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Simple Summary: The collagen architecture in the extracellular matrix (ECM) is highly remodeled
in high grade serous ovarian cancer (HGSOC). Many of these tumors begin in the fallopian tubes (FT)
before metastasizing to the ovaries and it is important to study ECM alterations in carcinogenesis.
Here, we used Second Harmonic Generation (SHG) microscopy to classify changes in the collagen
fiber morphology in normal FT, and precursor pure p53 signatures and serous tubal intraepithelial
carcinoma (STICs) in tissues with no HGSOC. Using a machine learning approach based on image
features, we were able to discriminate the tissue groups with good classification accuracy. We
additionally performed mass spectrometry analysis of normal and HGSOC tissues to associate the
differential expression of collagen isoforms with fiber morphology alterations. This work provides
new insights into ECM remodeling in early stage HGSOC and suggests the combined use of SHG
microscopy and mass spectrometry as a new diagnostic/prognostic approach.

Abstract: Background: The collagen architecture in high grade serous ovarian cancer (HGSOC) is
highly remodeled compared to the normal ovary and the fallopian tubes (FT). We previously used
Second Harmonic Generation (SHG) microscopy and machine learning to classify the changes in
collagen fiber morphology occurring in serous tubal intraepithelial carcinoma (STIC) lesions that are
concurrent with HGSOC. We now extend these studies to examine collagen remodeling in pure p53
signatures, STICs and normal regions in tissues that have no concurrent HGSOC. This is an important
distinction as high-grade disease can result in distant collagen changes through a field effect mecha-
nism. Methods: We trained a linear discriminant model based on SHG texture and image features as
a classifier to discriminate the tissue groups. We additionally performed mass spectrometry analysis
of normal and HGSOC tissues to associate the differential expression of collagen isoforms with colla-
gen fiber morphology alterations. Results: We quantified the differences in the collagen architecture
between normal tissue and the precursors with good classification accuracy. Through proteomic
analysis, we identified the downregulation of single α-chains including those for Col I and III, where
these results are consistent with our previous SHG-based supramolecular analyses. Conclusion: This
work provides new insights into ECM remodeling in early ovarian cancer and suggests the combined
use of SHG microscopy and mass spectrometry as a new diagnostic/prognostic approach.

Keywords: HGSOC; STICs; precursor lesions; Second Harmonic Generation; collagen remodeling;
mass spectrometry
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1. Introduction

High Grade Serous Ovarian Cancer (HGSOC) is a highly metastatic disease, defined
genetically by mutations in the tumor suppressor genes Tp53, BRCA I, and BRCA II,
and DNA copy number alterations [1]. While these mutations are well-documented, the
associated effects in the tumor microenvironment (TME), especially in terms of remodeling
of the extracellular matrix (ECM), have not been well-studied. Such modifications occur
in essentially all epithelial cancers, and are important in HGSOC because this disease can
metastasize while the lesions are smaller than the resolution of clinical imaging modalities
(e.g., ultrasound, CT, MRI, and PET) [2–4].

Serum tests (CA125 and HE4) do not have sufficient specificity and sensitivity for early
reliable diagnosis [5–7]. As a result of these factors, in more than 70% of patients, HGSOC
is detected at an advanced stage when the treatment options are limited. We postulate that
the development of efficacious imaging/screening modalities requires a more thorough
understanding of the HGSOC microenvironment.

For this purpose, we utilized the high-resolution collagen specific, optical modality
of Second Harmonic Generation (SHG) microscopy to probe all levels of collagen struc-
ture (molecular through fiber). Importantly, we previously developed machine learning
algorithms to differentiate between normal and high-risk ovarian stromal tissues as well as
cancer sub-types based on the 3D collagen fiber morphology patterns [8]. We were able to
discriminate HGSOC and normal tissues with excellent classification accuracy (~95%) [9]
and other sub-types with good accuracy (~85%).

We have also documented sub-resolution macro/supramolecular changes (protein he-
lix attributes) and fibril organization (size and packing) in the aberrant tissue classes [10,11].
Collectively, these studies showed that the collagen fibers are more aligned in HGSOC
than in the corresponding normal tissues or other ovarian cancer sub-types and that the
underlying supramolecular and fibril structures are more disordered. These results are
consistent with improperly synthesized new collagen and/or faster turnover in normal
Collagen I (Col I).

As the majority of HGSOC cases originate through precursors in the fallopian tube
(FT) secretory epithelium [12–15], it is also important to investigate the corresponding
collagen alterations as these can be biomarkers for early diagnosis of the disease. Both
p53 signatures and serous tubal intraepithelial carcinomas (STICs) have been identified as
two early precursors of HGSOC in the FT [16]. Aside from a loss of cilia and outgrowth of
secretory cells, p53 signatures are defined by their aberrant and intense p53 staining [15].

