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The production of the alpha-amylase (AMY) enzyme in Bacillus subtilis at a

high rate leads to the accumulation of unfolded AMY, which causes secretion

stress. The over-expression of the PrsA chaperone aids enzyme folding

and reduces stress. To identify affected pathways and potential mechanisms

involved in the reduced growth, we analyzed the transcriptomic differences

during fed-batch fermentation between a PrsA over-expressing strain and

control in a time-series RNA-seq experiment. We observe transcription

in 542 unannotated regions, of which 234 had significant changes in

expression levels between the samples. Moreover, 1,791 protein-coding

sequences, 80 non-coding genes, and 20 riboswitches overlapping UTR

regions of coding genes had significant changes in expression. We identified

putatively regulated biological processes via gene-set over-representation

analysis of the differentially expressed genes; overall, the analysis suggests

that the PrsA over-expression affects ATP biosynthesis activity, amino

acid metabolism, and cell wall stability. The investigation of the protein

interaction network points to a potential impact on cell motility signaling.

We discuss the impact of these highlighted mechanisms for reducing

secretion stress or detrimental aspects of PrsA over-expression during

AMY production.
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Introduction

Bacillus subtilis is a powerhouse for enzyme production in
biotech industries (Schallmey et al., 2004; van Dijl and Hecker,
2013; Hohmann et al., 2016). Amylases are a specific class of
enzymes that B. subtilis can produce commercially (Schallmey
et al., 2004). The amylase enzyme, in particular the alpha-
amylase (AMY), is a digestive enzyme (EC 3.2.1.1) that degrades
starch molecules. Therefore, AMY is often an active component
in laundry detergent for removing sticky stains from clothes.
For successful AMY production and subsequent recovery, a host
organism needs to both express and secrete AMY proteins in a
biologically active form at a high rate (Spinnler, 2021). However,
a major issue for commercial production is that the protein
folding system of the cell is overwhelmed by the high rate of
synthesis unless the strains used for production are genetically
modified (Kontinen and Sarvas, 1993). The accumulation of
unfolded AMY proteins causes stress that requires a bacterial
cell to physiologically adapt to survive (Storz and Hengge, 2010).
The Sec secretion pathway secretes AMY co-translationally (Fu
et al., 2007). Therefore, unfolded AMY is extracellular, such that
the corresponding stress signal triggers the heat shock response
(Westers et al., 2004, 2006; Storz and Hengge, 2010; Lim and
Gross, 2014; Yan and Wu, 2019). The simplified mechanism of
this stress response has two components as follows (Westers
et al., 2004, 2006; Storz and Hengge, 2010; Lim and Gross,
2014; Yan and Wu, 2019): First, the membrane-bound CssS
receptor transduces the stress signal by phosphorylating CssR.
Second, the phosphorylated CssR activates transcription of the
two proteases, namely HrtA and HrtB, which degrade unfolded
proteins and alleviate the stress condition. Furthermore, stress
responses are intertwined with additional regulation in the core
energy metabolism (Storz and Hengge, 2010), and such stress
responses upregulate flagellar cell motility in order for a cell to
physically escape the stress-causing location (Helmann et al.,
1988; Márquez-Magaña et al., 1990; Yan and Wu, 2019). For
instance, the level of cell motility is boosted by a low level of
phosphorylated DegU (Kobayashi, 2007; Verhamme et al., 2007;
Gupta and Rao, 2014), which is part of the core stress regulating
DegU-DegS two-component system (Storz and Hengge, 2010;
Laub, 2014). Nevertheless, these stress alleviating mechanisms
can be opposed to the objective of achieving a high AMY yield:
(i) the proteolytic degradation of AMY reduces yields, and
(ii) a low phosphorylation level of DegU downregulates AMY
expression (Gupta and Rao, 2014).

A state-of-the-art approach, which prevents the yield
detrimental impact on the secretion of the stress response, is
the over-expression of PrsA (Vitikainen et al., 2001; Quesada-
Ganuza et al., 2019). Although the over-expression of PrsA
reduces secretion stress by aiding AMY folding, it also has
detrimental impacts such as hampered cell growth and even
cell lysis (Vitikainen et al., 2001; Quesada-Ganuza et al.,
2019). These detrimental phenotypes might be caused by

protein-protein interactions of specific PrsA protein domains
with still unknown partner proteins (Quesada-Ganuza et al.,
2019). Another unknown aspect of PrsA over-expression is
its impact on the bacterial transcriptome, particularly during
industrial fed-batch fermentation. The adaptation to glucose
metabolism from maltose metabolism has a global impact on
half of all transcriptional regulators even though both carbons
are preferred by B. subtilis (Buescher et al., 2012). Thus, we
would assume a substantially larger global impact on the
transcriptome for the extreme secretion stress during PrsA
over-expression (Quesada-Ganuza et al., 2019). We consider
our assumption to be further supported by a large number
of over a hundred proteins that require regulation to adapt
bacterial motility (see above concerning stress) (Rajagopala
et al., 2007). Furthermore, a pure protein-coding gene focus
ignores the essential role regulatory small RNA (sRNA), RNA
chaperones, and non-coding RNA (ncRNA) have in facilitating
physiological changes impacting the entire cell during stress
responses (Storz and Hengge, 2010). General stress regulatory
mechanisms have been investigated in public datasets (Arrieta-
Ortiz et al., 2015); however, metabolic and stress pathways
undergo complex temporal adaptations (Hahne et al., 2010; Otto
et al., 2010). Thus, both temporally resolved and condition-
specific gene expression levels are needed to study stress
pathways. Specifically for secretion stress during B. subtilis AMY
fed-batch fermentation, no such dataset exists to our knowledge.

Here, we conducted fed-batch fermentation of two
commercial B. subtilis strains. Both strains produce an AMY
and are isogenic, except that one of them over-expresses
PrsA. We studied the transcriptome during fermentation at
six timepoints with RNA-seq and analyzed the expression
levels of both known coding and non-coding annotations, and
also of potential novel transcribed, yet unannotated regions.
We complemented the differential expression analysis with a
network analysis of known protein–protein interactions (PPI).
This study found significant changes in gene expression levels
between the studied strains for genes in the ATP biosynthesis
and cell motility biological processes. Furthermore, the
network analysis hints at mechanisms relating to competence
transformation and cell motility that might be candidates for
further tuning of AMY secretion yields.

Materials and Methods

Strains and fed-batch fermentation

The overall experimental setup is as previously described
in Geissler et al. (2022). In summary, B. subtilis strain
168 1spoIIAC1amyE1apr1nprE1srfAC was maintained at
4◦C on the LBGG medium. The AMY JE1 [sequence label
je1zyn in Geissler et al. (2022)] was inserted by splicing
by overlapping extension (SOE, inserted sequences are in
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Supplementary Table 2) linear recombinant transformation,
together with the commercial sigA promoter sequence P4199
and chloramphenicol marker in the pel locus. The PrsA over-
expressing strain (referred to as the “+prsA” strain) had the
insert by SOE of P4199, prsA, and spectinomycin marker in
the amyE locus. A control strain without the prsA insert was
included. After inoculation on SSB4 agar at 37◦C, transfer on M-
9 medium, sucrose 2M fed-batch fermentations were conducted
in proprietary 2L tanks at 38◦C. To avoid excessive overflow
metabolite formation and to keep the culture in a sucrose
metabolizing state, the fermentations were run as fed-batch
fermentations without an initial batch phase. The feed medium
consisted of sucrose (708 g/L), which was fed at a rate that
increased linearly from 0.04 g/min at time = 0 h to 0.125 g/min at
time = 8 h. The feed rate after 8 h of cultivation was kept constant
at 0.125 g/min. Based on the dissolved oxygen tension data, the
cultures entered a carbon-limited state after 9.4 h ± 0.53 of
fermentation. Fermentations were run in triplicates for 5 days.
The selected replicate size allows detecting significant logFC in
the expression of at least ± 0.5 magnitude, as determined in
benchmarks (Schurch et al., 2016). Samples were taken at six
timepoints: 21, 26, 45, 71, 94, and 118 h after fermentation
started. The samples were measured in cell density (OD650),
and AMY activities were measured with an in-house assay. The
assay (after 1/6,000 dilution) states the enzyme amount that
breaks down 5.26 g starch per hour. This activity measure is
proportional to the enzyme yield.

