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Abstract

Here we investigated different cell populations within ovarian cancer using single-cell RNA

seq: fourteen samples from nine patients with differing grades (high grade, low grade and

benign) as well as different origin sites (primary and metastatic tumor site, ovarian in origin

and fallopian in origin). We were able to identify sixteen distinct cell populations with specific

cells correlated to high grade tumors, low grade tumors, benign and one population unique

to a patient with a breast cancer relapse. Furthermore the proportion of these populations

changes from primary to metastatic in a shift from mainly epithelial cells to leukocytes with

few cancer epithelial cells in the metastases. Differential gene expression shows myeloid

lineage cells are the primary cell group expressing soluble factors in primary samples while

fibroblasts do so in metastatic samples. The leukocytes that were captured did not seem to

be suppressed through known pro-tumor cytokines from any of the cell populations. Single

cell RNA-seq is necessary to de-tangle cellular heterogeneity for better understanding of

ovarian cancer progression.

Introduction

Ovarian cancer is the 5th leading cause of cancer deaths in women living in the United States

[1]. In 2017 alone, over 22,000 women were diagnosed with ovarian cancer and approximately

14,000 died from their disease. Epithelial ovarian cancers (EOCs) are broken down into four

histological subgroups: serous, mucinous, endometroid and clear cell [2]. Serous ovarian can-

cers are the most common, comprising ~50% of cases [3] and can be further subdivided into

high grade serous ovarian cancer (HGSOC) and low grade serous ovarian cancer (LGSOC) at

~90% and ~10% respectively [2].

The treatment options for HGSOC and LGSOC are similar with two standards of care, 1)

Primary cytoreductive surgery (PCS) followed by adjuvant chemotherapy and 2) Neoadjuvant

chemotherapy (NACT) followed by interval cytoreductive surgery (ICS) and adjuvant
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chemotherapy [4]. For both types of treatments, a combination chemotherapy consisting of

platinum-based and taxane-based drugs (e.g. carboplatin and paclitaxel) is administered [5].

Each EOC type has a different prognosis with HGSOC having the worst outcome with the

highest mortality rate of all the gynecological cancers. HGSOC is highly curable (>90% 5 year

survival) if diagnosed early as local disease when the cancer is confined to the ovaries; however,

most women are diagnosed with advanced stage metastatic disease. For these women, cure

rates are exceptionally low: less than 25% of patients with late stage HGSOC will live more

than 5 years [6]. Although HGSOC is initially sensitive to chemotherapy, almost invariably,

relapse occurs followed by drug resistant progressive disease [7,8]. Overall 5-year survival of

LGSOC is higher at 75% although this is dependent on having no residual disease following

surgery as LGSOC has greater chemoresistance [9].

There has been no significant decrease in mortality rates in almost 30 years [10]. There is a

critical need to improve our understanding of the underlying mechanisms leading to drug

resistant ovarian cancer and identify potentially actionable therapeutic targets.

Ovarian cancer is a complex disease with significant tumor heterogeneity and as such there

has been little success in identifying actionable targets. A meta-analysis of gene expression data

from 1251 HGSOC tumors did not identify a collective prognostic gene expression signature

[11]. Recently, Patch et al [12] performed a comprehensive whole genome analysis (DNA,

RNA, miRNA, CNV, methylation) on 92 HGSOC tumors associated with different levels of

drug response (i.e. refractory, resistant, or sensitive). Even with this in-depth analysis, no

actionable targets or prognostic molecular profiles were identified. Given the rarity of LGSOC

and its chemoresistance, most studies have been focused on recurrent disease using chemo-

therapy or hormone replacement therapy with mixed results [13]. Overall, analyses of bulk

tumor tissue at the DNA and RNA levels have failed to provide results of significant clinical

value.

Single-cell RNA-seq (scRNA-seq) allows for the quantitative and qualitative analysis of cell

composition in complex tissues without a priori knowledge of the cell populations present.

Several thousand genes can be quantitated simultaneously at the individual cell level. Using

this approach we sought to identify commonalities and differences in cell composition of

tumor samples from women with differing grades of serous epithelial ovarian cancer. Previous

studies have examined ovarian cancer at the single cell level [14,15]; here we expand by assay-

ing many more cells as well as identifying cell type specific differential expression.

