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Abstract 

Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by 
presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been 
used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune 
response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). 
Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, 
we deploy an approach that combines RNA sequencing data and systems biology methods to delineate 
miRNA-based strategies that enhance DC-elicited immune responses. 

Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on 
therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network 
analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and 
interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed 
their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with 
miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a 
tool to identify DC-relevant miRNA-gene interactions with therapeutic potential 
(https://www.synmirapy.net/dc-optimization). 
Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene 
interactions that can be experimentally tested for improving DC immunogenic potency. 
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Introduction 
Dendritic cells (DCs) play an important role in 

regulating adaptive immunity by presenting antigens 
to T cells [1]. Due to the unique function of DCs in the 
coordination of adaptive immune responses, they 
have been tested as cell-based vaccination against 
tumours [2–5]. To obtain immunogenic potency ex 
vivo, monocyte-derived DCs need to go through a 
complex maturation process, in which DCs are 
exposed to a monocyte-conditioned medium or a 
cocktail of cytokines [6,7]. These treatments result in 

various phenotypic changes in DCs, such as 
upregulation of co-stimulatory surface markers (e.g., 
CD80 and CD40) and secretion of pro-inflammatory 
cytokines (e.g., IL-12 and TNFα). The matured DCs 
loaded with cancer antigens are infused into patients 
and trigger a selective immune response by migrating 
into the peripheral lymphatic tissue, where they 
encounter and activate tumour-specific T cells [8]. 

The capacity of DCs to induce an immune 
response can be improved by molecular engineering. 
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Pfeiffer and co-workers enhanced DCs through 
electroporation with mRNA encoding a constitutively 
active variant of IKKβ (caIKK), a kinase upstream of 
NF-κB that is a key regulator of the immune response 
[9,10]. Specifically, the kinase phosphorylates IκB 
resulting in desequestration of the transcription factor 
(TF) NF-κB and its translocation into the nucleus, 
where it regulates expression of immune-related 
genes such as cytokines [11,12]. The engineered caIKK 
promotes constant activation of NF-κB signalling, and 
the cells expressing it (hereafter labelled caIKK-DCs) 
displayed increased expression of co-stimulatory 
molecules and pro-inflammatory cytokines [10,13]. 
When those cells were in addition loaded with the 
Melan-A melanoma antigen, they were able to induce 
repeated expansion of Melan-A-specific cytotoxic T 
cells with a memory phenotype [10]. Besides, 
caIKK-DCs displayed an increased ability to activate 
autologous NK cells [14]. They are currently under 
evaluation as vaccine in a phase-I clinical trial for the 
treatment of uveal melanoma patients 
(NCT04335890). 

Our hypothesis is that DCs can be further 
improved using non-coding RNAs, in particular 
microRNAs (miRNAs), interacting with key 
regulators of DC activation and maturation. miRNAs 
are a class of small endogenous non-coding RNAs 
with a length of 22-25 nucleotides. Through the 
inhibition and modulation of the transcription and 
translation of specific protein-coding genes, miRNAs 
can alter the basal state of cells and the outcome of 
stimulatory events [15,16]. Increasing evidence shows 
that miRNAs play a crucial role in the development 
and function of DCs [17–19]. They serve as important 
regulators of complex networks by targeting key 
signalling genes to regulate proliferation and cell 
death as well as homeostasis [20]. It has also been 
found that miRNAs are pivotal in both adaptive and 
innate immunity, e.g., by controlling the 
differentiation of immune cell subsets and their 
immunological functions [21]. In particular, miRNAs 
can modulate the immune response by inducing 
apoptosis, affecting homeostasis, and changing the 
cytokine profile of DCs [22]. Further, one can use 
miRNAs, alone or in combination, in therapeutic 
setups to inhibit expression of selected genes in cancer 
and other targeted cells [23–26]. 

To facilitate the re-wiring of DCs, it is crucial to 
understand the intracellular regulatory processes 
involved in DC maturation and activation. However, 
the regulatory networks eliciting the activation and 
maturation of DCs involve multiple interconnected 
signalling and transcriptional circuits, and their 
understanding and proper manipulation requires the 
combined use of high-throughput data and systems 

biology methods [27,28]. We here present a systems 
biology approach to understanding the role that 
miRNAs play in regulating the function of DCs in 
immunotherapy (Figure 1), and exploit this 
knowledge to enhance their potential to stimulate an 
immune response using miRNAs. 

In this study, we chose the caIKK-DCs as an 
ideal model system to identify miRNAs that are 
involved in DC activation via NF-κB signalling and 
can boost pro-inflammatory signals. We think the 
identified miRNAs can enable the DCs to repetitively 
stimulate T cell expansion. To this end, we performed 
RNA sequencing (RNA-seq) to obtain the 
transcriptomic profile (i.e., protein-coding genes and 
miRNAs) of caIKK-DCs in relation to standard DCs. 
Next, we analysed miRNA-gene interactions at the 
pathway level and reconstructed regulatory networks 
underlying immunological functions of DCs. We then 
performed network-based prioritization of miRNAs 
by integrating their expression profiles and their 
strength of association with other protein-coding 
genes. 

Our analysis identified dozens of miRNA 
candidates in the regulation of caIKK-DCs, with 
miR-15a-5p and miR-16-5p as prominent examples. 
We showed that both miRNAs may exert a strong 
regulatory effect on genes involved in NF-κB 
signalling and also target chemokines and cytokines 
regulating T-cell responses. Moreover, we delineated 
molecular mechanisms through which the miRNAs 
alter the immunogenic potency of caIKK-DCs. The 
results of our analysis are available in a web database 
that facilitates their exploration and visualization 
(https://www.synmirapy.net/dc-optimization), 
thereby providing researchers with a tool to select 
functional miRNA-gene interactions with therapeutic 
potential in DCs for experimental investigation. 