RNA-sequencing dataset

All samples were immediately mixed with 5 ml
of 100% ethanol and stored on dry ice. The RNA
extraction and purification method is the identical
phenol-chloroform protocol of Geissler et al. (2022).
RNA libraries and sequencing were conducted by BGI
Hong Kong with DNBseq in single-ends of 50 bp length.
RNA libraries were prepared with 3′ adapter sequence
AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA and the
5′ adapter AAGTCGGATCGTAGCCATGTCGTTCTGTGAGC
CAAGGAGTTG. The 36 samples (triplicates, two strains,
and six timepoints) were sequenced in three batches with
technical replicates for QC (Supplementary Table 1). The
computational analyses were conducted in an adapted workflow
of Geissler et al. (2022) (doi: 10.5281/zenodo.4534403), which
provides a pipeline in a Snakemake framework nested in
computational reproducible Anaconda environments (Koster
and Rahmann, 2012). In concordance with the read quality
assessment of FastQC (version 0.11.8) (Andrews, 2010), any
adapter contaminations were removed with Trimmomatic
(version 0.39) for up to two seed mismatches at a minimal
10 bp sequence overlap and 30 bp palindromic overlap (Bolger
et al., 2014). In a sliding window of 4 bp, reads were clipped

for average Phred score quality below 20. From the 3′ of reads,
positions with quality below 3 were removed. Finally, a minimal
length of 40 bp was required for filtered and cleaned reads.
Reads were mapped against the respective +prsA and control
genome sequence with Segemehl (version 0.3.4, default settings)
(Hoffmann et al., 2009). The mapping and QC filtering statistics
are given in Supplementary Table 2. Expression levels of coding
and non-coding annotations (see below) in the respective strains
were quantified for uniquely mapping reads with featureCounts
(subread version 1.6.4,≥50% overlaps). Annotation coordinates
in the respective strains were determined by liftOver (version
377) from the reference assembly (NC_000964.3) based on a
pairwise alignment with LASTZ (version 1.0.4) (Harris, 2007;
Liao et al., 2014; Haeussler et al., 2019).

Novel potentially transcribed regions

Reference annotations of coding, non-coding RNA
(ncRNA), transcripts, untranslated regions (UTRs), and RNA
structures were used from the BSGatlas (version 1.1). The
BSGatlas uses separate annotation entries to specify which
regions of an mRNA transcript are the coding, untranslated,
or potential cis-regulatory RNA structure parts. Such a
distinguishment to the UTR element has advantages since
cis-regulatory RNA structures can overlap coding regions.
The BSGatlas unifies multiple databases and annotation
resources, such that it also includes annotations for well-
known ncRNA. Additional 141 putative ncRNA annotations
from a tiling-array study were used (which are not part of
the BSGatlas) (Nicolas et al., 2012; Geissler et al., 2021).
Relative to these reference annotations and all transcript and
untranslated regions (UTRs) annotated in the BSGatlas, we
checked our RNA-seq data for transcription signals in 1,645
unannotated regions. The additional tiling-array annotations
and un-annotated regions were determined with the R library
plyranges (version 1.6.0) and GenomicRanges (version 1.38.0)
combined with an overlap helper script from BSGatlas’ analysis
code (doi: 10.5281/zenodo.4305872) in R (version 3.6.3) (R
Development Core Team, 2008; Lawrence et al., 2013; Lee
et al., 2018). Un-annotated regions shorter than 100 bp (the
minimum length for >99% of the transcripts in the BSGatlas)
were excluded from any further expression analysis. The
expression counts for all coding/non-coding sequences and
cis-regulatory RNA structures were normalized with DESeq2’s
size-factor estimation (version 1.26.0) (Love et al., 2014). With
respect to the downstream analysis of expression signals, we
excluded the UTR annotations for improved interpretability,
although we still retained all structured RNA cis-regulatory
annotations. With the possible overlap between cis-regulatory
RNAs and coding sequences, reads mapping within such
overlaps can be counted twice during the quantification of
expression. For a total of 542 unannotated regions, we observe
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expression signals of normalized read counts relative to gap
length of at least 4/50 bp (corresponds to four times average
coverage) (Supplementary Figure 1). We chose not to narrow
down the transcribed regions because we found that a read
coverage-based approach (as suggested in the workflow used in
the RNA-seq dataset, last section) resulted in fragmented results
(see example in Supplementary Figure 9). These regions were
assumed to be novel potentially transcribed regions (NPTRs)
(see Supplementary Table 3); all other unannotated regions
were excluded from the subsequent expression analysis. We
used the open reading frame (ORF) predictions of prodigal
(version 2.6.3, default settings) to check for potential not-yet
annotated coding elements within NPTRs (Hyatt et al., 2010).
We also verified the overall quality of the ORF predictions by
checking for overlaps with all known coding gene annotations
of the BSGatlas. For each overlapping ORF-gene overlap (as
detected by plyranges, see above), we computed the Jaccard
similarity, which is the ratio of the length in the intersection of
both annotations over their union.

Differential expression analysis

The expression levels of the coding/non-coding sequences,
NPTRs, and cis-regulatory RNA structures were assessed for
biological reproducibility in expression counts with scatter
plots (Supplementary Figure 2). The scatter plots did not
indicate visually striking patterns of batch effects according to
the sequencing plan (Supplementary Table 1). The principal
component analysis (PCA) inspection of the top 100 most
variants that expressed annotations (without further diff.
expression analysis) confirmed the relevance of the experimental
design in the latent structure of the expression data with
the principal components corresponding to the strains and
time aspect (Supplementary Figure 3). Differential expressions
for pairwise comparisons between the strains at each of the
six time points and within each strain along the time axis
(Figure 1C) were assessed with the DESeq2’s Wald test.
Similar to the analysis presented in Geissler et al. (2022),
the pairwise tests were weighted in a stage-wise procedure to
guarantee an overall false discovery rate relative to the number
of annotations: each annotation was screened for dynamic
expression with a log-ratio test against a static expression model
before confirming which of the pairwise tests had changes in
expression. The screening and pairwise tests included a linear
factor in the regression models to account for potential batch
effects. The stage-wise weighting was conducted with stageR
(version 1.8.0) (Van den Berge et al., 2017) and differential
expression was called for adjusted p-values < 0.01. Overall,
2,127 annotations were detected as differentially expressed
(Table 1 and Supplementary Table 4). Based on the z-scaled
log expected mean expression levels (Supplementary Table 5),
expression profiles were grouped in 10 k-means clusters

(R implementation). The profiles per strain were clustered
separately (one gene = two rows in the data matrix). The
number of clusters was determined by the “elbow method” over
the total within-cluster error curve (Supplementary Figure 4;
Thorndike, 1953).