In contrast, STICs are associated with high p53 intensity and the acquisition of cel-
lular changes, where the morphology becomes more disorganized. Malignant disease in
the FT (and primary ovary) that develops from the STICs has additional morphological
alterations along with a high proliferative index [1]. Similar to the ovarian TME itself, the
corresponding changes in the FT microenvironment, especially in terms of the collagen
architecture, are not well-known beyond standard hematoxylin and eosin (H&E) histology,
which is not sensitive to detailed fibrillar features.

We recently used SHG microscopy to investigate the collagen fiber structure in concur-
rent STIC and HGSOC fallopian tube tissues [17]. Interestingly, the collagen morphology
in HGSOC resembled that occurring in the ovary itself, and using a multivariate analysis,
excellent classification accuracy (~95%) was obtained relative to STICs and normal regions
in the same tissue. However, a more modest accuracy (~75%) was obtained between
normal and STIC regions, suggesting that more detailed analyses are required to define
these collagen structural changes.

Here, we extended these studies to pure p53 and STIC precursors to determine if early
changes in the collagen fiber morphology are detectable along with the p53 molecular
changes. It is also important to complete these studies in the absence of concurrent
HGSOC as these lesions can result in the transformation of distant collagen through a field
effect mechanism [18–21] and obscure the morphologic changes associated only with the
precursor states. We also used mass spectrometry to examine the molecular changes that
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underlie remodeling, e.g., the up- or down-regulation of collagen isoforms. The correlation
of differential isoform expression to changes in the collagen fiber morphology has not been
previously investigated, and we suggest that this analysis can provide useful insights into
remodeling in early disease progression.

2. Methods
2.1. Archived Human Tissues

In this retrospective study, archived fallopian tubes and ovarian tissues from the Uni-
versity of Wisconsin Carbone Cancer Center Tissue Bank and the University of Wisconsin
Department of Surgical Pathology were analyzed under an IRB-approved protocol (protocol
#2019-0211). Flash frozen normal (N = 3) and tumor fallopian tube tissues (N = 3) were
analyzed via mass spectrometry, while archived fallopian tube tissues (N = 12) were analyzed
via SHG microscopy. Table S1 provides additional information on the tissues evaluated.

2.2. Sample Processing, Histology, and Mapping of Precursor Lesions

The SEE-FIM protocol [12] was executed to identify fallopian tube samples with
HGSOC and HGSOC precursors. Paraffin blocks of the cases with confirmed normal, p53
signatures, STICs, and HGSOC were serially sectioned to obtain 5–10 µm thick sections. The
sections were stained with H&E to monitor the morphology and to confirm the presence
of HGSOC and its precursor lesions. The slides were also immunostained for p53 using
the DO-1 hybridoma (SantaCruz Biotechnology, SantaCruz, CA, USA). Adjacent sections
were retained as unstained slides for SHG imaging. The stained slides were examined by a
trained pathologist (P.W.) to confirm the diagnosis. This pathological review was used to
map the normal tissues, precursor lesions, and HGSOC in the unstained slides.

2.3. Sample Processing for Mass Spectrometry-Based Proteomic Analysis

Protein extraction and digestion. Each sample was dissolved in 1 mL of extraction
buffer (4% sodium dodecyl sulfate, 50 mM Tris-HCl, pH 8) and sonicated using a probe
sonicator (Thermo Fisher Scientific, San Jose, CA, USA). Protein extracts were reduced with
10 mM dithiothreitol (DTT) for 30 min at room temperature and alkylated with 50 mM
iodoacetamide for another 30 min in the Dark before quenching with DTT. The proteins
were then precipitated with 80% (v/v) cold acetone (−20 ◦C) overnight. The samples were
centrifuged at 14,000× g for 15 min after which supernatant was discarded.

The pellets were rinsed with cold acetone and air-dried at room temperature. Eight
molar urea was added to dissolve the pellets, and 50 mM Tris buffer was used to di-
lute the samples to a urea concentration <1 M. On-pellet digestion was performed with
LysC/trypsin (Promega, Madison, WI, USA) at a 50:1 ratio (protein: enzyme, w/w) at 37 °C
overnight. The digestion was quenched with 1% trifluoracetic acid, and the samples were
desalted with Sep-Pak C18 cartridges (Waters, Milford, MA, USA). The concentrations of
peptide mixture were measured by peptide assay (Thermo Fisher Scientific, San Jose, CA,
USA). Ten micrograms of peptide were aliquoted for each sample and dried in vacuo.