Materials and methods

Subject recruitment, sample acquisition and sample processing

Women scheduled for surgery to evaluate a suspicious pelvic mass were recruited through

the Tissue Donation Program at The Feinstein Institute. Pathological discard tissue, primary

tumor and metastatic lesions (when available), were obtained at time of surgery and frozen

for later analysis. Tissue was minced and frozen in 40% FBS, 40% RPMI and 20% DMSO.

This freezing protocol routinely yields greater than 85% viable cells. This study was approved

by the Institutional Review Board (IRB) of Northwell Health. See Table 1 for study subject

characteristics.

Single-cell suspensions

Thawed tissue samples were digested and dissociated into single-cell suspensions using Milte-

nyi’s gentleMACS Octo dissociator and tumor dissociation kit following manufacturer’s

instructions. Single cells were collected by straining digested tissue through a MACS Smart

strainer (70um), washed, then layered over a Ficoll gradient to remove red blood cells and
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debris. To enrich the tumor cell fraction for live cells, dead cells were excluded using Dead Cell

Removal kit and MS columns (Miltenyi Biotec) and remaining viable cells were prepared for

scRNA-seq.

Single-cell RNA-seq (scRNA-seq)

Using the BioRad droplet digital SEQ Single-cell Isolator and the Illumina SureCell Whole

Transcriptome Analysis 3’ library prep kit, scRNA-seq was performed on isolated cells from

ovarian tumor tissue samples following the manufacturer’s instructions. Briefly single-cells

were encapsulated, lysed then barcoded within each droplet. Following first and second

strand cDNA synthesis, Illumina’s Nextera technology was used to generate a library for

NGS. Final libraries were assessed and quantified using a High Sensitivity DNA chip and a

2100 BioAnalyzer (Agilent Technologies) prior to sequencing on a NexSeq 500 high output

flow cell.

Data analysis

Sample data was demultiplexed and raw sequence files generated using bcl2fastq2 app in Illu-

mina’s cloud application, Basespace, followed by the SureCell RNA Single-Cell application to

extract the cell barcodes and the Unique Molecular Identifiers (UMIs). The raw sequence files

were aligned to the hg19 human reference genome and gene expression was quantified. A knee

plot of the genic UMIs per cell barcode was used to set thresholds for cells for downstream

analysis. The data discussed in this publication have been deposited in NCBI’s Gene Expres-

sion Omnibus [16] and are accessible through GEO Series accession number GSE118828

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE118828).

The R [17] software package Seurat was used for further analysis [18,19]. Genes were ini-

tially filtered on expression in at least three cells and each cell needed to have at least 200 genes

expressed. The entire dataset was then log-normalized with several factors regressed out: total

number of UMIs and cell cycle scores. A principal component analysis of the most variable

genes was performed and an elbow plot was used to select the principal components (PCs)

capturing the most variance in the dataset. These PCs were used as edge weights in an unsu-

pervised graph-based clustering to identify cell clusters. T-distributed stochastic neighbor

embedding (tSNE) was used for visualization of the cell clusters. Expression levels of cell-type

Table 1. Patient ID with clinical information sample type obtained, number of cells captured per sample is in parentheses.

Patient

ID

Patient Information Sample IDs

Age at

Diagnosis

Type of

neoplasm

Stage Previous HX of Breast

Cancer

Neo-

adjuvant

Race Primary Metastatic Normal

BN1 56 Benign No No White BN1-P (223)

HG1 70 HGSOC IIIA NA No - - HG1-P (252) HG1-M (325)

HG2F 67 HGSOC–

Fallopian

IIIB No No - - HG2F-P

(260)

HG2F-M

(259)

HG3 66 HGSOC IIIC Yes No White HG3-P (213) HG3-M (312)

HG4 54 HGSOC IIIA No No More than one race HG4-P (174)

HG5 69 HGSOC IIIC Yes Yes Black or African

American

HG5-P (56)

LG1 67 LGSOC IA No No White LG1-P (194) NM1

(344)

LG2 58 LGOSC IIIC No No Asian LG2-P (130) LG2-M (125)

PN1 55 Peritoneal IV No No White PN1-P (44)

https://doi.org/10.1371/journal.pone.0206785.t001
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specific markers were used to determine the putative identities of each cell cluster. All colors

used in plots were from Paul Tol’s color schemes and templates [20].