Regulated biological processes

We investigated the set of differentially expressed genes and
their upregulation and downregulation for over-representation
in biological processes as annotated in Gene Ontology (GO)
terms, which are readily available for 78.3% of coding
genes (Caspi et al., 2014; Geissler et al., 2021). For each
pairwise differential expression test (Figure 1C), we inspected
the set of upregulated genes (those with a positive logFC)
and downregulated genes separately. The over-representation
analysis was performed with topGO (version 2.37.0) (Alexa and
Rahnenführer, 2022). Over-representation for the respective
upregulated and downregulated genes was determined with
a fisher test for the significance level of 0.01 relative to the
background of all expressed genes, which were determined by
the DESeq2’s independent filtering procedure. This procedure
discards the on average lowly expressed genes in order
to maximize the number of differentially expressed genes
(indicated by NA for p-values in Supplementary Table 4;
Love et al., 2014). The minimal term size was set to 10, and
the dependencies due to GO’s hierarchy were de-correlated
with topGO’s “elim” algorithm. After filtering for a minimal
observed/expected ratio of magnitude 2 (between the 80 and
85th percentile), p-values were adjusted for multiple testing with
a false discovery rate (FDR). The over-represented processes
and the associated differentially expressed genes are listed in
Supplementary Tables 6, 7 and Supplementary Figure 6.

Protein–protein interaction network
analysis

The protein–protein interaction network analysis was
conducted in Cytoscape (version 3.8.2) (Shannon, 2003) for the
differentially expressed protein-coding genes (both with and
without significant logFC between strains). High-confidence
protein associations (confidence score >0.8) were retrieved
from the STRING v11 database using stringApp (version
1.6.0) for the B. subtilis strain 168 (Doncheva et al., 2019;
Szklarczyk et al., 2019). The resulting network was clustered
with the MCL algorithm (inflation value of 2.5, confidence
scores as edge weights) implemented in the clusterMaker2
app (version 1.3.1) (Enright, 2002; Morris et al., 2011). The
visualization of significant between strain logFCs on the
network nodes was added with Omics Visualizer (version 1.3.0)
(Legeay et al., 2020).
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FIGURE 1

AMY fed-batch fermentations. Fed-batch fermentation was conducted in triplicates for a control strain (blue) and +prsA (red). RNA-seq samples
were prepared at six timepoints: 21, 26, 45, 71, 94, and 118 h after fermentation start. Cell density and enzyme yield were measured for five
timepoints: 23.2, 45, 70.2, 97.8, and 119 h. (A) The average cell density per strain over fermentation time was measured in optical density (OD) at
650 nm. The error bars indicate the standard deviation. (B) With a progressing fermentation, the yield increases. The shown yield is measured in
enzyme activity (see section “Strains and fed-batch fermentation”). (C) For the differential expression, we investigated the significance of
differential expression between the samples at six pairwise comparisons (orange arrows) and changes in expression over time in either strain for
each pair (black arrows).

Global amino acid composition

In order to interpret the regulated biological processes (see
above), we inspected the global amino acid compositions
of all B. subtilis protein-coding genes. The nucleotide
sequences of all coding sequences from the BSGatlas were
extracted with BSgenome (version 1.54.0) (Pagès, 2021).
The corresponding amino acid sequences were determined
according to the bacterial genetic code with Biostrings (version
2.54.0) (Pagès et al., 2019). Here, we used only the 99.3%
of the coding genes that were completely relative to their
corresponding amino acid sequences; that is, they used all
codons encoded in their nucleotide sequences, correctly
started with methionine, and ended with a stop codon. The
composition in average proportion was determined for these
complete sequences (Table 2).

Results

Novel potentially transcribed regions

Transcriptome analysis from RNA-seq data
To elucidate potential mechanisms of B. subtilis secretion

stress during the production of the AMY enzyme JE1
(commercial name NatalaseTM) with a particular focus on
PrsA over-expression, we conducted fed-batch fermentation in
triplicates for two isogenic strain conditions: one control strain
and one strain with PrsA over-expression (from here on referred
to as +prsA). As expected from the reduced growth upon PrsA

over-expression (Vitikainen et al., 2001; Quesada-Ganuza et al.,
2019), the+prsA strain has a lower cell density (Figure 1A) and
higher AMY yield (Figure 1B). To capture the transcriptome
dynamics during fermentation, we took out samples for RNA-
seq analysis at six timepoints: 21, 26, 45, 71, 94, and 118 h after
fermentation started. These timepoints correspond to sampling
every 24 h (within a 3 h window) with one additional sample at
the early phase of the fermentation.

Transcriptional activity for the reference
annotations

In order to comprehensively investigate both the coding
and non-coding RNA elements, we quantified the RNA-
seq expression according to a recently developed transcript
atlas for B. subtilis (Geissler et al., 2021). We included
141 additional annotations from a tiling-array study that
was not included in the atlas due to unclear mechanism
of transcription (annotations were ambiguous as to whether
they are independent full RNA transcripts or only part
thereof) (Nicolas et al., 2012; Geissler et al., 2021). In the
following, we refer to these annotations, together with the less
well-characterized RNA elements from the atlas, as putative
ncRNA. These reference annotations combine gold standard
curated information, computational RNA structure biology, and
transcriptomic analysis of over 100 experimental conditions
(Nicolas et al., 2012; Geissler et al., 2021). Additionally, these
experimental conditions suggest that still 5% of remaining
unannotated regions have evidence of expression activity
(Geissler et al., 2021). Fed-batch fermentations were not part of
the above-mentioned experimental conditions, such that there
might be a larger potential to discover fed-batch-related regions
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TABLE 1 Differentially expressed annotations.

Annotations No. Annotations
considered for analysis

Differentially expressed Strain-specific expression

CDS 2,674 1,791 (67.0%) 1,026 (57.3%)

NPTRs 355 234 (65.9%) 123 (52.6%)

Putative ncRNA 107 68 (63.6%) 38 (55.9%)

Riboswitch 37 20 (54.1%) 10 (50.0%)

tRNA 22 9 (40.9%) 7 (77.8%)

sRNA 9 3 (33.3%) 2 (66.7%)

Synthetic PrsA 1 1 (100.0%) 1 (100.0%)

Synthetic AMY 1 1 (100.0%) 0

asRNA 1 0 0

SRP 1 0 0

For the differential expression analysis, multiple coding and non-coding annotations were considered (first column). The number of genes with minimal expression levels as determined
by DESeq2’s independent filtering, which were inspected for potential differential expression, is in the second column. The number of detected differentially expressed annotations in any
of the pairwise comparisons (Figure 1C) is in the third column. The last column lists the number of annotations detected to have a significant difference in expression between the strains.
The percentages provided in parenthesis are relative to the columns to the left (Only 355 of the 542 NPTRs passed the independent filtering).

TABLE 2 Amino acid composition.