Liquid chromatography (LC)-tandem mass spectrometry analysis. The samples
were analyzed on a Q-Exactive quadrupole Orbitrap mass spectrometer (Thermo Fisher
Scientific, San Jose, CA, USA) coupled to a Waters nanoAcquity Ultra Performance LC.
Each sample was dissolved in 15 µL 4% acetonitrile (ACN) and 0.1% formic acid (FA)
in water before loading onto a 75 µm inner diameter homemade microcapillary column,
which was packed with 15 cm of Bridged Ethylene Hybrid C18 particles (1.7 µm, 130 Å,
Waters, Milford, MA, USA) and fabricated with an integrated emitter tip. Mobile phase A
was composed of water and 0.1% FA, while mobile phase B was composed of ACN and
0.1% FA.

LC separation was achieved across a 120-min gradient elution of 4% to 30% mobile
phase B at a flow rate of 300 nL/min. Survey scans of peptide precursors from 300 to
1500 m/z were performed at a resolving power of 70,000 with an automatic gain control
(AGC) target of 1 × 106 and maximum injection time of 250 ms. The top 15 precursors
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were then selected for higher-energy collisional dissociation (HCD) fragmentation with
a normalized collision energy of 30, an isolation width of 2.0 Da, a resolving power of
17,500, an AGC target of 1 × 105, a maximum injection time of 150 ms, and a lower mass
limit of 120 m/z. The precursors were subject to dynamic exclusion for 45 s with a 10 ppm
tolerance. Each sample was acquired in technical triplicates.

Data analysis. The raw files were searched against the UniProt Homo Sapiens re-
viewed Database (February 2020) using MaxQuant (version 1.5.2.8) [22] with trypsin/P
selected as the enzyme and two missed cleavages allowed. Carbamidomethylation of
cysteine residues (+57.02146 Da) was chosen as fixed modification and variable modifi-
cations included oxidation of methionine residues (+15.99492 Da), acetylation at protein
N-terminus (+42.01056 Da), and hydroxylation on proline residues (+15.99492 Da). The
“LFQ quantification” and “Match between runs” features were enabled in MaxQuant.
Search results were filtered to a 1% false discovery rate (FDR) at both the peptide and
protein levels.

Peptides that were found as reverse or potential contaminant hits were filtered out, and
all other parameters were set as the default. ECM proteins were identified and classified
by matching the results to Human Matrisome Dataset [23]. Proteins were considered as
identifiable when detected in at least one sample and quantifiable when detected in at
least two samples in each group. Missing intensities were replaced using the “replace
missing values from normal distribution” feature in Perseus [24] (version 1.6.0.7) prior to
further processing.

Two-sample Student’s t tests with a two-tailed distribution for binary comparison
and hierarchical clustering analysis were conducted using Perseus. The volcano plot was
generated using R packages. The mass spectrometry proteomics Data have been deposited
to the ProteomeXchange Consortium via the PRIDE partner repository [25] with the Dataset
identifier PXD025864.

2.4. Second Harmonic Generation (SHG) Microscopy

The SHG laser scanning microscope used here has been described in detail previously
and only the salient features are given here [26]. The excitation source was a mode-
locked Titanium Sapphire laser (Mira; Coherent, Santa Clara, CA, USA), providing 890 nm
excitation and coupled to an upright microscope (BX61; Olympus, Tokyo, Japan). Laser
scanning and Data acquisition were achieved through home written LabVIEW code and
National Instruments FPGA (National Instruments, Austin, TX, USA). The SHG Excitation
used a 40 × 0.8 NA water immersion lens (LUMPlanFL/IF; Olympus, Tokyo, Japan) and a
40 × 0.9 NA condenser for collection of the forward propagating signal. The lateral and
axial resolutions of the system were approximately 0.7 and 2.5 µm, respectively, as this is
sufficient for resolving collagen fibers.

The SHG emission has an associated directionality resulting from the sub-resolution
fibril structure [27], and we acquire the forward and backward propagating signals [28].
These respective components were collected using identical photon-counting detectors
(7421 GaAsP; Hamamatsu, Hamamatsu City, Japan) with the backward detector in a non-
descanned geometry. For each channel, the SHG wavelength (445 nm) was isolated with a
dichroic mirror and 10 nm FWHM bandpass filter (Semrock, Rochester, NY, USA). Circular
polarization was used for imaging as this state excites all fiber orientations equally. This
polarization of the excitation laser was determined at the focus by imaging dye-labelled
vesicles [26]. The collected images were 512 × 512 pixels with a field of view of 180 ×
180 µm. The image acquisition time was 3 s per frame with three-frame Kalman averaging.