Materials and methods 
Generation of monocyte-derived dendritic 
cells from blood samples 

Monocyte-derived DCs were generated as 
previously described [29]. In brief, blood samples 
from seven healthy donors were collected after 
approval was granted by the responsible institutional 
review board (Ethikkommission der Friedrich- 
Alexander-Universität Erlangen-Nürnberg, Ref. no. 
4158) and written informed consent was obtained. 
Peripheral blood mononuclear cells were isolated 
from whole blood using density gradient 
centrifugation. Monocytes were extracted from the 
non-adherent fraction by plastic adherence, were 
cultured in DC medium (RPMI; Lonza, Verviers, 
Belgium) containing 1% non-autologous human 
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plasma (Sigma-Aldrich, St Louis, USA), 2 mM 
L-glutamine (Lonza), and 20 mg/L gentamicin 
(Lonza), and were differentiated into DCs by 
application of 800 U/mL GM-CSF (Miltenyi Biotec, 
Bergisch Gladbach, Germany) and 250 IU/mL IL-4 
(Miltenyi Biotec) on days 1, 3, and 5. After six days in 
culture, DCs were matured for 24 hours using a 
cytokine cocktail consisting of 200 IU/mL IL-1β 
(CellGenix, Freiburg, Germany), 1 000 U/mL IL-6 
(CellGenix), 10 ng/mL TNF (Beromun, Boehringer 
Ingelheim Pharma, Germany), and 1 μg/mL PGE2 
(Pfizer, Zurich, Switzerland). 

RNA in vitro transcription and DC 
electroporation 

Generation of in vitro transcribed RNA with 
mMESSAGE mMACHINE™ T7 ULTRA 
transcription-kits (Thermofisher scientific, Waltham, 
USA) and the electroporation of cocktail-matured 
DCs (cmDCs) was carried out as previously described 
[13]. For transcriptome analyses, cmDCs were 
electroporated using 30 µg RNA encoding 
constitutively active IKKβ (caIKK) since its 
introduction into mature DCs has been shown to 
improve activation of T cells [10] and natural killer 
cells [14]. DCs electroporated with RNA encoding 
melanoma antigen recognized by T cells 1 (Melan-A) 
were used as control, and such DCs were shown to 
have no influence on the DCs’ transcriptome profile 
[30]. After electroporation, DCs were cultured in DC 
medium containing GM-CSF and IL-4 at the 
concentrations indicated above. 

RNA sequencing processing and differential 
gene expression analyses 

Total RNA including small RNAs was extracted 
four hours after electroporation using the RNeasy 
Plus Mini Kit (QIAGEN GmbH, Hilden, Germany) 
and the generated samples were sequenced using an 
Illumina HiSeq-2500. Demultiplexed reads were 
filtered for ribosomal RNAs, transfer RNAs, 
mitochondrial rRNAs, and mitochondrial tRNAs. The 
reads were aligned to the human reference genome 
(hg19) using STAR (v2.5.2b) and assigned to genes 
using Subread (v1.5.2). Only uniquely mapping reads 
that could unambiguously be assigned to a single 
gene were considered for analysis (Supplementary 
Table S1). 

For miRNA expression quantification, we 
performed a quality check of the RNA-seq reads with 
FastQC [31], mapped the short sequences to the 
human reference genome (hg19) using BWA [32], and 
calculated raw read counts of mature miRNAs that 
are known and annotated in miRBase v21 [33] 
(Supplementary Table S2; See Supplementary 

Materials for details). 
Before differential expression analysis, we 

aggregated read counts of Ensembl identifiers that 
represent the same gene and discarded genes with 
less than 5 read counts in any sample to increase 
power for detecting differentially expressed genes 
[34,35]. Next, we used DESeq2 [36] in R version 3.6.3 
[37] to assess differential expression for protein- 
coding genes and miRNAs. Then, we performed 
independent filtering on the results to remove genes 
that have no or little chance of showing significant 
evidence (Supplementary Table S3 and S4). 
Specifically, the independent filtering uses the mean 
of normalized counts as a threshold to optimize the 
number of adjusted p-values ≤ 0.05 [36]. If the 
normalized expression of a gene was lower than the 
threshold, it was discarded. The Benjamini-Hochberg 
method was then used on the set of remaining genes 
to correct for multiple comparisons [38]. Genes with 
adjusted p-values ≤ 0.05 were regarded as 
significantly differentially expressed. 

Gene set enrichment analysis 
We extracted all curated pathways from the 

Reactome pathway knowledgebase (release 68) [39] 
together with their hierarchical and biological 
classification according to the database developers. 
We retraced Reactome’s pathway hierarchy by 
assigning every pathway from Homo sapiens to its 
corresponding root categories, such as signalling 
transduction and immune system (see Supplementary 
Materials for details). As a result, we obtained a table 
of Reactome pathways matched to the 26 root 
categories (Supplementary Figure S3 and 
Supplementary Table S5). 

