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Abstract

Understanding the distribution and transport of Uranium is important because it can lead to

both chemical and radiological toxicity. This study presents the Uranium concentrations

time series from 1964 to 2009 obtained from a 3 m deep snow pit at Dome Argus, East Ant-

arctic Plateau. The data shows that Uranium concentrations vary from 0.0067 pg g-1 to 0.12

pg g-1, with a mean concentration of 0.044 pg g-1. Its mean concentration is 2–3 folds lower

than at West Antarctica study sites, such as the Antarctic Peninsula (mean 0.12 pg g-1), IC-

6 (Ice Core-6) (mean 0.11 pg g-1) and a suite of ice cores from the US ITASE traverse.

Before the mid-1980s, the varieties of Uranium concentrations are relatively stable, with a

very low mean concentration of 0.016 pg g-1and its main source is sea salt deposition, while

a small number of anthropogenic sources are likely to be caused by Uranium mining opera-

tions in South Africa. A remarkable increase of Uranium concentrations has occurred since

the mid-1980s (by a factor of ~ 9) compared with the amount before the mid-1980s. This

increase coincides with the Uranium records at IC-6 and Antarctic Peninsula (DP-07-01)

during the same period, and are mostly attributed to Uranium mining operations in Australia

as a potential primary anthropogenic Uranium source. Our observations suggest that Ura-

nium pollution in the atmosphere might have already become a global phenomenon.

Introduction

Antarctica, with a unique geographical condition, can store large quantities of airborne ions

and elements in snow and ice which can be used to investigate past environmental changes

and atmospheric circulation patterns [1]. Dome Argus (Dome A) is located at the highest

point of the Antarctic inland, at an altitude of 4093 m.a.s.l. (meters above sea level), about 1228

km from the nearest coastline and it is called “the inaccessible pole” as a result of the farthest

distance from the coastline [2]. In Dome A, the average snow accumulation rate was 23 kg m-2

yr-1 and the mean surface temperature was -58.3 ˚C [2]. Trace elements stored in Dome A can

act as climatic indicators to reveal the climate and environmental changes with global scale

characteristics due to the scarce human interference.
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Uranium is a rare and natural radioactive element with an average abundance of 1.7 ppm

in the upper crust [3, 4]. Uranium can enter the body from the respiratory tract in the form of

dust and aerosols and cause kidney damage because of its chemical radiotoxicity [5]. However,

there is no reference concentration to assess the risk of inhaling exposed Uranium. Uranium is

also a vital metal element for the development of human civilization and the exploitation of

nuclear industry. Due to World War Ⅱ, the Uranium concentrations exposed to the air have

increased significantly all over the world [6]. There have been numerous studies on the Ura-

nium environmental pollution, such as marine Uranium radiation pollution [7], salt marsh

Uranium pollution [8], groundwater [9], river systems [10], lakes [11], soils [12], plants [13],

and atmosphere [14], but there has been few researches on Uranium pollution in snow and

ice, especially in Antarctica. According to our understanding, the Uranium records were only

reported in Antarctic Peninsula (DP-07-01) [15], Coats Land [16], IC-6 (Ice Core-6) [17], Law

Dome [18], LGB (Lambert Glacier Basin) [19] and a suite of ice cores from the US ITASE tra-

verse [20] (Fig 1). These studies of Antarctic Peninsula, Coats Land, IC-6 have shown an

increasing trend of anthropogenic influences on Uranium deposition in the recent decades, to

a large extent caused by Uranium mining operations in the Southern Hemisphere [15, 16, 20].

However, the studies of Law Dome and LGB have shown that Uranium concentrations were

mainly affected by natural sources, such as sea salt deposition, volcanic emissions [19]. Thus,

the study of Uranium source in Antarctica is significant to access Uranium transport of air

masses caused by human interference under the hemispheric scale.

This study presents the data coming from 26th Chinese Antarctica Expedition on the

changes of Uranium concentrations over the last ~50 years (1964–2009) at Dome A. A total of

30 samples were analyzed for ions and trace elements. Combined with the historical compiled

inventories of Uranium production and our data, we analyzed the temporal and spatial distri-

bution characteristics, possible sources and transport mechanisms of Uranium in Antarctica.