A total of 81 image stacks were analyzed and utilized for classification across three
tissue groups: distal normal (N = 37), p53 only signature (N = 7), and STIC lesion (N = 37).
We also included a comparison with HGSOC tissues (N = 33) from confirmed cancer
patients in some of the analyses.
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2.5. Image Analysis

An initial set of features to be used for linear discriminant analysis (LDA) was gen-
erated from the outputs of Gray Level Co-Occurrence Matrix (GLCM) analysis, two-
dimensional fast Fourier transform (2D-FFT) methods, and the curvelet transform com-
bined with the FIRE extraction algorithm (CT-FIRE) [29]. FIJI with the Texture Analyzer
plugin was used to calculate five GLCM texture features associated with the similarities
and differences between adjacent pixels: Angular Second Moment (ASM), Entropy, Inverse
Difference Moment (IDM), Contrast, and Correlation.

The 2D-FFT analysis was performed in FIJI using the Radial Profile Extended and the
Oval Profile Plot plugins to characterize the alignment and radial exponential decay of
the image power spectrum. We previously described the radial- and azimuthal-averaging
procedures used in this approach [17]. All curve fitting of this Data was done in Origin
2018 (OriginLab, Northampton, MA, USA).

CT-FIRE was utilized to perform curvelet transform and fiber extraction to characterize
individual fiber morphology features (fiber length, width, and straightness). As there was
insufficient signal from the weaker backward channel for the CT-FIRE analysis, only
the Data readouts from the forward channel were analyzed. Lastly, the image coverage
(packing coefficient) was quantified by creating a binary mask over a dynamic lower
threshold and calculating the fraction of the resulting non-vanishing pixels. The methods
and features used are summarized in Table 1.

Table 1. Summary of different metrics used for Linear Discriminant Analysis (LDA).

Method Feature Measurement Output

GLCM—encodes the intensity
differences of adjacent pixel pairs

into a matrix

ASM Homogeneity of image texture
Entropy Randomness of image intensity distribution; inversely correlated to ASM

IDM Homogeneity of image intensity
Contrast Local intensity variations; inversely correlated to IDM

Correlation Correlation of intensity between adjacent pixels
2D-FFT—converts an image into

its power spectrum prior to
analysis

Alignment Overall alignment of image by examining signal at different spatial frequencies
Amplitude Signal strength at lowest spatial frequencies

Time Constant (TC) Time constant of radial power spectrum, inversely proportional to exponential
decay rate (k) and related to the incidence of high frequency features

CT-FIRE—identifies discrete fibers
in a 2D image

Fiber length Average length of fibers in image
Fiber width Average width of fibers in image

Fiber straightness Average straightness of fibers in image
Packing coefficient Image coverage; related to the density of the collagen network in the image

The SAS software (SAS Institute Inc., Cary, NC, USA) was used to reduce the full
feature set to the most significant metrics via forward selection at a significance level of
α = 0.35 (STEPDISC procedure). After the features were selected, the truncated Dataset
was inputted to a linear discriminant analysis (LDA) performed with singular value
decomposition and N-weighted priors. For this portion, 37 crops as normal, 6 as p53
signatures, and 37 as STIC were analyzed.

The accuracies and F1 scores of the trained model were calculated for each class,
where the latter quantity is the harmonic mean of precision (TP/(TP + FP)) and recall
(TP/(TP + FN)), where TP, FP, and FN are true positives, false positives, and false negatives,
respectively. An F1 score is an additional metric of classifier accuracy which accounts for
class imbalance. Receiver Operating Characteristic (ROC) curves were generated under
five-fold cross-validation to assess the binary classifier performance and to quantify the
trade-off between the true positive rate (TPR) and false positive rate (FPR).

3. Results
3.1. Mass Spectrometry Analysis

We explored the changes in ECM and ECM-related proteins, with a focus on collagen
isoform expression in human normal ovarian and tumor tissues via mass spectrometry-
based proteomics approaches. In total, we identified 233 ECM proteins, where 25 were
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single α-chains comprising several collagen isoforms. We observed numerous proteins that
were only found in either tumor or normal samples (Figure S1a,b). For instance, COL8A1,
COL8A2, and COL21A1 were only detected in normal tissues whereas COL7A1 and MUC1
were exclusively identified in tumor samples (Table S2). Importantly, even with a low
number of replicates, we were able to identify and quantify many differentially expressed
(especially down-regulated) ECM proteins (Figure S1) in the tumor group.

As shown in the cluster map in Figure 1, 15 single α-chains from different collagen
isoforms were present in all samples, and statistical proteomic landscape differences were
found between the two groups. Interestingly, we observed decreased expression levels
of many of these chains in the tumor samples (e.g., those for COL1, COL3, COL5, COL6,
COL12, and COL14). Moreover, differences in multiple single chains of the same collagen
isoform were detected (e.g., COL1A1 and COL1A2), improving the confidence of our
observations. These findings support the existence of unique matrisome features in each
group, where there were larger intergroup differences than intragroup variations. This was
also borne out by analysis of the principal components (not shown). A full list of identified
and quantified proteins can be found in the supplemental spreadsheet.
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Figure 1. Hierarchical clustering of LFQ ion intensities showing the differential expression of single
α-chains from several collagen isoforms in normal ovarian and HGSOC tissues. Several chains were
down-regulated in HGSOC.