We applied a competitive gene set test to 
perform gene set enrichment analyses for Reactome 
pathways. The algorithm CAMERA [40] tests whether 
the genes in the set are lowly or highly ranked in 
terms of differential expression relative to genes not in 
the set, with a positive gene set score indicating a 
shared tendency for upregulation of the 
corresponding genes, and vice versa (see 
Supplementary Materials for details). All genes 
identified as differentially expressed from our 
RNA-seq data were used as the background gene list 
for the enrichment analysis. All obtained p-values 
were corrected using the Benjamini-Hochberg 
method. Pathways with false discovery rate (FDR) ≤ 
0.05 were regarded as significantly up- (positive 
score) or down-regulated (negative score) in our 
comparison of caIKK-DCs with controls 
(Supplementary Table S5). The gene set enrichment 
analysis was performed using the CAMERA 
implementation in the package limma [41] in R. 
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Figure 1. A systems biology approach to study miRNA regulation in DCs. The study starts with preparing of donor DCs followed by cocktail maturation and 
subsequent electroporation of mRNA encoding Melan-A (control DCs) or a constitutively active variant of IKKβ (caIKK-DCs). The obtained RNA-seq data are processed and 
analysed for annotating and quantifying protein-coding genes and miRNAs. The identified differentially expressed genes in DCs are used for pathway enrichment analyses and 
reconstruction of gene regulatory networks. A network topology-oriented scoring model is employed to prioritize miRNAs in different pathway categories of DCs. Finally, a 
literature review of the top ranking miRNAs in immune signalling pathways elaborates their potential function for improving the immunogenic potency of caIKK-DCs. 
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Regulatory network reconstruction 
We downloaded functional interactions from the 

Reactome database (release 68). The collection 
includes protein-protein interactions, transcriptional 
regulation, gene co-expression, protein domain 
interaction, gene ontology annotations and 
text-mined protein interactions, which cover almost 
half of the human proteome [42]. There are different 
types of directional molecular interactions including: 
activation, inhibition or repression, and co-expression 
or complex formation. The biochemical reactions 
covered are phosphorylation and ubiquitination. We 
processed the list to transform bidirectional 
interactions into their two unidirectional constituents. 
The result list contained 435,043 unidirectional 
interactions among 13,852 protein-coding genes. 

To derive miRNA-gene interactions, we first 
obtained conserved and non-conserved miRNA 
binding sites as predicted by Targetscan version 7.2 
[43]. Then, we filtered the predicted interactions with 
experimental evidence from miRTarBase version 8.0 
[44] and starBase version 2.0 [45]. By doing so, we 
obtained a list of miRNA-gene interactions 
(Supplementary Table S6) that contain putative 
miRNA binding sites with experimental support, such 
as high-throughput experiments (e.g., RNA-seq, 
microarray, and AGO CLIP-sequencing) and/or 
low-throughput experiments (e.g., q-PCR, reporter 
assay, and Western blot). 

The obtained lists of protein-coding genes’ 
functional interactions and miRNA-gene interactions 
were used to reconstruct gene regulatory networks 
from Reactome pathways. Specifically, for a pathway 
of interest, we built a network around its participating 
genes and calculated the pairwise Pearson correlation 
coefficients between interaction partners from their 
normalized count values in caIKK-DCs. The 
normalized counts were obtained using the 
regularized logarithm method [36]. In the 
reconstructed networks, we used the Pearson 
correlation coefficients to filter out interactions that 
disagree with their regulation type. We assumed that 
positive interactions (i.e., activation) require positive 
Pearson correlations and negative interactions (i.e., 
inhibition) negative Pearson correlations between 
interacting molecules. Interactions annotated as gene 
co-expression or formations of protein complexes 
were kept, assuming that the involved genes can 
affect each other’s expression or activity in both 
directions. 

Furthermore, we added annotation to the 
reconstructed networks’ components in the form of 
differential expression profiles (i.e., fold-change and 
FDR), types of genes (e.g., protein-coding gene or 

miRNA), gene interaction types (e.g., functional 
interaction or post-transcriptional regulation), gene 
interaction strengths as denoted by the Pearson 
correlation coefficients introduced above, and 
immune categories of genes. Immune categories of 
protein-coding genes were annotated using curated 
data from the Immport database [46]. Data from the 
TcoF database were used to identify TFs in our 
networks [47]. 

Gene prioritization in regulatory networks 
We prioritized genes in a network using SANTA 

in R [48]. The algorithm determines a score of relative 
importance for each node in a network through a 
clustering model that accounts for network topology 
(distances between nodes) and node weights (in our 
case, a measure of differential expression called 
perturbation). Briefly, a gene is assigned a high score 
when itself and its close neighbours in the network 
have a higher-than-average node weight. The 
closeness, or distance, between genes is calculated by 
finding the shortest path through the network. 

The node weight is given by the gene’s 
perturbation (i.e., -log10(adj-p) ⋅ |log2(fold-change)|). 
Both adjusted p-value and log2 fold-change of the 
gene were taken from the differential gene expression 
analysis. The distances between neighbouring nodes 
were calculated as 1 - |p|, where p represents the 
Pearson correlation coefficient between the two 
interacting genes. Higher correlation coefficients (i.e., 
higher interaction strengths) correspond to lower 
edge length and thus shorter distance between the 
nodes. The calculated score was used to prioritize 
genes (see Supplementary Materials for details). As 
our networks contain both miRNAs and 
protein-coding genes that have different types of 
interactions, miRNAs and protein-coding genes were 
ranked separately. 

Mapping of microRNA-gene interactions into 
the curated DC network 

To generate the curated DC network, we made 
use of a previously published network of macrophage 
pathways [49], since macrophages and DCs are 
generally considered to be quite similar. We manually 
added pathways for antigen processing and 
presentation that were not present in the macrophage 
map through a comprehensive database search in 
Reactome. The enriched DC network is a 
restructuring (see [49] for details on the algorithm) of 
the curated version that also incorporates miRNA- 
gene interactions identified in this study. The 
reconstructed network is accessible at https:// 
vcells.net/dendritic-cell. 
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MicroRNA cooperativity analysis 
We used the TriplexRNA database [50] to 

identify miRNAs that can cooperate with significantly 
differentially expressed miRNAs in caIKK-DCs to 
repress protein-coding genes of interest. The obtained 
RNA triplexes were further filtered using 
pre-computed equilibrium concentrations and 
minimum free energies. We kept the RNA triplexes 
with equilibrium concentrations ≥ 50 nM and 
minimum free energies ≤ -25 kcal/mol and regarded 
the participating miRNAs as cooperative partners to 
repress protein-coding genes. 