Once the cell clusters were identified, differential expression was done using a likelihood-

ratio test tuned for single-cell expression, which assumes an underlying negative-binomial dis-

tribution as well as accounts for drop out using a zero-inflation regression. We defined differ-

entially expressed genes as those with an adjusted p-value less than 0.05, an average log2 fold

change greater than 1. For potential biomarkers we put further thresholds of being expressed

in at least 50% of cells of the defining cluster with at least 50% difference of detectable expres-

sion of cells to the comparison group.

Results

Patient description

A total of 2911 cells were captured by scRNA-seq on nine patients with fourteen samples, see

Table 1. All nine patients had a sample from the primary site, four had samples from a meta-

static site and one had a sample from a normal ovary; all of the metastatic samples were from

omentum proximal to the primary site. Five of the patients were diagnosed with HGSOC

(with one being fallopian in origin), two were diagnosed with LGSOC, one had a cancer that

was peritoneal in origin and one had a benign cystadenoma. Average age of diagnosis for the

patients was 62.4 ± 6.5 years. All the tumors were diagnosed as stage III or greater with the

exception of the benign cystadenoma and one of the LGSOC, which was at stage IA. Two of

the patients (HG3 and NA1) had a previous history of breast cancer with one of them receiving

neoadjuvant chemotherapy. The self-reported ethnicity had a breakdown of four White, one

Asian, one Black/African-American, one with multiple races and two that did not self-report.

Hematoxylin and eosin staining showed no visible lymphocyte infiltration in either tumor or

metastatic lesions.

Cell Identification

Pooled scRNA-seq data from all samples (tumor, normal, benign) identified sixteen distinct

major clusters of cells that correlated with tumor origin, tumor status or known cellular

gene expression patterns (Fig 1). The major clusters broadly divided into epithelial/mesothe-

lial cells (EPCAM/CD326, KRT), lymphocytes (PTPRC/CD45, CD3E, CD19, MS4A1/

CD20), endothelial cells (PECAM-1/CD31, CD34), fibroblasts (ACTA2, DCN, ACTB)

and stromal cells (THY1/CD90, ENG/CD105, VIM, CD44), among others (S1 Fig).

Pooled primary tumor data alone resulted in a large epithelial cell cluster that could be fur-

ther subdivided into four groups, one group unique to HG3, one shared by HGSOC primary

tumor samples, one shared by both LGSOC primary tumor samples and one cluster enriched

in the ovarian tumor of fallopian origin HG2F. As expected normal ovary tissue displayed

a significant presence of fibroblasts and stromal cells with no evidence of epithelial cells.

ScRNA-seq data from a benign ovarian malignancy exhibited a unique cell cluster with

epithelial markers, but is mesothelial in origin with other cell types divided among other

clusters.

CD45 positive lymphocytes separated into five clusters with CD4+ and CD8+ T-cells

(CD3D, CD4 and CD8, respectively), B-cells (CD19 and MS4A1/CD20 positive) and two clus-

ters of myeloid lineage (CD14 positive). The myeloid clusters appeared to originate either

from primary tumors or the metastatic lesion. Only the PECAM1/CD31 positive cluster of

endothelial progenitor cells overlapped with all tissue samples analyzed.

Single cell RNA-seq and serous epithelial ovarian cancer
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Fig 1. Identified cell clusters across nine patients with fourteen samples.

https://doi.org/10.1371/journal.pone.0206785.g001
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Cell population differences

Each subject sample had differing relative proportions of identified cells types, see Fig 2 for

both percentages and numbers of cell types identified. An unsupervised hierarchical clustering

of populations of cells from all subjects resulted in five groups. There were three major groups,

which were predominantly from HGSOC primary tumor samples, HGSOC metastatic tumor

samples and LGSOC samples. There were single outlier groups from benign, a primary tumor

sample from HG3 and the normal and peritoneal samples clustering together. Surprisingly,

Fig 2. Proportions of cells making up each sample. Top is a dendrogram grouping similar samples by cell populations. Middle is the total number of

cells captured. Bottom are bar plots of each cell type. Number following colon in legend is number of cells captured for each identified cell type.

https://doi.org/10.1371/journal.pone.0206785.g002
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the neoadjuvant treated primary tumor sample clustered with metastatic lesions. The outlier

groups of benign and normal ovary samples were predictably comprised mostly of benign

mesothelial cells as well as normal fibroblasts and stromal cells, respectively.