Amino acid All coding genes Diff. expressed Highly expressed AMY PrsA

Tryptophan 1.03%± 0.99 1.06%± 0.96 0.86%± 0.81 4.12% (+3.1 SD) 0.35% (−0.7 SD)

Asparagine 4.07%± 2.05 3.87%± 1.75 3.86%± 1.44 8.82% (+2.3 SD) 2.82% (−0.6 SD)

Histidine 2.30%± 1.51 2.27%± 1.33 2.12%± 1.10 4.31% (+1.3 SD) 1.06% (−0.8 SD)

Tyrosine 3.57%± 1.95 3.39%± 1.56 3.13%± 1.32 5.49% (+1.0 D) 3.17% (−0.2 SD)

Glycine 6.67%± 2.74 6.95%± 2.41 7.62%± 2.08 8.82% (+0.8 SD) 6.34% (−0.1 SD)

Aspartic acid 5.11%± 2.29 5.06%± 2.10 5.17%± 1.83 6.86% (+0.8 SD) 11.27% (+2.7 SD)

Threonine 5.32%± 1.87 5.44%± 1.75 5.51%± 1.35 5.88% (+0.3 SD) 4.23% (−0.6 SD)

Arginine 4.19%± 2.14 4.07%± 1.91 4.24%± 1.92 4.31% (+0.1 SD) 0.70% (−1.6 SD)

Proline 3.48%± 1.71 3.55%± 1.49 3.93%± 1.24 3.53% (+0.0 SD) 0.35% (−1.8 SD)

Glutamine 3.87%± 2.04 3.85%± 1.82 3.65%± 1.42 3.73% (−0.1 SD) 6.34% (+1.2 SD)

Alanine 7.36%± 2.84 7.82%± 2.65 8.25%± 2.29 7.06% (−0.1 SD) 7.39% (+0.0 SD)

Phenylalanine 4.63%± 2.40 4.53%± 2.20 4.21%± 1.94 4.31% (−0.1 SD) 1.76% (−1.2 SD)

Valine 6.75%± 2.37 6.92%± 2.11 7.38%± 1.91 6.27% (−0.2 SD) 6.69% (−0.0 SD)

Methionine 2.46%± 1.43 2.52%± 1.31 2.50%± 1.11 2.16% (−0.2 SD) 1.76% (−0.5 SD)

Serine 6.22%± 2.26 6.28%± 2.16 6.04%± 2.04 4.51% (−0.8 SD) 4.93% (−0.6 SD)

Cysteine 0.91%± 1.13 0.84%± 0.91 0.70%± 0.72 0.00% (−0.8 SD) 0.35% (−0.5 SD)

Lysine 7.50%± 3.14 7.13%± 2.78 6.79%± 2.17 4.90% (−0.8 SD) 17.96% (+3.3 SD)

Glutamic acid 7.37%± 3.29 7.20%± 3.13 7.23%± 2.77 4.31% (−0.9 SD) 9.15% (+0.5 SD)

Leucine 9.70%± 3.06 9.72%± 2.86 9.42%± 2.35 6.67% (−1.0 SD) 8.45% (−0.4 SD)

Isoleucine 7.50%± 2.65 7.53%± 2.48 7.37%± 2.15 3.92% (−1.4 SD) 4.93% (−1.0 SD)

The average amino acid compositions (rows) are shown for all B. subtilis endogenous (thus excl. AMY and PrsA) coding genes (second column), those that were detected as differentially
expressed (third column), and the by average expression 10% most highly expressed genes (fourth column). The standard deviations are shown behind the “±” signs. The compositions
of amino acids for the AMY enzyme (fifth) and the over-expressed PrsA (sixth) column are shown. The difference in standard deviations relative to the average for all genes are
indicated in parenthesis. The bold font highlights amino acids with difference of more than two standard deviations.

from our RNA-seq data. Consequently, we investigated our
RNA-seq data for expression in such unannotated regions.

Novel potentially transcribed regions
There are a total of 1,645 un-annotated contiguous stretches

of the genome or gaps (stranded, meaning there can be antisense
located annotations) between reference annotations of length

>100 bp (minimal length for 99.5% of transcripts in the
atlas). We detect novel potentially transcribed regions (NPTRs)
by inspecting the average RNA-seq read coverages over the
entire unannotated gap region (read counts, DESeq2 size-factor
normalized, relative to the lengths). Relative to the 50 bp
sequencing lengths (see section “RNA-sequencing dataset”),
70% of atlas annotations were on average expressed by four reads
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and 30% by one read. In contrast, only 20% (542) of unannotated
regions were on average covered by four reads. This high
coverage for these 542 NPTRs (Supplementary Figure 1)
indicates that the NPTRs may have functional importance
and that it would be relevant to include these in subsequent
expression analysis (see Supplementary Table 3).

PrsA over-expression changes gene
expression regulation of the global
transcriptome

Differential expression
We assessed the impact of PrsA over-expression on the

bacterial transcriptome by analyzing the expression levels of
coding and non-coding sequences (see section “Transcriptional
activity for the reference annotations” above), including the 141
additional annotations and the 542 NPTRs with DESeq2. For
each region, we performed 16 pairwise differential expression
tests: six tests between the two strains on each timepoint and
2 × 5 tests from one timepoint to the next in both strains
(Figure 1C). Since each pairwise test corresponds to a separate
hypothesis test, we used stage-wise testing to adjust for the
overall false discovery rate (FDR) per annotation (Love et al.,
2014; Van den Berge et al., 2017). Compared to controlling the
FDR per hypothesis, the overall FDR increases statistical power
and guarantees the FDR relative to the gene/annotation number,
independent of the number of hypotheses (Van den Berge et al.,
2017). As part of the differential expression analysis, DESeq2’s
independent filtering detected about half of all coding sequences
and 355 of 542 NPTRs as expressed (Love et al., 2014). At an
overall FDR p-adj.≤0.01, we detected differential expression for
1,793 coding sequences (67% of expressed genes), 234 NPTRs
(66%), 68 putative ncRNAs (64%), 20 riboswitches (54%), 9
tRNAs (41%), and 3 sRNAs (33%) (Table 1 and Supplementary
Table 4). The differentially expressed coding genes include the
AMY enzyme and the over-expressed PrsA. Between 50 and
78% of these biotypes had strain-specific expression patterns
(significant difference for at least one of the six between strain
tests). PrsA had strain-specific expression (as expected by not
being inserted into the control strain’s genome). Notably, no
strain-specific expression was detected for AMY.

To further assess the coding potential of the differentially
expressed NPTRs, we leveraged a set of 4,226 ORF predictions
(Hyatt et al., 2010). These ORF recall 4,085 of 4,332 known
coding sequences perfectly (overlap with Jaccard similarity
>90%), which corresponds to a recall of 94.3% with a precision
of 96.7%. Only 141 ORF predictions do not recall coding genes.
Furthermore, only 18 overlap unannotated regions (>100 bp);
for 3 ORF, the overlap is less than 5% of the ORF length
(Table 3). Also, only two of the ORFs are fully located within
an NPTR that has detected differential expression; in both cases,
the ORFs antisense overlaps the 3′ ends of the coding genes:

The electron transfer flavoprotein etfA and the gene of unknown
function yobB.