Data visualization 
The gene regulatory networks for significantly 

enriched pathways were drawn using ggraph [51] and 
igraph [52] in R. Heat maps were plotted using 
Complexheatmap [53] in R. Scatter and bar plots were 
drawn using ggplot2 [54] in R. Sankey diagram was 
drawn using networkD3 [55] in R. The clustered 
Reactome pathways were visualized using Cytoscape 
version 3.72 [56]. 

Results 
Transcriptome analysis reveals miRNA 
expression changes in caIKK-DCs 

To characterize the gene expression profiles 
induced by a constitutively active IKKβ in DCs, we 
collected blood samples from seven healthy donors 
and generated monocyte-derived DCs (see Materials 
and Methods). The DCs were matured with a cytokine 
cocktail of IL-1β, IL-6, TNF, and PGE2. The cmDCs 
were split for the subsequent experiments. One half 
was electroporated with mRNA encoding 
constitutively active IKKβ (caIKK, encoded by an 
engineered IKBKB). The other half was electroporated 
with mRNA encoding the melanoma antigen 
Melan-A (encoded by MLANA). The Melan-A protein 
was used because it is non-functional in DCs as it is 
naturally involved in melanocyte-specific pathways 
[57,58]. Additionally, we have previously shown that 
maturated DCs transfected with Melan-A mRNA did 
not show any significant changes in their 
transcriptomic profiles compared to mock- 
electroporated DCs [30]. To confirm that caIKK 
electroporation of cmDCs induced activation in DCs, 
while electroporation of cmDCs with the control RNA 
did not, we analysed their phenotypes and cytokine 
secretion profiles. In caIKK-DCs, we verified the 
secretion of pro-inflammatory cytokines such as IL-6, 
IL-8, IL-12, and TNFα (Supplementary Figure S1A), 
upregulation of co-stimulatory surface markers such 
as CD25, CD40, CD70, CD80, CD86, and OX40L 

(Supplementary Figure S1B), and showed that the DC 
preparations used for RNA sequencing were 
successfully transfected as indicated by the expression 
of CD25 and CD70 in the seven donors 
(Supplementary Figure S1C). 

Four hours after electroporation, RNA was 
isolated and assessed via bulk RNA sequencing 
(RNA-seq). We chose this early time point because we 
were interested in mRNA levels, which are expected 
to quickly respond to the activation of NF-κB as a 
result of continuous IKKβ activation. From the 
RNA-seq data, we identified 63 protein-coding genes 
and 44 miRNAs that were significantly differentially 
expressed (DE) between caIKK-DCs and controls 
(Supplementary Table S3 and S4; see Materials and 
Methods). Among the protein-coding genes, MLANA 
(encoding Melan-A) and IKBKB (encoding IKKβ) 
were the most down- and upregulated in caIKK-DCs, 
respectively (Supplementary Figure S2A). This is in 
line with the fact that the mRNA content of the two 
genes was artificially altered in the respective 
populations and can be considered a quality control 
for the experimental results. For the miRNAs, 
miR-146a/b and miR-155 were upregulated in 
caIKK-DCs, in consistence with them being 
transcriptional targets of NF-κB [59] and being 
upregulated in mature DCs [60]. By performing 
principal component analysis, we assessed the 
clustering tendency in the RNA-seq data. Controls 
and caIKK-DCs showed better separation when 
restricting the input to the measured miRNAs rather 
than the whole transcriptome (Supplementary Figure 
S2B). In addition, the DE miRNAs unequivocally 
separated the caIKK-DCs from the controls in 
hierarchical clustering (Supplementary Figure S2C). 
These results suggested that caIKK-DCs harbour a 
distinct miRNA expression profile. 

The gene signature induced in caIKK-DCs is 
associated with NF-κB activation 

To understand the molecular function of the 
identified DE genes in the caIKK-DCs, we performed 
gene set enrichment analysis using the Reactome 
pathway database. The database contains more than 
2,000 cellular pathways curated from 30,721 peer- 
reviewed publications and classified into 26 root 
categories [39], thereby enabling a systematic and 
comprehensive analysis of DE genes. The 26 
categories consist of a set of pathways that are 
annotated to be hierarchically and functionally linked. 
We calculated enrichment scores for each pathway 
which reflect the degree to which its corresponding 
gene set tends to be up- or downregulated in 
caIKK-DCs (Figure 2A; see Materials and Methods). 
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Figure 2. Gene set enrichment analysis on the differential expression analysis between caIKK-enhanced and control DCs. (A) Enrichment plots of two 
exemplary gene sets. The genes’ weighted log2 fold-change (i.e., log2 fold-change divided by the standard error of the log2 fold-change) obtained from the differentially gene 
expression analysis are sorted from the smallest to the largest (the barcode plot). Genes from TNF signalling (red bars) accumulate at the upregulated end while genes from 
ligand-receptor interaction (blue bars) in Hedgehog signalling accumulate at the downregulated end. The curves show the local enrichment score of the vertical bars in the barcode 
plot. For the red curve, parts above the dashed line signify enrichment while parts below the line signify depletion. For the blue one, parts below the dashed line signify enrichment 
while parts above the line signify depletion. (B) Network visualization of the gene set enrichment results for Reactome’s 26 root categories (nodes annotated with texts). 
Categories are connected when they have shared genes (edges). The size of a node denotes the number of pathways that belongs to the respective category. The node colour 
represents the number of significantly enriched pathways in a category. A grey node means that no significant pathways were identified in the category. The width and colour of 
an edge represent the number of shared genes between the two connected categories. A detailed map containing all pathways and their corresponding enrichment scores can 
be found in Supplementary Figure S3. 