A definitive shift in cell populations between HGSOC primary tumors and corresponding

HGSOC metastatic samples was observed (Fig 2). Primary tumor samples were predominantly

epithelial cells (68.3% epithelial cells versus 11.1% lymphocytes), whereas corresponding meta-

static samples were predominantly immune cells (66.2% lymphocytes versus 10.5% epithelial

cells) with lesser amounts of epithelial cells, fibroblasts and stromal cells. Shifting from mainly

epithelial to mainly lymphocytes seems to drive two of the big clusters (HGSOC primary and

HGSOC metastatic) as well as the placement of the neoadjuvant treated sample in HGSOC

metastatic: treatment killed off tumor epithelial cells. Clustering of LGSOC samples are based

on the presence of LGSOC epithelial cells, which interestingly were present in a large quantity

in the metastatic LGSOC sample. Two metastatic samples, HG2F-M and HG3-M, had signifi-

cantly higher amounts of B-cells compared to all other samples (p-value < 2.2E-16 for both via

Fisher’s test).

Tumor epithelial cell expression

Using Seurat, potential biomarker discovery for all cancer epithelial cells versus every other

cell type was performed (Table 2). Twelve differentially expressed genes were identified which

included WFDC2, two members of the claudin family (CLDN3 and CLDN4) as well as three

keratin genes (KRT8, KRT18, KRT19).

Examining each tumor epithelial cluster versus the other three showed two clusters with

potential biomarkers. HGSOC-F epithelial cells had unique identifiers with the top three

expressed genes being TPPP3, C20orf85 and FOXJ1 (Table 3). The epithelial cell cluster

unique to patient HG3 from this tumor had eleven differentially expressed genes with highest

expression found in SST, TFF3 and PIGR. There were no distinct gene profiles for either of

the HGSOC or LGSOC ovarian tumor epithelial cells, all highly expressed genes were also

expressed within other epithelial clusters.

Non-epithelial cell expression

Comparison of normal fibroblasts and stromal cells to their tumor counterparts showed a

striking upregulation of collagen genes including COL1A1, COL1A2, COL3A1, COL4A1,

Table 2. Potential biomarkers comparing all four clusters of tumor epithelial cells versus all other cells.

Gene Average Log2 Fold Change Percentage in Cluster Percentage out of Cluster Adjusted p-value

All Tumor Epithelial Cells

WFDC2 2.373 0.772 0.108 0

CLDN4 2.271 0.615 0.034 0

FXYD3 2.202 0.537 0.025 0

CD24 2.111 0.647 0.071 0

ELF3 2.061 0.636 0.061 0

CLDN3 2.045 0.623 0.031 0

MUC1 1.995 0.648 0.08 0

SPINT2 1.831 0.638 0.09 0

KRT8 1.767 0.664 0.086 0

SLPI 1.681 0.646 0.074 0

KRT18 1.640 0.671 0.134 0

KRT19 1.590 0.613 0.098 4.7E-297

https://doi.org/10.1371/journal.pone.0206785.t002
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COL4A2 COL5A1, COL5A2, COL6A1 and COL6A3 as well as collagen support genes,

SPARC, SERPINH1 and SERPINE1 (Table 4). COL4A1, COL4A2, SPARC, SERPINH1, and

SERPINE1 were also expressed within the endothelial progenitor cluster. Cancer fibroblast

and stromal cells had increased expression of MMP and MMP-related genes: MMP2, MMP11

and TIMP1. While many secreted factors were expressed by myeloid lineage cells (primary

and metastatic), metastatic fibroblasts and cancer stromal cells, as expected relatively few were

observed in tumor epithelial cells (S1 Table).

Doing a differential expression between the two clusters of cancer fibroblasts, we found

metastatic fibroblasts were found to express higher levels of soluble factors compared to

Table 3. Potential biomarkers of one cluster of tumor epithelial cells versus the other three, there were no specific biomarkers for either HGSOC or LGSOC epithe-

lial cells.