Methods

Sampling

In this study, a 3 m depth snow pit was excavated near Dome A (80˚22’S, 77˚21’E). The sam-

ples were obtained in January 2010 during the 26th Chinese National Antarctica Research

Expedition. The State Oceanic Administration granted permission for the fieldwork. Strict

precautions were taken to prevent potential sampling contamination. A continuous series of

30 snow samples were collected at 10cm intervals by pushing a ultraclean PTFE (Poly tetra

fluoroethylene) bottle into the wall of the snow pit. Then the bottles were packed in acid-

cleaned LDPE bags and kept frozen until analysis. All bottles and sampling implements fol-

lowed the strictly acid-cleaned procedure [21] to avoid potential contamination before use. In

order to date the snow pit, a total of 20 samples from the bottom of snow pit 2–3 m at 0.05 m

intervals for the beta activity measurement were collected.

Analytical procedures

The trace elements and major ions were determined in the Climate Change Institute (CCI),

University of Maine in Orono, USA. All samples were placed in ultraclean room (Class 1000)

for melting at room temperature (~20˚C). Samples (2.5 mL) for trace-element analysis were

transferred to an acid-cleaned (Optima HNO3) vial and were acidified to 1% with HNO3

(Fisher ‘Optima’ Grade) under an ultraclean room (Class 100). The 30 samples were digested

for two days. Trace elements were measured by a Thermo ELEMENT2 high resolution Induc-

tively Coupled Plasma Sector Field Mass Spectrometer (ICP-SFMS). ICP-SFMS is equipped

with an Apex inlet sample system to prevent sample contamination and improve machine
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sensitivity. Before analysis, the SLRS-4 frozen river water reference material for trace metals

(National Research Council Canada, Ottawa, Canada) was used for adjusting ICP-SFMS [22].

Trace elements were measured in a high resolution and a sensitivity of 115In = 800 000 cps per

100 ng L-1. The Uranium method detection limit was 6.46 fg g-1, defined as three times the

standard deviation of three process blanks. Samples (4 mL) for major ions (Ca2+, Mg2+, Na+,

K+, NH4+, NO3- and Cl-) analysis were transferred to another vial. Major ions were analyzed

by ion chromatography (IC) equipped with DX-500 chromatographs fitted with suppressed

conductivity detectors and Gilson autosamplers. The AS-11 column, 400 μL sample loop and

the eluent of 5 mM KOH was selected for anion measurement. The CS-12A column, the

500 μL sample loop and the eluent of 25 mM methanesulfonic acid were selected for cation

measurement.

The samples for β-activity measurement were melted at the room temperature in ultraclean

room (Class 1000). In order to fully activate the radioactive material in the samples, hydrochlo-

ric acid (38%, ‘Huafu’, Yangzhou, China) was added to the sample at a level of 0.00033 mL kg-1.

Afterwards, the acidified samples were filtered on a cation exchange filter membrane (MN616

LSA-50, Germany) and a anion exchange filter membrane (MN616 LSB-50, Germany) for three

times. The prepared filter membranes were analyzed for β-activity in the SKLCS (State Key

Fig 1. Map of Antarctica showing the site of the snow pit at Dome A (pentagram), as well as the sites of the

previous studies about Uranium concentration, including DP-07-01 [15], Coat lands [16], IC-6 [17], LGB [18],

Law Dome [19] and a series of snow pits along the US ITASE traverses (shown by brown dots) [20]. The

topographic data were extracted using ETOPO1 elevations global data, available from National Oceanic and

Atmospheric Administration at http://www.ngdc.noaa.gov/mgg/global/global.html (Last access: 4 October 2018).

https://doi.org/10.1371/journal.pone.0206598.g001
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Laboratory of Cryospheric Sciences, Chinese Academy of Sciences, Lanzhou, China) by using a

MINI 20 Alpha-Beta Multidetector (Eurisys Mesures, St. Quentin, France).