 
We found that the DE genes in caIKK-DCs are 

significantly enriched in 195 Reactome pathways, 
most of which belonged to the Reactome categories 
signal transduction and immune system (Figure 2B; 
Supplementary Figure S3 and Table S5). In the 
category of immune system, 65 out of 182 pathways 
were identified as significantly enriched, including 
cytokine signalling pathways and pathways 
associated with innate and adaptive immune 
response. This suggested that the continuous 
activation of IKKβ in DCs has a generalized effect on 
DC-mediated immune responses. In addition, we 
identified 12 enriched pathways that are directly 
associated with NF-κB activation and signalling (see 
Supplementary Table S5), such as NF-κB activation by 
IκB kinase complexes. This was consistent with the 
current model of the canonical NF-κB activation 
pathway, in which IKKs phosphorylate IκB resulting 
in desequestration of NF-κB and its translocation into 
the nucleus, where it regulates expression of 
immune-related cytokine genes and others [11,12]. All 
these NF-κB pathways had positive enrichment 
scores, indicating that the genes involved are more 
likely to be up-regulated in the caIKK-DCs. The 
results were in line with our expectation that the 
caIKK-DCs can trigger a stronger immune response as 
a result of NF-κB desequestration by constitutive 

activation of IKKβ. 

Significantly differentially expressed miRNAs 
in caIKK-DCs regulate an abundance of 
enriched immune pathways by targeting 
hundreds of their protein-coding genes 

To identify potential miRNA-gene interactions 
regulating the immunogenic potency of DCs, we first 
obtained putative miRNA-gene interactions for the 
significantly DE miRNAs (see Materials and 
Methods). We kept the putative interactions that are 
validated by experiments. For each identified 
miRNA-gene interaction, we then computed the 
Pearson correlation coefficient between miRNA and 
target gene expression. The interactions with negative 
correlation were regarded as reliable and functional, 
as miRNAs canonically repress translation initiation 
or stimulate mRNA degradation [61] and 
miRNA-mediated gene activation usually results 
from indirect regulation mechanisms [62]. The data 
showed that 36 out of the 44 miRNAs are involved in 
the regulation of protein-coding genes belonging to 
195 enriched pathways of the 26 Reactome root 
categories (Figure 3A). 

In individual pathway categories, the number of 
molecules (i.e., protein-coding genes, DNA/RNA, 
drugs, and chemical compounds) ranged from 27 to 
2727, and genes identified by our RNA-seq data 
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covered between 51% and 95% of the molecules in the 
respective category. For all categories except digestion 
and absorption, the DE miRNAs were identified to 
regulate 1 to 103 protein-coding genes (denoted by the 
numbers on the heat map grid cells in Figure 3A). 
Some miRNAs were found to regulate the expression 
of dozens of protein-coding genes in more than ten 
categories, suggesting that they act as regulatory hubs 
in caIKK-DCs. For example, miR-15a-5p, miR-16-5p, 
miR-20a-5p, and miR-424-5p can potentially regulate 
more than 80 protein-coding genes in the category 
signal transduction (Figure 3B), and they also have 
more than 60 targets in immune system. In contrast, 
miR-15a-3p and miR-9-3p target only BCL2 and 
MAPK1 in immune system, suggesting a specific role 
for them in regulating cytokine signalling in 
caIKK-DCs (Supplementary Figure S4). Furthermore, 
we found that some miRNAs target a high fraction of 
enriched pathways belonging to specific Reactome 
root categories (denoted by the colour of heat map 
grid cells in Figure 3A). For instance, miR-16-5p 
regulates 61 out of 64 enriched immune system 
pathways and 34 out of 36 enriched pathways in signal 
transduction. This suggested that it plays a vital role in 
regulating the immunogenic potency of caIKK-DCs. 
On the other hand, some categories included 
abundant enriched pathways that are regulated by 
multiple DE miRNAs. Interesting cases were 
pathways associated with protein metabolism, RNA 
metabolism, programmed cell death, and cell cycle. This 
result suggests that the DE miRNAs in caIKK-DCs are 
involved in regulating synthesis, processing, and 
modification of mRNAs and proteins and can also 
participate in other biological processes, such as cell 
cycle and cell apoptosis. Taken together, the DE 
miRNAs in caIKK-DCs target and potentially 
coordinate the activity of immune-relevant pathways 
in a pleiotropic fashion. 

Network-based prioritization of miRNAs in 
caIKK-DCs 

The ubiquitous, pleiotropic, and concerted gene 
regulation by miRNAs makes it challenging to 
quantify the relative impact of each individual 
miRNA. To prioritize the DE miRNAs according to 
their potential to act synergistically with NF-κB in DC 
activation, we applied a network-based method that 
integrates their expression and interaction profiles. 

First, we reconstructed one gene regulatory 
network for each of the 26 pathway categories. The 
reconstructed networks were composed of miRNA- 
gene interactions and functional interactions among 
protein-coding genes. Interactions were discarded 
when the sign of their Pearson correlation coefficient 
of expression disagreed with their regulation type, 

such as inhibition or activation (see Materials and 
Methods). Depending on the category, the size of the 
corresponding networks varied from 1,915 genes and 
57,520 interactions (for signal transduction) to 30 genes 
and 153 interactions (for mitophagy). To prioritize the 
network components involved in regulating the 
immunogenic potency of DCs, we used a clustering 
model [48] to calculate a node score (Figure 4A; see 
Materials and Methods). 