Gene Average Log2 Fold Change Percentage in Cluster Percentage out of Cluster Adjusted p-value

HGSOC-F Epithelial

TPPP3 3.377 0.885 0.083 1.1E-279

C20orf85 3.177 0.723 0.007 4.8E-299

FOXJ1 2.545 0.857 0.257 6E-159

RSPH1 2.455 0.615 0.033 1.2E-199

ZMYND10 2.285 0.569 0.02 4.7E-198

CAPS 2.197 0.731 0.218 2.3E-118

HG3 tumor epithelial

SST 3.771 0.547 0.022 4.6E-181

TFF3 2.665 0.607 0.054 1.4E-176

PIGR 2.628 0.661 0.017 7.3E-243

GPNMB 2.010 0.65 0.021 4.7E-227

XBP1 1.824 0.768 0.173 6E-179

LYNX1 1.792 0.553 0.034 1.7E-169

AGR2 1.727 0.603 0.055 2.5E-170

DDIT4 1.639 0.846 0.272 2E-162

CXCL17 1.575 0.608 0.055 2.6E-173

KIAA1324 1.564 0.561 0.025 1.2E-180

NNMT 1.522 0.654 0.085 1.1E-164

STARD10 1.392 0.585 0.079 6.5E-142

https://doi.org/10.1371/journal.pone.0206785.t003

Table 4. Collagen genes and matrix metalloprotease genes upregulated in tumor fibroblasts and stromal cells versus normal.

Gene Average Log2 Fold Change Percentage in Cluster Percentage out of Cluster Adjusted p-value

COL1A2 3.416 0.746 0.139 2.8E-84

COL3A1 3.093 0.702 0.097 1.88E-77

COL1A1 3.481 0.733 0.231 1.17E-71

COL6A3 1.985 0.567 0.083 1.09E-50

COL5A1 1.825 0.509 0.05 7.49E-46

COL5A2 1.634 0.488 0.028 4.77E-45

COL4A1 2.313 0.542 0.094 4.18E-42

COL4A2 1.871 0.554 0.122 3.91E-39

COL6A1 1.154 0.676 0.317 4.17E-30

MMP2 1.152 0.377 0.047 1.27E-26

TIMP1 1.457 0.718 0.425 2.08E-25

MMP11 1.185 0.189 0.008 1.03E-12

https://doi.org/10.1371/journal.pone.0206785.t004
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primary fibroblasts including, CXCL12, S100A6, S100A10, SFRP2,SFRP4,IGF1, CXCL14,

ANGPTL4 and IL6 (Table 5). Metastatic fibroblasts also had increased expression of two com-

plement cascade genes C3, CFB and an inhibitor of C1 gene, SERPING1. Tumor fibroblasts

had increased expression of C7. Comparison between the primary tumor myeloid lineage cells

and the metastatic myeloid lineage cells showed elevated levels of CC2, CC3, CC4, CXCL8 and

TNF in the primary tumor.

Comparison of cell populations to TCGA HGSOC sub-types

The Cancer Genome Atlas (TCGA) collected 489 HGSOC samples and performed mRNA

expression, microRNA expression, promoter methylation and DNA copy number assays [21].

Clustering of the samples based on both mRNA and microRNA expression showed four stable

subtypes within HGSOC that were labeled differentiated, immunoreactive, mesenchymal and

proliferative.

Using genes sets defining the four HGSOC subtypes, we used the average expression of

groups of cells to classify samples, first by patient sample ID then by identified cell clusters.

The threshold of classification was defined as two standard deviations above the mean of the

combined group comparisons. By patient sample ID, only two patients were identified with

HGSOC sub-types (Table 6), LG2-P as differentiated and LG2-M as mesenchymal, which are

LGSOC samples.

However using identified cell clusters, there was significantly more correlation with the pre-

scribed function of each sub-type (Table 6). Benign epithelial cells and LGSOC epithelial cells

were identified as the differentiated subtype. Primary and metastatic myeloid lineage cells

showed increased expression of the immunoresponsive subtype. Primary fibroblasts,

Table 5. Comparison of secreted factors and complement system genes in primary vs metastatic myeloid lineage and primary vs metastatic fibroblasts.