Snow pit dating

The world’s most frequent atmospheric nuclear tests occurred during the period 1962–1963,

which released a great deal of radioactive material resulting in a radioactive horizon of Antarc-

tic snow in 1964–1965 because of a 1.5 yr transporting time [23, 24]. In this study, β-activity

peak with a value of 11.32 dpm kg-1 at the depth of 2.9 m (Fig 2), corresponding to the 1964–

1965. Non sea salt sulfur (nss-SO4
2-) is a proxy for reflecting volcanic events, which is calcu-

lated using the following equation:

nss� SO2�

4
¼ SO2�

4
� 0:25Naþ: ð1Þ

The nss-SO4
2- peaked with a value of 257 ng g-1 at the depth of 1.3 m (Fig 2), might be caused

by the volcano eruptions in Pinatubo in 1991. According to Cole-Dai et al [25], the sulfur sig-

nals of Pinatubo recorded in South Pole snow and ice last from the late 1992 to the late 1993,

since each sample in this study covers a period 1–1.5 yr, thus, we corresponded 1993 to the

boundary of the nss-SO4
2- peak (Fig 2). Depth-year series were calculated based on the settled

marked layers and the density of each sample. The calculated average snow accumulation rate

was 18.2 kg m-2 a-1 from 1965 to 1993 and 22.4 kg m-2 a-1 from 1993 to 2009, respectively,

which was consistent with former observations in Dome A [2, 26]. Our dating results was sup-

ported by previous studies [2, 26, 27].

Results and discussion

Results

Fig 3A shows the changes of Uranium concentrations from 1964 to 2009. Uranium concentra-

tions vary from 0.0067 pg g-1 to 0.12 pg g-1, with a mean of 0.044 pg g-1 after blank correction.

From 1964 to the mid-1980s, Uranium concentrations were low, ranging from 0.0067 pg g-1 to

0.0224 pg g-1, with a mean of 0.016 pg g-1. In the early-1990s, Uranium concentrations

increased greatly, reaching 0.082 pg g-1. Then the Uranium concentrations began to drop from

the early 1990s to the early 2000s, subsequently rise and reach a maximum of 0.12 pg g-1 at the

end of the 2000s. Uranium concentrations in this study are comparable with other study sites

in Antarctica. More information is presented in Table 1.

Fig 2. Profiles of the non-sea salt sulfur (nss-SO4
2-) concentration (black solid line) and the β-activity (red solid line) of

the snow pit.

https://doi.org/10.1371/journal.pone.0206598.g002
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Natural contributions

The natural sources of trace elements in the atmosphere mainly include the upper crust, volca-

nic eruption and sea salt spray [28]. In this study, the crustal enrichment factor (EFc) has been

Fig 3. Profiles of Uranium concentrations and EFc. (A) Uranium concentrations at Dome A. (B) EFc of Uranium at

Dome A. (C) Uranium concentrations at IC-6. (D) EFc of Uranium at IC-6 (solid red lines represent five-year running

averages).The Uranium concentrations data at IC-6 was obtained from Carlos (2012)[17].

https://doi.org/10.1371/journal.pone.0206598.g003
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used for assessing the contribution of upper crust to Uranium deposition at Dome A. We esti-

mate EFc according to the following formula:

EFc ¼
½Ur �sample

½Ur �upper crust

ð2Þ

where r refers to the reference element [29]. Here, Titanium (Ti) has been used as a reference

element to evaluate the crustal contribution [15]. Generally, the upper crust is considered to be

the main source if EFc varies from 0.1 to 10, while EFc over 10 indicates additional sources

[30]. Fig 3B presents the EFc of Uranium, ranging from 6.46 to 176.25 with a mean of 44.89

during the period 1964–2009. Overall, EFc remains at a lower level, with only a few values

greater than 10 before the mid-1980s, which suggests that there is only a small amount of

external sources to Uranium deposition at Dome A during that period. EFc has increased sig-

nificantly since the mid-1980s. The results coincide with the observations of Uranium studies

in Antarctic Peninsula [15] and IC-6 (Fig 3D) [17]. These observations indicate that there has

been a large number of additional sources affecting the Uranium deposition not only at Dome

A but also at other study sites in Antarctica since the mid-1980s, which suggests the increases

of Uranium concentrations at Dome A are not a regional phenomenon.