The score ranked IKBKB, whose expression was 
greatly increased by mRNA electroporation, as the 
top protein-coding gene in 51 out of 59 networks in 
which it is involved (Supplementary Table S7; 
Supplementary Figure S5). This result is consistent 
with our expectation that the intentionally modulated 
gene in experiments is prioritized, and thus 
demonstrating the ability of the model to identify 
crucial regulatory genes in the experiments. In the 
two prominent categories signal transduction and 
immune system, the NF-κB family and genes related 
with immune signalling or antigen processing and 
presentation tended to rank higher than other genes 
(Supplementary Figure S6). This result again justified 
the ability of the model to prioritize important genes 
in networks, as members of the NF-κB family are 
downstream targets of IKBKB while signalling and 
antigen presentation genes are supposed to be crucial 
regulating immune function of DCs. 

Furthermore, we analysed the data to identify 
crucial miRNAs for each Reactome root category. As 
shown in Figure 4B, miRNAs with higher node 
weights (i.e., stronger perturbation) generally ranked 
higher in a category, as miRNA scores and node 
weights showed a positive correlation, ranging from 
0.19 to 0.98. Specifically, miR-503-5p, miR-503-3p, and 
miR-146-5p had the highest perturbation in the DE 
miRNAs, and they ranked top in 22 out of 26 
categories. However, the interaction profile also plays 
a role, as for example in signal transduction, the three 
top-ranking miRNAs miR-101-3p, miR-16-5p, and 
miR-15a-5p had lower perturbation than miR-146-5p 
but interacted with more protein-coding genes. In 
addition, the three above miRNAs and miR-144-3p 
ranked top in immune system, most probably due to 
the reason that they regulate a large number of 
protein-coding genes associated with immune 
signalling pathways. To facilitate the visualization of 
our results, we integrated the data and the identified 
miRNA-gene interactions into a comprehensive, 
manually curated regulatory network including key 
pathways in DC priming and activation according to 
the literature (see Materials and Methods; 
https://vcells.net/dendritic-cell). 
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Figure 3. miRNA targeting profiles in Reactome pathway categories. (A) Overview of the 36 DE miRNAs (in columns) targeting the 26 Reactome pathway categories 
(in rows). On the heat map grid, the number of protein-coding genes targeted by the respective miRNA is given, and the colour represents the category’s number of significantly 
enriched pathways that are regulated by the miRNA. For example, if an entry shows n with a colour corresponding to m on the figure legend, it means a miRNA regulates n targets 
in m significantly enriched pathways of a category. The bar plot on the left indicates the per-category percentage of the protein-coding genes (black bars) that were found in our 
RNA-seq data, with the total number of molecules in the category given next to it. The bar plot on the right indicates the percentage of enriched pathways (black bars) per 
category, with the total number of pathways in the category given next to it. The figures at the bottom tabulate how many categories a miRNA regulates. The top annotation 
shows statistics from the differential expression analysis for the miRNAs (i.e., fold-change in log2 scale and FDR). (B) The network shows miRNA-gene interactions in the 
category signal transduction. The four miRNAs (miR-16, miR-15a, miR-20a, and miR-424) that have the largest number of targets were selected. The node size is proportional to 
the node degree. The node colour represents a gene’s fold-change in log2 scale. The node shape denotes the type of a gene, including protein-coding (square) and miRNA (circle), 
with their names shown in blue and black labels, respectively. TFs are drawn as diamonds with their names shown in purple font. The colour of node borders represents different 
categories of annotated immune genes, with the gene names given as labels. The edge colour shows Pearson correlation coefficients between the expression of miRNAs and that 
of their targets. 
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Figure 4. Ranking of miRNA relevance based on expression and regulatory network neighbourhood. (A) Network nodes were scored with an algorithm that uses 
the guilt-by-association principle to rank genes. In other words, a gene inside of or close to a cluster of important genes is potentially more important than a gene that is further 
away. In our case, the importance of a gene for a phenotype is quantified by their perturbation in expression (denoted by node colours). In a network, the distance of the gene 
in question (red or blue border) to other genes is calculated via the weighted shortest-path method. The range of observed distances is then subdivided into discrete bins 
(denoted by circles in the figure) and an estimate of neighbourhood importance calculated for each bin, i.e., for all nodes up to the respective distance. The area under the curve 
(AUC) in the plot of bins (d) vs neighbourhood importance is used as the gene’s score. In the example, gene k is much closer to genes with high node weights (i.e., their 
perturbation in caIKK-DCs is large) than gene j. As a result, the blue area is bigger than the red area, and thus gene k ranks higher than j. (B) Heat map of miRNA ranking in 
pathway categories. The columns of the matrix indicate the 36 DE miRNAs sorted by perturbation (i.e., node weights), and the rows of the matrix indicate 25 categories of 
Reactome pathways. The category digestion and absorption is not shown, as we did not identify functional and reliable interactions among its genes. On the heat map grid, the rank 
of a miRNA in a category is given as a number, and the colour represents the number of protein-coding genes targeted by it. For example, if an entry shows k with a colour 
corresponding to n on the figure legend, it means that the miRNA ranks kth (1st is the highest ranking) and regulates n targets in the category. A white grid cell means that the 
miRNA has no targets in the category and thus no ranking. The top annotation shows node weights of the miRNAs. The numbers in parentheses on the left side list how many 
genes and edges the reconstructed regulatory network of the category possessed. The box plots on the left show the distribution of edge weights (denoted by Pearson 
correlation coefficients between genes) in the networks. The bar plots on the right show the Pearson correlation coefficients between a miRNA’s perturbation and its score. The 
numbers at the bottom show the number of times miRNAs ranked 1st in the pathway categories. 