The regions with the highest expression
changes

The strain-specific expression patterns of PrsA and the
respective logFC between the two strains on all six timepoints
were the most extreme observed in this study with logFC
values up to a factor of 20 at each timepoint. Other extreme
logFC values were observed for genes from operons encoding a
variety of biological functions (Table 4). The NAD biosynthesis
genes of the nadABC operon (Rodionov et al., 2008) also have
extreme logFC, but they undergo both extreme upregulation and
downregulation in the control strain with nadA and nadB being
downregulated from timepoint 21 to 26 h (both logFCs<−6,
adj. p < 0.004) and subsequently upregulated from 26 to 45 h
(both logFCs ∼+7, adj. p < 3e-10). Due to the secretion
stress, the production strains attempt to sporulate despite being
unable to do so (Geissler et al., 2022). Consistently, the two
sporulation genes, namely safA and coxA, were among the
most extremely regulated (logFC > 6, adj. p < 2.3e-5). Other
extreme changes in expression (logFC < −5) were observed
for the spore killing factors skfA and skfB (González-Pastor,
2011), the sporulation controlling factor spoIIGA (Ramos-Silva
et al., 2019), the bacitracin resistance genes bceA and bceB (Ohki
et al., 2003), the for NADH during fermentation essential lactate
dehydrogenase ldh (Cruz Ramos et al., 2000; Larsson et al.,
2005), and an NPTR antisense to the gene of unknown function
ytta (Asai et al., 2007).

Biological processes and differentially
expressed genes are mutually associated

The investigation of the overall expression profiles from
a k-means clustering (Figure 2A) on the average expected
expression at each timepoint (Supplementary Table 5) shows
marked differences in the expression dynamics between the
strains (Figure 2C). Also, all profiles indicate a substantial shift
in dynamics between timepoints 45–71 h, during which the
cell population increased the most (Figure 1A): For instance,
profiles 4 and 5 drop in expression levels at that timepoint but
recover and even exceed the starting expression level whereas
profiles 7 and 8 have drastically downregulated expression at
that timepoint and do not recover (Figure 2B). Genes and
other biotypes with strain-specific expression patterns had
predominately different expression profiles between the strains,
whereas those without strain-specific expression had the same
(Supplementary Figure 5). Therefore, B. subtilis regulates gene
expression both timepoint- and strain-specifically.

We assessed which biological processes [annotated in
Gene Ontology (GO), terms (Ashburner et al., 2000)] are
over-represented among the differentially expressed genes
in each time and strain pairwise comparison (Figure 1C).
We compared the numbers of respective upregulated or
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TABLE 3 ORF overlapping un-annotated regions.

Overlapping gap ID Gap length ORF start ORF end ORF strand ORF length % ORF within gap

Low expression gap-865 18994 164501 164923 − 18994 100

Low expression gap-964 382 635149 635262 − 382 100

Low expression gap-1109 277 1233396 1233599 − 277 100

Low expression gap-1244 15761 1784706 1784837 − 15761 100

Low expression gap-1402 1357 2747665 2747853 − 1357 100

Low expression gap-643 8279 3341033 3341254 + 8279 100

NPTR† gap-1322 7336 2221838 2221951 − 7336 100

NPTR with diff. expr. gap-1293 743 2050930 2051037 − 743 100

NPTR with diff. expr. gap-538 7687 2915229 2915390 + 7687 100

Low expression gap-1495 1272 3419414 3419656 − 1272 96.7

Low expression gap-1367 140 2560095 2560259 − 140 84.8

NPTR† gap-113 1795 718436 718597 + 1795 83.3

Low expression gap-1166 197 1453322 1453525 − 197 79.4

NPTR with diff. expr. gap-1354 1038 2460278 2460625 − 1038 26.7

NPTR without diff. expr. gap-1296 581 2056650 2057114 − 581 23.2

NPTR with diff. expr. gap-1058 2975 1033458 1034003 − 2975 4.8

Low expression gap-449 2395 2555468 2555845 + 2395 2.1

Low expression gap-90 2286 608879 609391 + 2286 1.4

Shown are each overlap between ORFs (that did not recall a coding gene) and un-annotated regions (>100 bp). Some of these un-annotated regions with sufficient expression signal were
considered as NPTR and further processed for differential expression analysis (column 1–3). Bold texts highlights gaps with detected differential expression. Based on the coordinates of
the predicted ORF (column 4–7), the overlap of the ORF with the un-annotated gap is expresses relative to the length of the ORF (column 8).
†Un-annotated region with sufficient expression signal to be considered as NPTR, but which was excluded from further analysis by the independent filtering procedure of the differential
expression analysis.

downregulated genes relative to the number of expressed genes
(see section “Materials and methods”). A total of 24 processes
had significant over-representation (Fisher’s exact test, FDR
p-adj. ≤0.01). We inspected the list of differentially expressed
genes per process (Supplementary Table 7) in combination
with meta-information available in the BSGatlas, particularly
KEGG pathway annotations (Kanehisa and Goto, 2000;
Geissler et al., 2021). Notably, the detected over-represented
processes annotate genes with differentially expressed logFC
predominately above the background logFC distribution of
genes without detected differential expression (Supplementary
Figure 8). Furthermore, some of the top 10 most extremely
upregulated and downregulated genes (Table 4) were annotated
by the detected processes (Supplementary Table 7), namely
cell wall macromolecule catabolic process (safA and skfA),
response to stress (nadC and nadE), and ATP biosynthetic
process (ldh). We further inspected the detected biological
processes (Figure 3) for their relevance with respect to fed-batch
fermentation, as described in the sections later.

Nucleotide biosynthesis
It is well established that an ample supply of nucleotides

is needed for efficient AMY protein expression (Hosoda
et al., 1959) and thus also the nucleotide precursors, such as
UMP and IMP, are of regulatory interest (Peifer et al., 2012;
Hohmann et al., 2016). Consistently, the over-representation
investigation indicates an upregulation of UMP (GO:0006222)

and IMP (GO:0006189) biosynthesis in the +prsA strain from
timepoint 26 to 45 h and 95 to 118 h, respectively. The
monosaccharide catabolic genes (GO:0046365), especially the
genes involved in the ribose synthesis via the pentose phosphate
pathway (Supplementary Table 7), are upregulated in the
control strain from timepoint 45 to 71 h. The pteridine-
containing compound metabolic process (GO:0042558) was
over-represented by genes upregulated from the first to the
second timepoint in both strains. These specific genes are also
part of the folate biosynthesis pathway, which is essential for
both purine and pyrimidine synthesis (Kilstrup et al., 2005) and
therefore quintessential for AMY production (Hohmann et al.,
2016; Hosseini et al., 2018).

PrsA over-expression affects genes
involved in energy metabolism

ATP biosynthesis
The ATP biosynthetic process (GO:0006754) was

significantly downregulated in +prsA compared to the
control strain on the first timepoint of the fermentation.
Furthermore, the data suggest that the energy derivation by
oxidation of organic compounds (GO:0015980) was further
downregulated in +prsA from the first to the second timepoint
within the first day of fermentation. The differentially expressed
genes associated with both processes comprise a long list
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TABLE 4 Most extreme observed logFCs.