Gene Average Log2 Fold Change Percentage in Cluster Percentage out of Cluster Adjusted p-value

Secreted factors in primary myeloid not in metastatic

TNF 1.088 0.503 0.287 1.41E-02

CXCL8 1.310 0.621 0.387 1.13E-04

CCL2 1.371 0.26 0.039 8.68E-05

CCL3 1.465 0.774 0.436 1.08E-10

CCL4 1.575 0.746 0.387 6.29E-12

Secreted Factors in metastatic fibroblasts not in primary

SFRP2 2.078 0.023 0.36 3.32E-25

S100A10 1.892 0.168 0.709 4.59E-44

CXCL12 1.853 0.137 0.63 1.80E-46

SFRP4 1.685 0.275 0.421 7.32E-12

S100A6 1.538 0.519 0.87 4.54E-46

IGF1 1.436 0.111 0.438 4.75E-18

CXCL14 1.353 0.099 0.26 1.66E-07

ANGPTL4 1.254 0.065 0.236 4.83E-11

IL6 1.115 0.057 0.202 1.09E-04

Complement System in primary fibroblasts not in metastatic

C7 1.239 0.79 0.195 3.45E-16

Complement System in metastatic fibroblasts not in primary

C3 2.823 0.08 0.849 8.68E-101

CFB 2.102 0.076 0.449 4.80E-31

SERPING1 1.469 0.443 0.822 6.05E-44

https://doi.org/10.1371/journal.pone.0206785.t005
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metastatic fibroblasts and cancer stromal cells were identified as the mesenchymal subtype

while normal fibroblasts and normal stromal cells had no similarities to any of the HGSOC

subtypes. None of the clusters showed enrichment of proliferative subtype. Here we see that

myeloid lineage defines immunoresponsive subtype, while tumor fibroblasts and stromal cells

define mesenchymal, and epithelial cells define differentiated. The proliferative subtype may

either be a cancer type or a rare cell population that was not captured in this study.

Discussion

With scRNA-seq, we can investigate intra and inter tumor heterogeneity gene expression dif-

ferences at cellular resolution. Given that epithelial cells are the predominant dysregulated cell

type in epithelial ovarian cancer, we first wanted to compare these cells to all others and their

potential relationship to cancer progression. The genes we identified at the single cell level in

all cancer epithelial cells are concordant with previous bulk RNA seq studies. WFDC2 has

been shown to be a biomarker for ovarian cancer [22] and overexpression promotes ovarian

Table 6. Comparison of gene expression of TCGA ovarian cancer sub-types by patient samples (top) and cell clusters (bottom).

Differentiated Immuno-responsive Mesenchyaml Proliferative

BN1-P 3.246 0.712 1.062 0.189

HG1-P 1.144 0.613 1.476 0.544

HG1-M 1.113 0.887 2.299 0.347

HG2F-P 1.942 0.240 0.657 0.608

HG2F-M 1.351 1.231 0.574 0.345

HG3-P 2.062 1.037 1.426 0.464

HG3-M 1.498 1.681 0.956 0.350

HG4-P 1.523 2.527 0.732 0.366

HG4-M 1.934 0.228 0.834 0.292

LG1-P 0.999 0.590 1.902 0.395

LG1-N 0.871 0.124 1.973 0.416

LG2-P 3.604 0.514 1.449 0.284

LG2-M 2.968 0.684 3.831 0.236

PN1-P 1.594 0.291 1.635 0.690

B-cells 0.194 1.496 0.318 0.442

benign epithelial 4.216 0.621 0.654 0.180

cancer stromal cells 0.447 0.142 4.559 0.355

CD4 T-cells 1.848 1.245 0.353 0.331

CD8 T-cells 1.105 1.594 0.568 0.349

endothelial progenitor 1.112 0.208 2.012 0.481

HGSOC-F tumor epithelial 2.946 0.202 0.347 0.424

LGSOC epithelial 3.808 0.227 0.488 0.304

metastatic fibroblasts 1.304 0.270 5.074 0.389

metastatic myeloid lineage 1.129 3.931 1.088 0.261

normal fibroblasts 0.553 0.159 1.429 0.616

normal stromal cells 0.937 0.076 2.439 0.293

HGSOC epithelial 1.691 0.226 0.413 0.569

primary fibroblasts 0.493 0.174 3.337 0.582

primary myeloid lineage 0.744 3.732 1.354 0.272

HG3 tumor epithelial 2.753 0.822 0.711 0.491

Those highlighted in green are identified as that specific sub-type.

https://doi.org/10.1371/journal.pone.0206785.t006
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tumor growth [23]. Similarly, SCGB2A1 is expressed in all ovarian cancers [24]. CD24 has

prognostic value in survival as a marker for cancer stem cells [25–28] whereas CLDN3 and

CLDN4 have been shown to regulate the epithelial to mesenchymal transition [29]. These

expression profiles imply that in ovarian cancer, epithelial cells are transitioning into a mesen-

chymal state, which is a hallmark of cancer.