 
Taken together, the reconstructed regulatory 

networks underlying different cell functions allowed 
us to identify important miRNA regulators based on 
their expression and interaction profiles. The miRNAs 
with the highest scores possibly exert regulatory 
functions, and manipulation of their expression levels 
may enhance the immunogenic potency of DCs. 

Potential miRNA-gene interactions to 
improve caIKK-DCs 

To characterize the functional role that miRNAs 
play in caIKK-DCs, we delineated landscapes of 
miRNA-gene interactions in the significantly enriched 
pathways that were found in corresponding 
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categories (see Figure 5 and 
https://www.synmirapy.net/DC-optimization). The 
interaction landscapes are a way of systematically 
mapping relevant gene interactions, and in our case 
they served as a tool for identifying functional 
miRNA-gene interactions in DC priming and 
activation. As we were particularly interested in 
identifying miRNAs that can enhance the caIKK-DCs’ 
immunogenic potency, we focused on analysing 
miRNA-mediated gene regulation in the category 
immune system. In this category, we identified 
hundreds of miRNA-gene interactions in significantly 
enriched pathways, including toll-like receptor, 
cytokine, and interleukin signalling as well as MHC 
processing and presentation. All of these pathways 
had positive enrichment scores, indicating that the 

involved genes tended to be upregulated in 
caIKK-DCs according to our analysis. Most 
protein-coding genes used as indicators of DC 
activation and maturation [5,60,63,64] were found to 
be upregulated in the enriched pathways 
(Supplementary Table S8). The activation of NF-κB 
signalling led to upregulation of surface proteins that 
can prime T cells (e.g., CD40, CD70, CD80, and CD86), 
chemokines (e.g., CCL3 and CXCL10) that are 
necessary for T-cell migration, TNF superfamily 
members that can induce crosstalk between T cells 
and DCs (e.g., TNF, TNFRSF4, and TNFSF9), and 
cytokines that are responsible for stimulating 
proliferation and activation of T cells (e.g., CXCL8, 
IL6, IL12A, and IL12B). 

 

 
Figure 5. Landscape of miRNA-mediated DC gene regulation in immune signalling pathways. The heat map has two components that share a set of columns 
corresponding to 98 DE protein-coding genes that are targeted by the DE miRNAs. In the upper component, rows represent pathways from the category immune system, and grid 
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cell colours indicate whether a protein-coding gene is involved in the pathway (grey), involved in the pathway and an immune gene (grey grid cells with red borders), or not 
involved in the pathway (white). The figures next to a pathway name indicate how many DE immune genes (left) and how many protein-coding genes found in our RNA-seq data 
(right) belong to it. The top annotation highlights genes with different characteristic immune function using a colour code. The annotation on the right side shows the statistics 
of the gene set enrichment analysis including the enrichment score and the FDR. The bar plot between the heat map components shows the log2 fold-change of the genes in 
caIKK-DCs (blue: downregulated; red: upregulated). In the lower component, the rows represent the ranking miRNAs in immune system (from high to low) and the grid cells 
show the regulative influence of a protein-coding gene by a miRNA, which is estimated by the Pearson correlation coefficients between their expression profiles. If a gene is a 
known immune gene, the corresponding grid cell has a red border. The numbers in the parentheses next to the miRNA names show the number of DE immune genes and the 
number of DE protein-coding genes that are regulated by a miRNA. The right annotation shows the results of the differential expression analysis including the log2 fold-change 
of miRNA expressions and their FDRs. For lack of space, we show only enriched pathways with more than 30 protein-coding genes picked up in the RNA-seq data, and in each 
pathway, only a subset of protein-coding genes that are estimated to be strongly influenced by the miRNAs (Pearson correlation ≤ -0.3) are shown. The complete landscape of 
miRNA-gene interactions in immune system is shown in Supplementary Figure S7. 

 
Figure 6. Potential miRNAs for improving immunogenic potency of caIKK-DCs. The Sankey diagram contains three columns made up of nodes representing the DE 
miRNAs from our RNA-seq data and their cooperating miRNAs, protein-coding genes targeted by the miRNAs, and DC phenotypes associated with the protein-coding genes, 
respectively. miRNA pairs that were identified to cooperatively repress a protein-coding gene are connected by a brace. Colours of miRNAs and protein-coding genes indicate 
whether or not they were significantly DE in caIKK-DCs. Arrows in miRNA nodes indicate how the expression of miRNAs should be manipulated to obtain DCs with higher 
immunogenic potency: upregulation (↑), downregulation (↓), and no suggestion due to potentially conflicting effects of the miRNA (–). Connections between miRNAs and 
protein-coding genes show regulative influence of protein-coding genes by miRNAs (strong: Pearson correlation ≤ -0.5; weak: -0.3 ≤ Pearson correlation < -0.5). The connections 
between protein-coding genes and phenotypes denote how a gene regulates a phenotype according to literature. For instance, miR-424-3p and miR-224-5p target IRF4 that is 
known to positively regulate differentiation of DCs. The two miRNAs cooperatively repress the protein-coding gene, but the observed downregulation of miR-424-3p results in 
a decreased inhibitory effect on the expression of IRF4. A detailed discussion of the results can be found in the main text. The corresponding miRNA-gene interactions in immune 
system as well as annotated gene-phenotype associations can be found in Supplementary Table S9 and Table S10, respectively. 