Name Type Test logFC Adj. P Location

nadB Coding Between strains, 26 h 7.4 1.07E-10 2847871<-2849466

nadB Coding Control, 26->45 h 7.2 2.65E-10 2847871<-2849466

nadC Coding Control, 26->45 h 7.0 2.89E-09 2847048<-2847917

nadC Coding Between strains, 26 h 6.9 5.26E-09 2847048<-2847917

nadA Coding Control, 26->45 h 6.8 7.82E-11 2845955<-2847061

nadA Coding Between strains, 26 h 6.8 1.33E-10 2845955<-2847061

safA Coding Control, 26->45 h 6.4 4.05E-09 2844675<-2845838

safA Coding Between strains, 26 h 6.2 8.98E-09 2844675<-2845838

coxA Coding Between strains, 26 h 6.2 1.82E-05 2843931<-2844527

coxA Coding Control, 26->45 h 6.1 2.28E-05 2843931<-2844527

spoIIGA Coding Control, 26->45 h −5.2 8.47E-67 1603779->1604708

skfB Coding Control, 26->45 h −5.4 2.86E-60 214175->215407

skfA Coding +prsA, 26->45 h −5.4 7.31E-09 213941->214108

skfA Coding Control, 26->45 h −5.7 4.39E-24 213941->214108

bceA Coding Control, 26->45 h −6.2 5.76E-107 3111327<-3112088

nadA Coding Control, 21->26 h −6.2 0.002258927 2845955<-2847061

bceB Coding Control, 26->45 h −6.5 1.62E-127 3109397<-3111337

nadB Coding Control, 21->26 h −6.5 0.003566971 2847871<-2849466

ldh Coding +prsA, 21->26 h −6.6 2.42E-13 329774->330739

gap-1449 NPTR control, 26->45 h −6.9 1.85E-48 3108525<-3109352

The table lists the top 10 most extreme upregulated and downregulated genomic elements according to their logFC of differential expression (fourth column). prsA is excluded since it was
upregulated with an approximate logFC of 20 between strains at all-time points. For each genomic element, the locations (last column) are relative to the reference genome (see section
“Materials and methods”). The pairwise tests (third column) refer to the conducted differential expression analysis (Figure 1C), and the corresponding adjusted P-values are listed in
the fifth column.

FIGURE 2

Expression profiles. (A) Heatmap of the expression profile over time (columns) for all differentially expressed coding and non-coding annotations
investigated separately per strain. The resulting profiles were clustered (rows) and re-arranged by a complete linkage tree. (B) Profiles of
expression per cluster for each annotation (black lines). An overall average expression according to a loess regression is added in blue. (C) The
number of annotations per profile in either strain. The expression dynamics for each annotation can be in two separate profiles in the strains.

(>50, see Supplementary Table 7) of core energy metabolic
enzymes from the citrate cycle, oxidative phosphorylation, and
glycolysis. Nevertheless, the list also overlaps with the starch
and sucrose metabolism pathway, particularly with glycogen
biosynthesis (glgA, glgB, glgC, glgD, and glgP) (Kiel et al., 1994).

Consistent with these observations, the carbohydrate transport
(GO:0008643) was also downregulated in +prsA on the first
timepoint. In contrast, the cellular ketone metabolic process
(GO:0042180) was upregulated in the control strain from the
first to the second timepoint. Ketones are essential for the
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FIGURE 3

Regulated biological processes. Biological processes that are over-represented by the genes differentially expressed in each of the pairwise
comparisons (black lines) between the fermentation timepoint in the +prsA (red) and control strain (blue). For simplicity, the regulated processes
are grouped in subplots according to the same biological functions discussed in the result sections, which touch upon (A) nucleotide
biosynthesis, (B) energy metabolism, (C) cell wall processes, (D) amino acid metabolism, and (E) stress response. Supplementary Figure 7
shows the regulated processes without further functional subdivision. Colored arrows indicate a pairwise comparison that was
over-represented in a process (see description to the right). The arrows point to the conditions in which expression levels were higher.
Upregulation in the +prsA strain or upregulation with time progression of the fermentation is highlighted in orange, whereas downregulation is
shown in purple. In each subplot, time-strain conditions not adjacent to an arrow are grayed out.

biosynthesis of menaquinone (Lu et al., 2008). Menaquinone
is B. subtilis’ respiration coenzyme, similar in function to
ubiquinone in human mitochondria (Lemma et al., 1990).
Nevertheless, the ATP biosynthetic process (GO:0006754) was
not detected significantly over-represented by the regulated
genes at the other fermentation timepoints.

Altering carbohydrate transport during
fermentation

The over-representation analysis also suggests that
both strains have an upregulated carbohydrate transport

(GO:0008643, GO:0034219) from 45 to 71 h. The transport
might also be upregulated in the +prsA strain from the first to
the second timepoint.

PrsA over-expression affects genes
involved in cell wall destabilizing
processes

Low PrsA protein abundances and increased concentrations
of teichoic acid can reduce cell growth and cell wall disruption
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(Driessen et al., 1998; Hyyryläinen et al., 2000). For instance,
the inhibition of the dlt operon–which is key to teichoic acid
synthesis–increases AMY yields (Hyyryläinen et al., 2000; Yan
and Wu, 2017). However, our data suggest that not only
dltB expression is upregulated in +prsA on timepoint 45 h
(logFC = 0.86, adj. p < 2.11e-5) but also the entire teichoic
acid biosynthetic process (GO:0019350). Additional processes
relating to cell wall molecules and polysaccharide biosynthetic
(GO:0033692, GO:0000271) were observed as downregulated
in +prsA. Nevertheless, not only does our data suggest that
the biosynthesis is downregulated, the corresponding catabolic
processes (GO:0016998, GO:0000272) might be upregulated.

Upregulation of amino acid
metabolism during PrsA
over-expression

Regulated amino acid metabolism
Genes of the arginine biosynthetic process (GO:0006526)

are over-represented among the genes upregulated in the+prsA
strain on the first timepoint and for the amino acid transport
(GO:0006865) at timepoint 94 h after fermentation started. The
histidine biosynthetic process (GO:0000105) was detected as
downregulated from timepoint 26 h to the timepoint 45 h in
both strains. The data suggest also that the tRNA aminoacylation
for protein translation (GO:0006418) is downregulated in
+prsA on the first timepoint, and that the cellular biogenic
amine biosynthetic process (GO:0042401) is upregulated in the
control strain from the first to the second timepoint.

Expected changes in amino acid metabolism
Given the observed potential regulation in amino acid

metabolism above, we investigated to which extent these might
be the result of the peptide sequence of the secreted AMY.
The inspection of the codon composition of all coding genes
suggests that the AMY and the over-expressed PrsA contain
substantially more tryptophan, asparagine, aspartic acid, and
lysine (more than 2 standard deviations from the average
proportion, Table 2). Tryptophan was the strongest over-
represented amino acid in AMY (+3.1 standard deviations).
In comparison, the subset of neither differentially expressed
endogenous (excl. AMY and PrsA) coding genes nor 10% of
most highly expressed endogenous genes have changes in the
overall composition (within 1 standard deviation). The PrsA was
extremely over-expressed in the +prsA strain (logFC > 19, adj.
p≤ 5.27e-40). By average expression, AMY was the 5th and PrsA
the 34th highest expressed gene (see Supplementary Table 6).
Thus, the enrichment of these four amino acids in AMY
and PrsA should have physiological relevance: given the high
energetic cost of tryptophan biosynthesis (Akashi and Gojobori,
2002), the evolutionarily adapted amino acid metabolism will be
affected (Smith and Chapman, 2010).