3.2. SHG Imaging and Analysis

Locating and mapping pure p53 signatures and STIC lesions. To obtain tissues with
p53 signatures and STIC lesions with no concurrent tumors, we focused on FT tissues
obtained from gynecologic surgeries not related to HGSOC. An archival text-based survey
of patients with STIC over a 5-year period (2013–2018) revealed 12 patient cases that met
our criteria. Only 2 of the 12 had concurrent p53 signature lesions along with the STIC.
None of these cases had any pathological characteristics for HGSOC. The low number
of cases with pure p53 signature and STIC lesions is consistent with their reported low
incidence in these cohorts.

To confirm that these were pure precursors without the presence of cancer, routine
histological stains (H&E and p53) were completed. Figure 2 provides an example of
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one such precursor along with an example of HGSOC. In addition to the normal H&E
distribution, the weak p53 reactivity is consistent with the absence of cancer.

Cancers 2021, 13, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 2. H&E (left) and p53 (right) staining of sections showing a STIC lesion (top im-
ages) and HGSOC (bottom images), respectively. The STIC lesion is confined to the fallo-
pian tube epithelial surface (arrows), whereas the HGSOC forms a destructive, expansile 
lesion within the stroma of the involved tissue. The images were acquired at 40×. 

The fallopian tube tissue slices for SHG imaging were unstained and, therefore, 
posed a challenge to accurately identify the normal regions, p53 signatures, and STICs. 
This issue was addressed by the H&E and p53 staining of an adjacent section of the same 
tissue, where these slides were used as a template to manually map and score the normal 
areas and precursors on the slides used for SHG imaging. This workflow was completed 
for all FT samples and is outlined in Figure 3.  

Figure 2. H&E (left) and p53 (right) staining of sections showing a STIC lesion (top, (a) images) and
HGSOC (bottom, (b) images), respectively. The STIC lesion is confined to the fallopian tube epithelial
surface (arrows), whereas the HGSOC forms a destructive, expansile lesion within the stroma of the
involved tissue. The images were acquired at 40×.

The fallopian tube tissue slices for SHG imaging were unstained and, therefore, posed
a challenge to accurately identify the normal regions, p53 signatures, and STICs. This
issue was addressed by the H&E and p53 staining of an adjacent section of the same tissue,
where these slides were used as a template to manually map and score the normal areas
and precursors on the slides used for SHG imaging. This workflow was completed for all
FT samples and is outlined in Figure 3.

A trained gynecologic pathologist (P.W.) first identified the specific areas of normal
tissue (green rectangle), p53 signature (red rectangle), and STIC (blue rectangle) (Figure 3a).
For orientation purposes, bright field images at 4×, 20×, and 40× at each spot were also
taken (not shown). The correlated unstained tissue (Figure 3b) was mapped according
to the designated areas and imaged. The SHG images of collagen in areas corresponding
to normal tissue, the p53 signature, and STIC are shown in Figure 3c, followed by the
corresponding CT-FIRE and 2D-FFT analysis, which is quantified in Figure 4.

Our previous study indicated that a collagen coverage of less than 70% significantly al-
tered the accuracy of the image analysis techniques, and many of these regions had sparser
coverage. As a solution, representative image stacks for each channel were duplicated
and cropped to 45 × 45 microns field of view (FOV), and we selected regions of interest
(ROIs) with sufficient coverage. The p53 signatures and STIC lesions were small in spatial
extent and localized in their respective tissue and yielded z-stacks comprised of 10 or fewer
optical sections. Cropped images of each group (normal, N = 37; p53 signature, N = 6; STIC,
N = 37) were analyzed using the image analysis protocols from our previous study [17].
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Figure 3. Workflow for identifying p53 and STIC precursors. A pathologist defined these tissues in
mutant p53 stained images ((a), 4×), where green, red, and blue correspond to normal regions, p53,
and STIC, respectively. The correlated unstained regions ((b), 4×) were identified and then used for
SHG imaging, where the corresponding images are shown in (c) (field size = 180 × 180 microns).
(d,e) CT-FIRE overlays and 2D-FFT power spectra of the cropped SHG images (red-dashed boxes)
are shown.

Texture and other image features. For our analysis, we included features from GLCM,
2D-FFT methods, and CT-FIRE, where these techniques were applied to both the forward
and backward channels. Unlike fluorescence where the emission is isotropic, SHG has an
emission directionality that is related to the underlying structure [27]. Specifically, smaller
and more disorganized features can appear in the backward channel, where these are often
obscured in the forward collected signal. We have shown that these images are sufficiently
different through the structural similarity index [17] to justify the inclusion of both signal
pathways as independent features. However, the backward signal is intrinsically weaker,
and insufficient signal was present for use in the CT-FIRE analysis. The Data from all these
analyses are summarized in Figure 4.