Table 1. Uranium concentration ranges and mean values at Dome A and other Antarctic sites.

Location Time period

(A.D.)

Elevation(m) U conc (pg g-1) (mean) Ref

Dome A

(80˚220S,77˚210E)

1964–2009 4093 0.0067–0.12

(0.044)

This work

Coats Land

(SiteA:77˚340S,25˚220W)

(SiteB:77˚150S,18˚050W)

1919–1990 1400 0.011–0.079

(0.037)

[16]

IC-6

(81˚030S,79˚500 W)

1934–2002 750 0.00177–0.6

(0.11)

[17]

Antarctic Peninsula

(64˚050S,59˚390W)

1980–2007 1900 0.023–0.5

(0.12)

[15]

LGB

(70˚050S, 77˚040 E)

1998–2002 1850 0.014–0.078

(0.029)

[19]

Law Dome

(66˚460S, 112˚480E)

4500 BC- 1989 1390 0.009–0.042

(0.03)

[18]

ITASE-02-1

(82˚000S,110˚000W)

1966–1975 1746 (0.153)a [20]

ITASE-02-5

(88˚000S,107˚980W)

1967–1975 2747 (0.168)a [20]

ITASE-02-6

(89˚930S,144˚390E)

1955–1975 2808 (0.069)a [20]

ITASE-03-1

(86˚840S,95˚310E)

1955–1975 3124 (0.094)a [20]

ITASE-03-3

(82˚080S,101˚960E)

1955–1966 3444 (0.119)a [20]

ITASE-06-2

(77˚780S,152˚370E)

2002–2006 2277 (0.137)a [20]

ITASE-07-4

(88˚500S,178˚530E)

2000–2006 3090 (0.062)a [20]

ITASE-07-5

(89˚780S,171˚430E)

2000–2006 2808 (0.050)a [20]

a Mean value only

https://doi.org/10.1371/journal.pone.0206598.t001
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Apart from assessing the upper crust, we also analyzed the effect of sea salt spray on Ura-

nium deposition at Dome A. Planchon et al [16] and Hur et al [19] thought that sea salt spray

was an important source to Uranium deposition. This is largely attributed to their study sites

proximity to the coast. We used sea salt sodium, sodium in the snow and elemental ratios in

seawater to assess the sea salt contribution to Uranium deposition by the following formula

[27, 31]:

Sea salt contribution ¼
½ U
Na� Nasea salt

�
sample

½ UNa�seawater

ð3Þ

The calculated sea salt contributions (Fig 4A) display the two changing periods. Before the

mid-1980s, sea salt contribution was relatively high, with a mean of 33.5% and a maximum of

53.1%. After the mid-1980s, sea salt contribution dropped rapidly, with an average of 6.9% and

a maximum of 14.8%. The results suggest that sea salt contribution has been weakening while

anthropogenic contribution has played a vital role since the mid-1980s. To further distinguish

the natural sources and anthropogenic sources of Uranium, excess Uranium (defined as xsU)

was calculated using the following formula:

xsU ¼ Utotal � Uocean � Ucrust ð4Þ

where Uocean and Ucrust refers to oceanic source and crustal source, respectively [15]. Gener-

ally, the anthropogenic sources are significant when xsU (% of total U) is greater than 60%

[15]. As shown in Fig 4C, the results show that xsU (% of total U) is less than 60% before mid-

1980s, indicating that the additional sources to Uranium deposition account for only a small

part during that period. After the mid-1980s, xsU (% of total U) increased with the Uranium

concentrations (Fig 3A), reaching a maximum (80%) at the late 2000s. The results of xsU and

sea salt contribution suggest that the additional sources have played an important role for the

Uranium deposition since the mid-1980s, while sea salt contribution decreased due to an

increase of additional sources in Dome A.