Although all the malignant tumors had been classified as serous ovarian cancer, there are

specific subsets of cancerous epithelial cells that correlate with pathological findings. Specific

expression patterns of subsets of tumor epithelial cells expressed functional genes related to

their origin. HGSOC-F epithelial cells biomarker TPPP3 is a tubulin polymerization protein

that has been previously implicated in colorectal cancer [30], while the other three genes are

necessary for proper cilia function. FOXJ1 is a differentiating factor for ciliated epithelial cells

in the neonatal oviduct [31], RSPH1 is necessary for proper cilia function [32] and ZMYND10

affects dynenin motor function in cilia [33]. Given that these cells are fallopian in origin, their

expression of cilia related genes is not unexpected as cilia are necessary in normal fallopian

function. However these genes may also provide extra motility and transitioning to a mesen-

chymal state for the subtype of HGSOC that is fallopian in origin.

Two genes identified in HG3 tumor epithelial cells are broadly implicated in many cancers

with worse prognoses, PIGR [34,35] and AGR2 [36,37]. They are the only cells in this dataset

that express two soluble factors, a cytokine CXCL17 which has been found to promote tumor

progression in other cancers [38–40] and a hormone SST, which suppresses other growth fac-

tors and has been considered as a potential pharmaceutical target in cancers [41,42]. HG3 is

the only patient that had a previous cancer diagnosis without neoadjuvant chemotherapy: a

breast malignancy more than ten years prior to her ovarian cancer diagnosis. Whether this

cancer is a late recurrence of breast cancer or different in context of increased cancer risk, the

biomarkers here imply a more aggressive phenotype with different activating factors.

The idea of pre-metastatic niche was postulated by Stephen Paget in 1889 as a tumor “seed”

finding its appropriate “soil” [43]. Formation of a pre-metastatic niche involves tumor associ-

ated cells to create a hospitable microenvironment for tumor cells through specific secreted

factors [44]. Secreted factors were mainly being produced by cells of myeloid lineage and meta-

static fibroblasts especially compared to epithelial cells in primary tumor samples. Given there

were few epithelial cells in metastatic samples it is unclear if they are producing many secreted

factors. Therefore myeloid lineage cells are crucial in both primary and metastatic ovarian

tumors, with fibroblasts playing a more important role in metastatic growth than in primary.

Collagen has a complex role in cancer progression. Initially thought to provide a barrier to

tumor invasion, collagen has been shown to remodel the ECM to help promote angiogenesis,

tumor invasion and migration [45]. Furthermore, matrix metalloproteases work to degrade

the ECM to increase tumor invasion, particularly in metastasis [46]. Increased expression of

both types of genes in ECM remodeling is thought to play a role in fibrosis/desmoplasia that is

seen in many types of cancer [47]. We saw significant desmoplasia in pathology slides that was

increased in metastatic samples compared to primary samples. High expression of several col-

lagens and MMP-related genes in our dataset was primarily in cancer fibroblasts and stromal

cells, not directly from the cancer epithelial cells themselves. This supports the theory that

tumor stroma plays an important role in the tumor development [48]. In addition, there was

high expression of COL4A1, COL4A2, SERPINH1 and SPARC in endothelial cells. Type IV-

collagen has previously been shown to be necessary in angiogenic functions of endothelial cells

[49,50], with SERPINE1 implicated in maintaining ECM of arterial walls [51]. SPARC and

SERPINH1 play important roles in type-IV collagen synthesis and function [52]. Concurrent

expression of these genes in four different clusters of cells imply collagen IV is crucial in the

recruitment of endothelial cells for angiogenesis. Furthermore, as endothelial cells are the only
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cluster of cells that are represented in normal, primary tumor and metastatic tumor this

implies there is no cell or class state switch in endothelial cells and these cells are functioning

normally given their microenvironment and stimuli.