Although we are specifically focused on discrimination between the distal normal
and precursors (p53 and STIC), we included HGSOC as a point of comparison. In good
agreement with a previous study [17], we found that images from HGSOC were associated
with higher entropy and correlation, as well as lower contrast with respect to other groups
(Figure 4a). In this context, lower contrast refers to the similarity of pairwise pixels rather
than low signal and is also consistent with high correlation. However, we did not find any
significant differences in the GLCM metrics between either of the precursors and distal
normal regions.
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of both signal pathways as independent features. However, the backward signal is intrin-
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Although we are specifically focused on discrimination between the distal normal 
and precursors (p53 and STIC), we included HGSOC as a point of comparison. In good 
agreement with a previous study [17], we found that images from HGSOC were associ-
ated with higher entropy and correlation, as well as lower contrast with respect to other 
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Figure 4. Image and texture features from the analyses given in Table 1 for the four tissue classes of normal, HGSOC, p53,
and STIC. (a) GLCM features. (b) 2D-FFT parameters. (c) CT-FIRE outputs and Packing Coefficient. Significant p-values are
denoted as follows: * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.

2D-FFT methods were able to distinguish HGSOC as having higher alignment in the
forward and backward channels, where both readouts of this metric should trend in the
same direction. There was also a greater relative occurrence of high frequency (smaller)
features in HGSOC, which is indicated by the higher time constant in its radial power
spectrum (Figure 4b). Conversely, the STIC and p53 signature groups were characterized
by lower alignment in the forward channel, although this was not significantly different.
Lastly, while HGSOC was associated with straighter fibers, no differences were found
between the two precursors and normal (Figure 4c).

Linear Discriminant Analysis (LDA). While none of the individual metrics from
Figure 4 showed differences between the two precursors, we can attempt to obtain dis-
crimination through the development of a linear discriminant (LD) model. This process
can provide improved classification even if the individual components are not themselves
statistically different, and we have used this process previously [17,30]. Since the collagen
morphology of HGSOC in the FT is markedly distinct and already characterized [8,17], we
limited our discrimination analysis to the two precursors and distal normal regions.

In order to better differentiate between the precursor groups (and to prevent overfitting
in the trained LD model), the feature space generated by the GLCM, 2D-FFT methods, CT-
FIRE, and the packing coefficient was limited via forward selection up to a significance level
of α = 0.35 (SAS/STEPDISC procedure). The most significant variables for discriminating
between these groups (Packing Coefficient [B], ASM [B], IDM [F], Entropy [F], Entropy [B],
Alignment [F], Alignment [B], Time Constant [B], and Fiber Straightness) were then used
to construct canonical variables and visualize the classes via a scatter plot (Figure 5).



Cancers 2021, 13, 2794 10 of 15

Cancers 2021, 13, x FOR PEER REVIEW 11 of 17 
 

 

2D-FFT methods were able to distinguish HGSOC as having higher alignment in the 
forward and backward channels, where both readouts of this metric should trend in the 
same direction. There was also a greater relative occurrence of high frequency (smaller) 
features in HGSOC, which is indicated by the higher time constant in its radial power 
spectrum (Figure 4b). Conversely, the STIC and p53 signature groups were characterized 
by lower alignment in the forward channel, although this was not significantly different. 
Lastly, while HGSOC was associated with straighter fibers, no differences were found 
between the two precursors and normal (Figure 4c). 

Linear Discriminant Analysis (LDA). While none of the individual metrics from Fig-
ure 4 showed differences between the two precursors, we can attempt to obtain discrimi-
nation through the development of a linear discriminant (LD) model. This process can 
provide improved classification even if the individual components are not themselves sta-
tistically different, and we have used this process previously [17,30]. Since the collagen 
morphology of HGSOC in the FT is markedly distinct and already characterized [8,17], 
we limited our discrimination analysis to the two precursors and distal normal regions. 

In order to better differentiate between the precursor groups (and to prevent overfit-
ting in the trained LD model), the feature space generated by the GLCM, 2D-FFT methods, 
CT-FIRE, and the packing coefficient was limited via forward selection up to a significance 
level of α = 0.35 (SAS/STEPDISC procedure). The most significant variables for discrimi-
nating between these groups (Packing Coefficient [B], ASM [B], IDM [F], Entropy [F], En-
tropy [B], Alignment [F], Alignment [B], Time Constant [B], and Fiber Straightness) were 
then used to construct canonical variables and visualize the classes via a scatter plot (Fig-
ure 5). 

