Pericardium 3 99.0 100 99.0
Renal 3 99.0 99.0 98.0
Spleen 4 99.0 97.0 96.0

NLP, natural language processing.
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capture reported metastases based solely on the estab-
lished definitions.
Discussion
This study illustrates the validity of a commercially

available NLP tool to extract feature-level data from the
EHRs of patients with advanced lung cancer. Many pre-
vious studies either grouped features on the basis of
clinical and linguistic complexity,2, or extracted a single
feature from clinical documentation.6,11–13 This study
implemented DARWEN to extract clinical features
through an automated NLP-based method. These fea-
tures were validated against a manually extracted data
set compiled by two extractors and reviewed by an
expert adjudicator with extensive clinical knowledge.
The results of NLP-based data extraction were largely
comparable to those of the expert manual extraction
team, with a few exceptions in which NLP outperformed
manual review, or, conversely, was challenged by fea-
tures requiring clinical interpretation. The sensitivity,
specificity, accuracy, and concordance of both extraction
methods were evaluated for all extracted features,
however, from a clinical perspective, accuracy, and
concordance are more important. Regardless of meth-
odology, extracting this data from EHRs is critical for
real-world evidence studies and is also necessary for
identifying patient subgroups for respective analyses;
NLP-based extraction achieves this more rapidly and at a
larger scale than could be accomplished with manual
review alone.

Despite a single set of feature definitions used across
both methods of data extraction, there is an opportunity
for interpretation from the set definitions by manual
reviewers, leading to variability in extracted results. In
some cases, this benefits manual review, as clinical
judgment outside of the established feature definitions
can be used to identify cases not explicitly documented
in the EHR. NLP-based extraction, however, will identify
features on the basis of how they are described in the
established feature definitions and explicitly captured in
clinical notes. Given that certain metastatic sites are re-
ported with richer syntactic and semantic variation in
clinical notes, these features have slightly lower accuracy
by both NLP and manual extraction. Specifically, NLP
extracted lymph node metastases less accurately than
manual review owing to analogous terms used in radi-
ology reports not included in the feature definitions.
Similarly, it is often difficult to determine whether a lung
mass is metastatic, resulting in unclear documentation
within imaging reports. Here, clinical judgment allowed
the manual reviewer to identify lymph node or lung
metastases that were not explicitly documented as me-
tastases. Our iterative process used to define features
attempts to account for this complexity found across
clinical documents, but clinical documentation is often
not explicit and varies considerably in content and
quality.

Beyond linguistic complexities and unclear docu-
mentation, some clinical characteristics rely on
knowledge-based inference more than others. For
example, dexamethasone was extracted more accurately
by manual review than NLP owing to clinical knowledge
that many chemotherapy regimens include dexametha-
sone without explicit mention of this in the EHR. This
unique characteristic of dexamethasone administration
as part of chemotherapy was not incorporated into the
feature definitions for either manual or NLP review.
However, manual reviewers with clinical knowledge
naturally deviated from the definition to identify cases in
which dexamethasone was administered on the basis of
concomitant therapies. Another feature requiring clinical
interpretation was PD-L1 immunohistochemistry results.
During the study time frame, PD-L1 testing was a rela-
tively newer addition to routine biomarker testing in
advanced lung cancer patients, with rapidly evolving
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guidelines defining criteria for positive or negative PD-
L1 status. In 2015, at the beginning of this study
period, optimal immunohistochemistry cutoffs were
uncertain, and it was unclear which patients would
benefit from anti–PD-L1 agents.14 Subsequent studies
introduced various cutoffs for PD-L1 expression that
would determine whether a patient was labeled as
positive for PD-L1, ranging from a TPS of greater than
1% to greater than or equal to 50%.15,16 More recently it
has been suggested that both PD-L1 positive and nega-
tive patients may benefit from therapies targeting PD-
L1.17 Given the evolution of PD-L1 threshold re-
quirements, the way these results have been reported in
the EHR has shifted over time. To reflect this, two fea-
tures were developed for PD-L1 in this study: explicit
mention of “positive” or “negative” for PD-L1, and TPS
(<1%, 1%–49%, and �50%) of PD-L1. These two fea-
tures were not always simultaneously recorded, and
when PD-L1 status was not explicitly documented,
DARWEN did not infer positivity or negativity on the
basis of TPS alone. This resulted in slightly lower accu-
racy and specificity of NLP-extracted PD-L1 results when
compared with manual extraction, which was supple-
mented by clinical interpretation.

Dynamic variables are also a challenge to capture
accurately over time. For example, accurate capture of
smoking status goes beyond identifying the terms
“smoker” or “nonsmoker” in a patient’s record. The
specific definition of smoker status used in this study
requires that a “former smoker” has quit for at least 1
year before their date of diagnosis. This, in turn, requires
not only identifying the smoking status as above but also
determining whether the patient stopped smoking and
when. These ideas are often fragmented across multiple
notes throughout the patient record, and may be
repeated inconsistently or stated imprecisely, with only
approximate relative time (e.g., “patient is a smoker who
quit about 3 to 4 y ago”). Compound error is the
consequence of this fragmentation, imprecision, and
inconsistency; error accumulates at multiple levels,
creating a messy “picture” of the patient’s true smoking
status.

This study has several limitations, including some
inherent to the structure of EHRs and the content
captured in these documents. EHRs as a source of real-
world clinical data include both structured and un-
structured fields. Unstructured notes provide clinicians
with the opportunity to record clinical information us-
ing their preferred language, which can vary widely
over time. These unstructured notes can contain semi-
structured fields, which are formatted to capture clin-
ical data with relatively low syntactic variability. In
contrast, unstructured fields that are unformatted can
result in linguistic variability, presenting a challenge to
manual and NLP-based extraction alike. As this study
only includes EHRs of patients with advanced lung
cancer from a single cancer center in Canada, it may not
be representative of national or global EHR documen-
tation, necessitating varying degrees of tuning for
different cohorts of patients. The algorithms evaluated
in this study were applied to another hospital site in
Alberta, Canada, and achieved comparable results after
fine-tuning.18 Sensitivity and specificity were variable
across rare biomarkers in this cohort, emphasizing the
value of larger sample sizes for training and imple-
menting NLP and the potential benefit of purposefully
selected validation cohorts. Finally, despite our iterative
process of developing, testing, and modifying feature
definitions with input from clinical experts at each
stage, unanticipated language was encountered in some
patient records. In rare circumstances (e.g., lung and
lymph node metastases), this led to relatively lower
accuracy and sensitivity for extraction by NLP
compared with manual extractors, who could exercise
clinical judgment to interpret as they reviewed patient
records. When possible, subsequent work should
translate this clinical judgment into additional feature
definition requirements to improve NLP accuracy.
However, clinical judgment can be subjective, and cli-
nicians may disagree. Regardless, NLP-extracted data in
a consistent, objective, and accurate manner, and at a
much faster and larger scale than can be achieved
manually.

In conclusion, NLP-based data extraction from
structured and unstructured fields of EHRs is highly
accurate and produces results faster than manual
methods. Key challenges remain, including inconsistently
structured EHRs, and the use of complex, variable, and
vague terms to describe clinical information. Despite
these challenges, the use of NLP offers a practical alter-
native to traditional manual extraction, enabling real-
world evidence studies at a larger scale than ever before.
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