Finally the volcanic contributions to Uranium deposition at Dome A were assessed by nss-

SO4
2- (Fig 2). The peak of nss-SO4

2- in 1993 corresponds to the peak of Uranium concentra-

tions, which has a maximum of 102.31ng g-1. This suggests that the volcanic event of Mt. Pina-

tubo (1991 A.D.) is likely to affect Uranium deposition at Dome A by atmospheric deposition.

Anthropogenic contributions

The previous studies on the sources of heavy metals in Antarctica have shown that the reasons

for the enrichments of heavy metals are possibly related to mining operations and mineral

smelting in the Southern Hemisphere [15, 27, 29, 32]. According to Ohshima et al [33] and

Barbante et al [6], Uranium mining and milling is a main source for Uranium concentrations

in the atmosphere because such activities can result in large amounts of dust, with a significant

amount of small particles which can be transported over long distances in the atmosphere.

Thus, in order to assess the possible contribution by Uranium mining to Uranium deposition

at Dome A, we compared our data with the historical records of the Southern Hemisphere

Uranium mining operations, mainly including three major regions such as Australia, South

Africa (only Zambia), South Africa (only Argentina and Brazil) (data from minerals UK center

for sustainable mineral development at http://www.bgs.ac.uk/mineralsuk/statistics/wms.cfc?

method=searchWMS).

Fig 5 shows the changes of Uranium production from 1970–2010 in Australia, South Africa,

and South America, respectively. The results suggest that the world’s Uranium production
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stabilized at a very low level before 1980, and just Uranium production in South Africa is larg-

est, reaching to 2000 tons. Combined with the results of Uranium concentrations (Fig 3A) and

EFc (Fig 3B), a small number of additional sources to Uranium deposition at Dome A before

the mid-1980s were possibly related to Uranium mining operations in South Africa because

the dust from South Africa is also an important source for heavy metal deposition in Antarc-

tica [34]. Subsequently, the Uranium productions in South Africa has been descending

whereas Australia has become the largest supplier of Uranium in the Southern Hemisphere

since 1980. Comparing the Uranium production in Australia with our data, we observed that

there is a strong correlation between the Uranium production in the Southern Hemisphere

and Uranium concentrations at Dome A, both of which have risen consistently since the

1980s. The correlation coefficient between Uranium concentrations and Australian Uranium

Fig 4. Sea salt contribution and Excess U. (A) Sea salt contribution to Uranium deposition. (B) Excess U. (C) Excess U

accounts for % of total U.

https://doi.org/10.1371/journal.pone.0206598.g004
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production was 0.54 at the 99% confidence interval (R = 0.54, P<0.01, N = 22) (Fig 5B). The

interannual variability in Australian Uranium production agrees well with the corresponding

the variabilities of Uranium concentrations at Dome A, which suggests Uranium mining oper-

ations in Australia as potential primary anthropogenic Uranium sources. The similar observa-

tions can also be found in the previous literature [15]. In sum, our results show that the

anthropogenic sources to Uranium deposition at Dome A can be attributed to Uranium min-

ing operations in the Southern Hemisphere especially in Australia, which indicates Uranium

pollution in the atmosphere might have already become a global phenomenon by atmospheric

circulation.

Fig 5. Uranium production and correlation. (A) The Uranium production of Australian, South Africa, South America

from 1970 to 2010 (data from minerals UK at http://www.bgs.ac.uk/mineralsuk/statistics/wms.cfc?method=searchWMS).