 
Figure 5. Scatter plot of the distal normal, p53 signature, and STIC across the first two 
canonical variables; with 95% confidence ellipses depicted by dashed lines. 

These forward selected metrics were then used to train an LD model capable of dis-
tinguishing between the three tissue groups by a set of binary classifiers (One-vs-Rest or 
OvR). Through this analysis, we were able to achieve accuracies and F1 scores between ~65 
to 91% and 9.1–66.0, respectively (Table 2). In particular, we achieved good discrimination 
for the distal normal and STIC lesion groups, despite low sample sizes (N = 37 each). The 
corresponding AUROCs for these classifiers were somewhat low (0.71 and 0.62 for the 
distal normal and STIC lesion, respectively; see Figure 6) but this may be improved upon 
by increasing the size of the training set. 
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These forward selected metrics were then used to train an LD model capable of
distinguishing between the three tissue groups by a set of binary classifiers (One-vs-Rest or
OvR). Through this analysis, we were able to achieve accuracies and F1 scores between ~65
to 91% and 9.1–66.0, respectively (Table 2). In particular, we achieved good discrimination
for the distal normal and STIC lesion groups, despite low sample sizes (N = 37 each). The
corresponding AUROCs for these classifiers were somewhat low (0.71 and 0.62 for the
distal normal and STIC lesion, respectively; see Figure 6) but this may be improved upon
by increasing the size of the training set.
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Table 2. The accuracies and F1 scores for the OvR classifier.

Group Accuracy % F1 Score

Distal normal 69.6 66.0

p53 signature 90.8 9.1

STIC lesion 65.4 61.0

Despite the high overall accuracy (~91%) for p53 signature classification, the cor-
responding F1 score of 9.1 indicates a low number of true positives. To overcome the
limitation of low N for the p53 signature group, we trained a classifier to distinguish
between the distal normal and precursor regions, where the p53 signature and STIC were
aggregated into a more general precursor group. Through a similar model using slightly
different metrics, we achieved a high accuracy and F1 score (74.7 and 77.8, respectively), as
well as an AUROC of 0.68. The scatter plot and ROC curve for this model are included in
the Supporting Information (see Figures S2 and S3).

4. Discussion

Using SHG microscopy, we have previously shown that there are significant changes
in the collagen fibrillar morphology in HGSOC in the ovary itself, as well as in the fallopian
tubes [8,17]. More subtle differences were observed in STIC regions that were co-existent
in tissues with HGSOC. It is important to examine the collagen morphology in pure
precursor tissues (p53 and STIC) to determine when characteristic collagen fiber alterations
can be detected by SHG, as these could be used as unique diagnostic biomarkers of
early-stage disease.

It is further important to perform these investigations in tissues without HGSOC,
as these lesions can induce collagen remodeling in distant regions through a field effect
mechanism [19]. However, the acquisition of these pure precursors is clinically rare and
it took extensive time and effort to identify even the relatively low number of suitable
banked tissues used here. Specifically, an experienced gyn/onc pathologist (P.W.) scanned
patient cases from over a 5-year period for this study.

We also sought to determine if there were differences in the collagen expression
patterns between normal ovarian tissues and HGSOC, and further, if these were related
to the collagen morphology changes visualized by SHG microscopy. This is important as,
while previous studies have suggested the up-regulation of several collagen isoforms in
HGSOC (e.g., Col III and VI) [31,32], these studies used immunostaining and the results
were not verified by quantitative molecular techniques.

This is potentially problematic as most available antibodies lack a high level of speci-
ficity for different isoforms (specifically Col I vs. Col III) [33] as the same epitope at the
end of the helix is often tagged. As a consequence, the in vivo isoform composition in
HGSOC is not yet definitively known and this represents a large gap in knowledge. We
note that we have used self-assembled in vitro models of known composition [33,34] to
show how the incorporation of Col III and Col V affects the fibrillar structure, but it has
not yet been possible to create a direct link between collagen proteomic changes and fiber
alterations in tumors. This is because SHG is not sensitive to non-collagen components,
and more generally applicable techniques, such as mass spectrometry (MS), are required
for this purpose.

To begin making this connection, we utilized MS and found the decreased expression of
numerous single α-chains from several different collagen isoforms in HGSOC. Of particular
note, the expression of Col I and Col III chains were both downregulated, where the latter is
not consistent with previous immunostaining Data [31]. This is likely due to the qualitative
nature of immunostaining and the lack of specificity of the available Col III antibodies.

Interestingly, we previously used detailed SHG analysis to show that there were large
structural changes in the α-chains; however, these were not consistent with an increase in
Col III expression [11]. Moreover, the triple helical structure was found to be more disorga-
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nized in HGSOC. This disorganization was also validated by our wavelength dependent op-
tical scattering measurements, which probed size scales over the range of ~50 nm–1µm [30].
Collectively, the MS Data and our previous macro/supramolecular SHG analyses suggest
there may be transcriptomic and/or post-translational modifications in HGSOC coinciding
with characteristic, pronounced changes in the collagen fiber morphology.