Creating a pro-tumor environment also requires avoiding immune surveillance from B-

cells and T-cells, which can have both negative regulation and positive regulation of cancer,

depending on specific tumor microenvironment (B-cells reviewed in [53], T-cells reviewed

in [54]). Regulatory B-cells are expected to promote tumor growth by suppressing immune

response through IL-10 and STAT3. Our cluster of B-cells do not seem to be regulatory B-

cells, as they are CD38- and CD27- and with most similar marker expression as mature naive.

More importantly, they do not express any IL-10 or STAT3. We also only see minor sporadic

expression of markers for T-reg cells (PDCD1/PD-1, FOXP3), with little expression of pro-

tumor cytokines, IL-10 and CCL22. Presence of immune cells in metastatic tumors is paradox-

ical, especially in light of no expression of pro-tumor factors. In fact we actually see expression

of interferon-Ɣ in CD8 cells which is thought to by anti-tumor [55,56]. Recent research has

shown a pro-tumor role of interferon-Ɣ through expression of PD-L1 [57], but expression of

PD-L1 is not evident in our dataset.

One critical component of managing the immune system is the complement system, which

regulates the innate immune system and plays a role in tumor progression [58,59]. Metastatic

fibroblast cells overexpress C3, which is one of the key components that must be activated in

the complement system. In murine models C3 has roles in tumor growth [60] and angiogene-

sis [61]. Furthermore, ascitic fluid taken from ovarian cancer patients showed surface deposi-

tion of C3 with increased CFH (which is only mildly overexpressed in these cells in our

dataset) [62,63]. The other genes overexpressed in these cells are inhibitors, CFB and SERP-

ING1. Adding to this, metastatic fibroblasts are also the only cells expressing CXCL12, which

along with CXCR4 play a pivotal role across many cancers [64–66], including ovarian cancer

[67,68]. We see CXCR4 expressed only in B-cells and T-cells. Metastatic fibroblasts also

express two S100 family proteins, S100A10 and S100A6, which are important in creating

inflammation for tumor growth and metastases [69,70]. Taken together it appears that meta-

static fibroblasts are creating an inflammatory environment through CXCL12 and S100 family

proteins while suppressing immune response through complement system inactivation.

Conclusions

Our results show four major malignant epithelial cell types seen in nine patients diagnosed

with either high grade or low grade serous epithelial ovarian cancer. Gene profiles were found

for all four in aggregate or for two clusters individually, particularly HGSOC that is fallopian

in origin and one in a patient with breast cancer recurrence. These may serve either as surveil-

lance option, e.g. CA125 in ovarian cancer [71] or treatment, e.g. HER2 inhibitors in breast

cancer [72,73]. Secondly, we found that primary tumor epithelial cells secrete much less factors

in comparison to cells of myeloid lineage or fibroblasts. Between primary and metastatic

tumors, fibroblasts secrete increasing levels of necessary factors to fuel metastatic growth, with

the caveat that we captured only a few metastatic epithelial cells and may see more secreted fac-

tors with a larger sample size. Metastatic fibroblasts could potentially be tumor epithelial cells

that have fully transformed (as many of the tumor epithelial expressed genes imply), but meta-

static fibroblasts we observed do not express PROM1/CD133, a well described cancer stem cell

marker [74]. Third, once ovarian cancer metastasizes, relatively few tumor cells are required to

create and maintain a favorable microenvironment as evidenced by the shift of cell populations

from epithelial cells to lymphocytes. Fourth, B-cells and T-cells do not appear to be suppressed

through known pro-tumor cytokines, but could be suppressed indirectly through complement
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pathways. Finally, using previous data from ovarian cancers analyzed by TCGA, we find can-

cer subtype to be correlated with specific cell types.

Only through high-resolution studies at single cell resolution are we able to identify and

quantify heterogeneity within tumors. Our ability to study patient derived primary and corre-

sponding metastatic lesions using high-throughput single cell analysis represents a unique

opportunity to study ovarian cancer without a priori knowledge of tumor and stromal cell

inter-relationships. Thus single cell assessment of patient samples can provide critical informa-

tion needed to understand ovarian cancer progression.
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