(B) The correlation between the annual U concentration and the annual production of Australia (T-test).

https://doi.org/10.1371/journal.pone.0206598.g005
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Transport

In order to trace the potential transport path of air masses, we analyzed the 15-day back trajec-

tories in Dome A, using HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory)

model. HYSPLIT is a complete system for calculating simple air masses trajectories and com-

plex transport, distribution, and deposition simulations, developed by the National Oceanic

and Atmospheric Administration (NOAA)’s Air Resources Laboratory (ARL) [35]. In this

study, the air masses backward trajectories at 500m height (Fig 6A) and 1000m height (Fig

6B), respectively for daily simulations from 1 January 2000 to 31 December 2009, a period of

high Uranium production in Australia, are used in Dome A. As shown in Fig 6, there are two

major sources of air masses to Dome A from the northeast and the northwest respectively at

500m height (Fig 6A), but only one major source of air masses to Dome A come from the

northeast when it is set at 1000m height (Fig 6B). It is known that westerly winds caused by

pole-equator temperature and pressure gradients in the Southern Hemisphere are located

between ~30˚S and ~60˚S, centered at approximately 50˚S [36, 37]. Westerly winds play a key

role in transporting the dust resulting from the mid-latitudes of Australia, New Zealand, South

America and South Africa to the Southern Ocean and Antarctica [38]. According to a 10-day

forward trajectories modeling of modern dust transported to the Southern Ocean and Antarc-

tica [34], the dust from Australia can be transported to West Antarctica or further by westerly

winds. Thus, the air masses from the northwest (Fig 6A) in Dome A were possibly affected by

westerly winds and eventually precipitated at Dome A.

The Southern Annular Mode (SAM) is a vital mode of climate variability which can domi-

nate the westerly winds at mid- to high-latitudes in the Southern Hemisphere [39]. According

to Laluraj et al [40], a great deal of dust flux to East Antarctica was observed since the mid-

1980s, coinciding with a shift in the SAM index to positive phase. This phenomenon is inter-

preted as the positive phase of SAM index that can strengthen westerly winds which increases

the amount of dust transported to Antarctica [27]. Thus, the increases of Uranium concentra-

tions at Dome A have been also likely caused by the positive phase of SAM index since the

mid-1980s.

To further ascertain air mass transport in Antarctica and verify the reliability of our data,

we compared our data with Uranium concentrations at IC-6 because IC-6 is near Dome A and

its Uranium concentrations time series from 1934–2003 coincide with the period in Dome A.

The result shows mean Uranium concentration (0.099 pg g-1) (Fig 3C) at IC-6 during the

Fig 6. Frequency plot of 15-day back trajectories at 500 m (A) and 1000 m (B) height levels above the ground

representing the airflow trajectories at the middle and high altitudes respectively for daily simulation during the

period 2000–2009. The Back trajectory data obtained using the NOAA (National Oceanic and Atmospheric

Administration, USA) HYSPLIT model (at ftp://arlftp.arlhq.noaa.gov/pub/archives/reanalysis).

https://doi.org/10.1371/journal.pone.0206598.g006
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period 1964–2003 is twice as high as that at Dome A (Fig 3A) during the period 1964–2009.

There are two possible reasons. One is that the average snow accumulation rate at IC-6 is 300

kg m-2 a-1 [17], which is approximately 10 folds higher than that at Dome A (23 kg m-2 a-1) [2],

resulting in a great deal of air masses precipitation at IC-6. The other is that IC-6 is located in

West Antarctica, one facing the Pacific Ocean where it receives much more dust from Austra-

lia compared to East Antarctica [34]. As shown in Fig 3A and Fig 3C, the variabilities of Ura-

nium concentrations at IC-6 are similar to that at Dome A after the mid-1980s, suggesting that

Uranium pollution caused by Uranium mining operations in Southern Hemisphere, especially

Australia, was not a regional phenomenon in Antarctica.

Conclusions

This study presents Uranium concentrations time series from 1964 to 2009 at a depth of 3m in

Dome A, East Antarctica. Before the mid-1980s, the Uranium concentrations in Dome A are

greatly affected by sea salt deposition and a small number of additional sources are possibly

caused by Uranium mining operations in South Africa during that period. After the mid-

1980s, Uranium concentrations have significantly increased, which coincide with the study of

Uranium record at IC-6 and Antarctic Peninsula (DP-07-01) at the same period. This phe-

nomenon has been largely attributed to many Uranium mining operations in Australia since

the mid-1980s. The results indicate that Uranium pollution might has become a global phe-

nomenon dispersal by atmospheric circulation.
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