Protein–protein interactions of stress
response and competence
transformation

Stress response turning point
The over-representation investigation reveals that both

strains upregulate parts of their stress response concerning the
reactive oxygen species (ROS) response (GO:0006950 and the
two children terms GO:0042542, GO:0000303) from timepoint
26 h to 45 h. Simultaneously, the strains downregulate the
establishment of competence for transformation (GO:0030420).
The protein ClpC is the key switch between heat shock
(including secretion stress) and competence regulation (Turgay
et al., 1997). During stress, a three-protein complex of ClpC,
MecA, and ComK is formed (Turgay et al., 1997). The bound
central competence regulator ComK can no longer act as
a transcription regulator, which prevents the establishment
of competence (Turgay et al., 1997). According to our
results, clpC undergoes significant differential expression during
fermentation in both strains, but neither comK nor mecA had
significant expression changes though both were expressed
(Supplementary Table 4). Given that the molecular mechanism
of the ClpC switch (i) is post-translational, (ii) does not directly
impact the transcription levels of the involved genes, and (iii)
involves a third factor, the analysis by pairwise comparison
of expression levels cannot detect that specific interaction.
Therefore, we complemented the expression analysis with
protein-protein interaction (PPI) network analysis.

Protein–protein interaction network analysis
We retrieved PPIs from the STRING database for the

B. subtilis strain 168. STRING provides a list of functional
associations from multiple evidence channels, such as curated
knowledge from known metabolic pathways and protein
complexes, physical PPIs from lab experiments (e.g., pull-
down assays), predicted interactions from text mining of the
biomedical literature, or associations based on co-expression
analysis (Szklarczyk et al., 2019). The resulting network of
4,774 high-confidence associations (confidence score >0.8)
among 1,770 of the 1,791 differentially expressed protein-coding
sequences was clustered into 201 protein clusters using MCL
(Enright, 2002; Morris et al., 2011; Doncheva et al., 2019). In
combination with the significant logFCs between the+prsA and
control strains (Legeay et al., 2020), we manually inspected four
clusters with interesting patterns regarding this study’s outset
(Figure 4). These are described in the following sections below.

Two-component system
The first PPI cluster consists of the CssRS two-component

system, including the involved proteases (see Introduction,
Figure 4A). However, the cluster contains an additional
association between the stress signal transducer CssS and YkoJ
of unknown function. The ykoJ expression during secretion of
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FIGURE 4

Relevant clusters of differentially expressed genes. Nodes represent protein coding genes and edges correspond to high-confidence protein
interactions retrieved from STRING. The differential expression between strains is shown as rings around the nodes, where each ring contains
the logFC values for each time point comparison in a blue-white-red color gradient (see figure legend). A high positive logFC is colored red and
indicates a significantly larger expression in the +prsA strain compared to the control. Non-significant differential expression is shown as 0
logFC (white). The logFC color gradient was truncated at ±2. (A) The genes in this cluster include the central heat shock stress two-component
system of CssRS and the proteases HtrAB (blue nodes). The cluster also contains the gene ykoJ of unknown function (red node) connected to
the stress transducer CssS (large blue node). (B) This cluster contains the competence/heat shock switch protein ClpC (leftmost red node) and
the universal sigma factor SigA (rightmost red node); SigA and ClpC share interactions with the tree heat shock proteins dnaK, grpE, and groEL
(blue nodes). The cluster also contains ClpE (purple node) that had substantially higher expression in +prsA at timepoint 118 h (logFC ∼2.6).
(C) The analysis found a cluster of 24 prophage or prophage-like genes that were closely interacting and had significantly higher expression in
+prsA throughout the fermentation. (D) The largest cluster contains a “bottleneck” of high-confidence interactions at two genes of unknown
function (yesN and ywqD) between 125 genes of various catalytic function (summarized as one node) and 29 chemotaxis genes (blue nodes)
and the central chemotaxis signal protein CheA, the flagellar hook-filament FlgK, the general stress repose sigma factor SigB, and the RNA
polymerase sigma factor SigI.

a vaccine compound (beta-toxoid) positively depends on CssS
(Nijland et al., 2007). In contrast, the expression during AMY
might have a negative dependency with cssS being significantly
lower expressed in +prsA on timepoint 21 h after fermentation
start (logFC =−0.9, adjusted p = 8.5e-10) and ykoJ significantly
higher (logFC = 1.7, adj. p = 1.2e-7). To our knowledge, the
association YkoJ-CssS has not been characterized in the context
of AMY production.

Competence switch
The second cluster (Figure 4B) contains the above-

described heat shock/competence protein switch ClpC

(Turgay et al., 1997). The cluster also contains ClpC’ repressor
CtsR (Derré et al., 1999) and the universal sigma factor
SigA. Furthermore, SigA and ClpC share associations with
the three heat shock proteins DnaK, RrpE, and GroEL.
Although mecA was not detected as differentially expressed,
the paralog mecB was, and it is part of this second cluster
(Persuh et al., 2002). B. subtilis’ other two Clp-proteins
ClpP and ClpE are also part of this cluster. ClpE had a
significantly higher expression on timepoint 118 h in +prsA
(logFC = 2.6, adj. p = 0.0005), which is relevant because
ClpE destabilizes the functionality of the repressor CtsR
(Miethke et al., 2006).
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Prophage genes
A third cluster (Figure 4C) contains a set of tightly

associated 24 PBSX prophage and prophage-like genes that
were all significantly higher expressed in +prsA compared to
control at various timepoints during the entire duration of the
fermentation (logFC ∈ [0.9, 2.4], adj. p ∈ [2.6e-23, 9.2e-3]).
PBSX, a defective B. subtilis prophage (Wood et al., 1990a), is
known to be potentially heat-induced (Wood et al., 1990b), and
they have a potential association with the level of lytic stress
resistance (Buxton, 1980).

Potential cell motility regulation
Finally, the fourth cluster has an interesting pattern of

associations involving many chemotaxis genes (Figure 4D).
This cluster is structured into two separate interconnected
components: On the one side, there are 29 chemotaxis proteins
and on the other 125 protein-coding genes with various catalytic
functions [116 of 125 (92.8%) genes are annotated in the general
catalytic activity term GO:0003824]; however, both parts are
connected by a backbone of associated genes. This backbone
includes the central flagella motion frequency regulator CheA,
the flagellar hook-filament FlgK, the general stress sigma factor
SigB, the heat-shock protein sigma factor SigI, and the two
partially characterized signal transducers YesN and YwspD
(Fabret et al., 1999; Petersohn et al., 2001; Zuber et al., 2001; Asai
et al., 2007; Mukherjee and Kearns, 2014). Interacting with SigB
are five stress regulatory proteins induced by SigB (according
to STRING annotations). Both YesN and YwsqD are described
as histidine kinases, although the corresponding response
regulator remains unknown (Fabret et al., 1999; Caspi et al.,
2014; Zhu and Stülke, 2018; Geissler et al., 2021). Even if the
regulators are unknown, the backbone has an interesting pattern
of antagonistic logFC: (i) YesN is significantly lower expressed
in +prsA on timepoint 21 h (logFC = −1.7, adj. p = 1.4e-6)
and 26 h (logFC = −1.84, adj. p = 8.5e-5), (ii) YwspD is higher
expressed in +prsA on 21 h (logFC = 0.6, adj. p = 0.0037), and
(iii) CheA lower again on 21 h (logFC = −0.7, adj. p = 0.0025).
The bottom-line is that the PPI analysis elucidates the tight
associations between heat shock, competence transformation,
cell motility, general stress response, and translation.