We did not expand the proteomic analysis to the p53 and STIC precursors as the
tissues were insufficient in volume. However, given the current paradigm in HGSOC that
the ovary is the metastatic site from the FT [16,35], the genetic modifications giving rise to
different isoform expression are expected to be similar in both sites. Indeed, we showed
that the collagen fiber morphology in HGSOC was highly similar in the FT and ovary [17],
suggesting that similar proteomic modifications occur in both tissues.

Given the congruence in the SHG and the proteomic Data suggesting differential colla-
gen isoform expression in normal and HGSOC tissues, these observations further support
the validity of performing the MS analysis on more available ovarian stromal tissues. We
further suggest that the SHG analysis of the collagen in precursors is a true reflection of
the biochemical alterations occurring during carcinogenesis and is an important surrogate
measurement that allows for non-destructive analysis, preserving the rare precursors for
IHC and transcriptomic analysis.

Based on our prior work [17], we expected that the collagen organization differences
between the two precursors (p53 only and STICs) would be less pronounced relative to that
of high grade disease. However, our linear discriminant model still achieved good accuracies,
F1 scores, and ROC curves, which were further improved by grouping p53 signatures and
STIC lesions together. Importantly, even with the small sample size, our analysis supports
our hypothesis that collagen alterations in the FT occur prior to frank HGSOC.

We note that, since the collagen alterations of early-stage disease are subtle, the classi-
fier performance will be sensitive to under-sampling. We suggest that with a much larger
specimen number, the performance could be improved to a standard that is suitable for
future clinical applications. The sample thickness and coverage and limited collagen den-
sity leading to relatively weak SHG signal intensities were major limitations in this study.
We suggest that higher accuracies should be achievable on thicker sections (~50–100 µm),
which are readily imaged by SHG.

Another limitation of the study at the moment is that there is no clear definition
of the biochemical factors that affect the change in the collagen structure in HGSOC or
in precursor lesions. The differential expression of collagen isoforms combined with
specific post-translational processing may contribute to the change in collagen structure.
The successful implementation of mass spectroscopy and transcriptomic analysis will be
necessary to obtain the biochemical understanding of changes occurring in the collagen
and the surrounding ECM. For example, other markers, such as fibronectin, laminin, and
secreted MMPs, have been suggested to have altered regulation in HGSOC and could be
added to the analysis.

We foresee both long and short-term applications based on our observations and
methodology. For the former, it may be possible to construct an SHG laser-scanning
micro-endoscope to be used in conjunction with laparoscopy or hysteroscopy [36,37].
Analogous fiber optic-based scanning approaches are currently under development for
other pathologies [38,39], and these should be adaptable for FT imaging.

The scheme may be feasible for the in vivo detection of precursor lesions, especially
since the majority of the significant variables for class discrimination came from the SHG
backward channel, which would be the usable direction in an endoscopic configuration. In
the shorter term, the ex vivo analysis of resected fallopian tube tissue from risk reduction
surgery can be used either as a pre-screen or to complement the histology and also to
identify MSbased proteomic correlations.
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5. Conclusions

The collagen fiber morphology is highly remodeled in HGSOC in the ovary or the
fallopian tubes, where the fibers become more aligned relative to normal tissues and
other tumor sub-types. However, for clinical applications, it is important to investigate
these alterations in the precursors (p53 and STICs) due to the early metastasis of HGSOC.
Unfortunately, there is a limited availability of pure precursor lesions without the presence
of malignant tissue.

Still, due to the high specificity and sensitivity to collagen morphology afforded by
SHG microscopy, sufficient discrimination between distal normal regions and p53 and STIC
precursors was attained in this limited study to demonstrate proof of concept. Moreover,
mass spectrometry analyses showed concurrent proteomic changes in normal and HGSOC
tissues, where many collagen single α-chains were downregulated. These results suggest
that the combined use of MS proteomic and SHG microscopy analyses forms a basis for
further in vivo and ex vivo explorations of HGSOC and its precursor lesions.
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10.3390/cancers13112794/s1, Figure S1: ECM alterations in ovarian tumor versus benign tissue
revealed by mass spectrometry, Figure S2: Scatter plot of the distal normal and precursor groups
with 95% confidence ellipses depicted, Figure S3: ROC curve and AUROC for distal normal versus
precursor classification, Table S1: Summary information for all STIC tissues, Table S2: Differential
expression of ECM proteins in normal ovary and HGSOC tumor samples, Supplemental Spreadsheet:
All identified and quantified ECM proteins in normal and tumor tissues.
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