Discussion

In this study, we investigated how PrsA over-expression in
B. subtilis impacts the transcriptome during fed-batch alpha-
amylase (AMY) fermentation. We carried out a temporally
resolved RNA-seq study to analyze expression levels and
regulation of biological processes with respect to secretion
stress. We inspected a comprehensive set of coding and
non-coding reference annotations and 542 novel potentially
transcribed regions (NPTRs). The fermentation process strongly
affects gene expression and we observe a large number of
differentially expressed genes both between the strange and

overtime: a total of 1,793 coding genes (67% of expressed
genes), 234 NPTRs (66%), 68 putative ncRNAs (64%), 20
riboswitches (54%), 9 tRNAs (41%), and 3 sRNAs (33%) were
differentially expressed. The PrsA over-expressing strain, which
is consistent with prior descriptions had increased yield and
reduced growth (Quesada-Ganuza et al., 2019), was observed
to have a significant strain-specific differential expression for
more than half of the transcribed genes. Subsequent in-depth
analysis of regulated biological processes (Figure 3) and the PPI
network of differentially expressed coding genes (Figure 4) shed
light on the complex intertwined processes of stress pathways,
core energy metabolism, and cell motility (Helmann et al., 1988;
Márquez-Magaña et al., 1990; Storz and Hengge, 2010; Yan and
Wu, 2019).

Concerning the NPTR, we assessed their potential to contain
ORF relative to predictions that recalled 94.3% of known genes
with high precision of 96.7%. A marginal fraction of these
ORF overlap unannotated regions (Table 3). Therefore, our data
do not suggest the presence of ORF in the NPTR, including
those with detected differential expression in this dataset.
Future investigation for potential conservation of RNA—let
alone assessment of their biological function—requires RNA
structure alignments that can have average sequence identities
below 40% (Yao et al., 2006, 2007; Weinberg et al., 2010). We
predicted the NPTR relative to a reference transcript annotation
that integrates a comprehensive set of annotation databases
and resources (Nicolas et al., 2012; Caspi et al., 2014; Geissler
et al., 2021; Pedreira et al., 2022). Among these resources is
SubtiWiki, an active community effort that comprehensively
collects previously identified coding and non-coding genes (Zhu
and Stülke, 2018). Therefore, we consider the NPTR to extend
beyond known transcribed regions.

Amino acid and energy metabolism

The observation of the potentially downregulated ATP
biosynthesis in the +prsA strain surprised us: (i) The AMY
hypersecretion is stressful and energy-intensive for the cells
(Song et al., 2015). (ii) It has been hypothesized that ATP might
be required for PrsA chaperone activity (Yan and Wu, 2017).
(iii) The reduction of ATP levels can also increase the general
stress response of B. subtilis (Haldenwang, 1995; Petersohn et al.,
2001; Yan and Wu, 2019). The potential downregulation of
ATP biosynthesis in the +prsA strain seems counterintuitive
because the strain has both lower stress and higher yield
than the control (Quesada-Ganuza et al., 2019). However, the
reduced ATP biosynthesis might be due to the impact of the
hypersecreted AMY and over-expressed PrsA on amino acid
metabolism. Contrary to the evolutionary energetic adaption of
the amino acid composition for secreted proteins (Smith and
Chapman, 2010), the four amino acids tryptophan, asparagine,
aspartic acid, and lysine are over-represented in the AMY and
PrsA proteins (Table 2). Although the specific metabolism
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processes for these four amino acids were not detected as
significantly regulated during fermentation (Figure 3), more
general amino acid processes (e.g., transport) or biosynthetic
processes for other amino acids (arginine and histidine) were
significantly over-represented by regulated genes. On the
one hand, the upregulation of arginine synthesis and related
transport mechanisms improves osmotic stress resistance (Du
et al., 2011; Zaprasis et al., 2015), which in turn is beneficial
to AMY production in B. subtilis (Zhao et al., 2018). On the
other hand, the over-represented amino acids might explain the
reduced ATP biosynthesis. (i) Tryptophan is the amino acid with
the highest biosynthetic cost in B. subtilis, with a 42.9% higher
cost than the second most costly amino acid (phenylalanine)
(Akashi and Gojobori, 2002). (ii) The biosynthesis, in particular
for costly amino acids, diverges intermediate metabolites from
ATP biosynthesis (Akashi and Gojobori, 2002). In the case of
tryptophan, the intermediate metabolites have already diverged
from glycolysis, which also impacts the downstream citrate
cycle (Kanehisa and Goto, 2000; Akashi and Gojobori, 2002).
However, a more definite inspection to confirm the regulation
of the amino acids and ATP metabolism would require an
investigation of concentrations of the individual metabolites
with for instance metabolomics.

Cell wall destabilizing processes

The over-expression of PrsA is known to lead to reduced
cell growth and cell lysis (Quesada-Ganuza et al., 2019). It
was suggested that protein-protein interactions of specific
PrsA protein domains are causal for these phenotypes
(Quesada-Ganuza et al., 2019). Our data suggest that, on a
transcription regulatory level, the PrsA-over-expressing stain
has both increased polysaccharide catabolism and reduced
polysaccharide biosynthesis. We hypothesize that this strongly
contributes to cell wall breakdown, which leads to detrimental
phenotypes. Therefore, investigating the associated differentially
expressed genes could potentially be the outset to trace back
the causality chain of why their regulation changes, and as
a path forward to finding candidates that stabilize cell walls
and increase yields. Furthermore, the PPI network analysis
highlighted 24 tightly associated PBSX prophage and prophage-
like genes (Figure 4C) that might be decisive in unraveling the
PrsA over-expression lysis phenomena (Buxton, 1980; Quesada-
Ganuza et al., 2019), particularly due to the heat-induced (and
thus secretion stress-related) expression of the PBSX genes
(Wood et al., 1990b).

Stress and cell motility

The protein-protein interaction network analysis resulted
in four clusters of proteins that we found to be relevant to

this study’s outset (Figure 4). These were the genes of the
CssRS two-component secretion stress response in one cluster
(Figure 4A), while the known ClpC regulatory switch and its
associations with secretion stress, competence transformation,
and associations with the universal sigma factor SigA belong to
another cluster (Figure 3B; Turgay et al., 1997). Furthermore,
the analysis provided a large cluster (Figure 4D) of cell
motility-related genes, which is consistent with the large
number of proteins involved in regulating bacterial motility
(Rajagopala et al., 2007). A closer inspection of the latter
cluster suggests that the proteins YesN and YwsqD might
have a signaling role in balancing between cell motility and
125 genes that are annotated to have various metabolic
catalytic functions, e.g., the phosphogluconate dehydrogenase.
To our knowledge, the potential relationship between cell
motility and AMY fermentation has not been elucidated so
far, although a potential hypothesis could be that the signaling
facilitates the regulation of flagellar cell motility to escape
from the stress region (Helmann et al., 1988; Márquez-
Magaña et al., 1990; Yan and Wu, 2019). Nevertheless, a
follow-up study is needed to verify cell motility regulation
during AMY production.

Conclusion

In conclusion, our transcriptome study highlights the
expression dynamics of secretion stress during fed-batch
AMY fermentation. The comparison of expression levels in
a PrsA over-expressing strain to a control strain showed
differential expression for nearly half of the transcribed
genes. A wide variety of upregulated and downregulated
biological processes is related to energy and amino acid
metabolism. Also, the data shows potential associations of
the cell lysis phenomenon of PrsA over-expression with the
stress response and cell motility. Overall, these results identify
genes and biological processes, which are affected during
fermentation and by the overexpression of PrsA and provide
a starting point for future genetic modification of B. subtilis
for improved yield.
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