 
Furthermore, our data showed that the identified 

DE miRNAs have a regulative influence (represented 
by Pearson correlation ≤ -0.3) on protein-coding genes 
associated with NF-κB activation, cytokines, 
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chemokines, and TFs that are associated with 
immunophenotypes of DCs (Figure 6). Some of the 
DE miRNAs were found to cooperate with other 
miRNAs to regulate the expression of a 
protein-coding gene (see Materials and Methods). 
This mechanism, known as miRNA cooperativity, is 
characterized by more efficient inhibitory effects on 
the target’s expression compared to the regulation by 
individual miRNAs [23,25,26]. Moreover, for most of 
the identified miRNAs, our analysis proposed specific 
modulation of their expression levels to improve 
immunogenic potency of DCs. However, in some 
cases, such as miR- 34a-5p and miR-20a-5p, up- or 
downregulating their expression levels may result in 
contradictory effects in DC-mediated immune 
response, thereby requiring further analysis and 
experimental investigation. In the following 
paragraphs, we illustrate and discuss specific 
functions of the miRNAs in caIKK-DCs. 

Chemokines direct cell migration via induction 
of chemotaxis. For example, CCL5 and CXCL10 
improve CD8+ T-cell infiltration [65] and CCL20 plays 
a role in recruiting regulatory T cells and T helper (Th) 
17 cells [66,67]. CXCL10 is repressed by miR-16-5p 
and CCL20 is targeted by miR-21a-5p with its 
cooperating miR-25-3p. This suggested that the 
miRNAs exert an inhibitory function in the 
recruitment of T cells. miR-21a-5p also targets IL12A, 
a subunit of the inflammatory cytokine IL-12 that is 
necessary for CD8+ T-cell clonal expansion, function 
and memory [63,68]. 

Control of DC survival is necessary for 
maintaining their homeostasis [69,70]. We showed 
that miR-15a-5p with its cooperating miRNAs (i.e., 
miR-156-5p and miR-876-5p) and miR-20a-5p target 
BCL2, and miR-101-3p targets MCL1. The repression 
of the BCL2 family of anti-apoptosis genes by these 
miRNAs suggested their ability to undermine the 
survival mechanism of DCs. 

miR-424-5p and miR-224-5p can co-repress IRF4, 
which is a member of the interferon-regulatory family 
and can regulate differentiation of specific DCs that 
can induce Th 2 cell responses [71]. miR-20a-5p and 
miR-144-3p regulate the MAPK signalling pathway 
by targeting MAPK1 and MAP3K8 respectively, and 
these MAP kinases have been found to activate the 
IKK complex that triggers NF-κB activation [72,73] 
and also to regulate release of TNFα by DCs [74]. 
miR-34a-5p has a strong regulative influence on CD44 
whose presence is important for the immune synapse 
between DCs and T cells that subsequently regulates 
T-cell activation [75] and apoptosis [76]. miR-34a-5p 
also targets TNFAIP8 whose knockdown in DCs has 
been found to promote DC maturation and activation 
followed by increased proliferation and 

differentiation of T cells [77]. miR-9-5p can cooperate 
with miR-139-5p to repress CXCR4 that is required for 
DC migration into the skin’s draining lymph nodes 
[78]. miR-142-3p with its cooperating miR-429 and 
miR-142-5p target the small GTP-binding protein 
RAC1 that controls the formation of dendrites in 
mature DCs and their migration toward T cells [79]. 

Some identified DE miRNAs target protein- 
coding genes involved in regulating the DC-mediated 
secretion of cytokines that are important for the T-cell 
response. The repression of NFATC3 by miR-424-5p 
and its cooperating miR-370-3p suggested a 
regulating influence on the production of IL-2 that is 
involved in T-cell priming [80,81]. STX3 has been 
shown to play a role in trafficking of IL-6 or MIP-1α in 
DCs and thus regulating their secretion [82] and is 
targeted by let-7e-5p, miR-146a-5p, and miR-146b-5p 
with its cooperative partner miR-519d-3p. The 
deficiency of IRAK1 in plasmacytoid DCs abrogates 
IFNα production, leading to a remodulation of T cell 
function [83–85], and IRAK1 is a target of miR-142-3p. 

Finally, miR-16-5p and miR-15a-5p can 
cooperate with miR-203a-3p to repress IL-15, an 
interleukin which can induce T-cell proliferation, 
enhance cytolytic effector cells including natural killer 
and cytotoxic T cells, and reinforce B-cell stimulation 
[86]. A recent in vivo study has shown that an 
IL15-enhanced DC vaccine is a potent delayer of 
tumour growth, improves mouse survival, and 
induces a stronger Th1-skewed T-cell response [87]. 
The two miRNAs also target the receptor TNFSF9 
(also known as CD137), whose stimulation in DCs by 
its ligand CD137L can lead to secretion of IL-6 and 
IL-12 and induce T-cell proliferation [63,88,89]. In 
addition, miR-16-5p and miR-15a-5p were identified 
to strongly repress IKBKB itself. Since both miRNAs 
were found to be downregulated in caIKK-DCs, this 
implied a positive feedback loop in NF-κB signalling 
as the miR-15/16 cluster is a transcriptional target of 
NFKB1 [90]. The results suggested both miRNAs as 
promising candidates for improving the 
immunogenic potency of caIKK-DCs, as they not only 
have the ability to strengthen NF-κB activation but 
also to improve DC-induced immune responses 
through regulating cytokines and chemokines. 

Discussion and Conclusions 
We applied a systems biology approach to 

investigate the regulatory functions of miRNAs in 
caIKK-DCs. Due to the promiscuous binding of 
miRNAs, it is challenging to identify relevant 
miRNA-gene interactions for experimental validation 
and cell re-engineering [91,92]. Our approach, which 
integrates transcriptomic profiling, networks of 
curated signalling pathways, and a prioritisation 
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score, allows the systematic identification of 
condition-specific miRNA-gene interactions. 

Through RNA sequencing of monocyte-derived 
DCs matured with a cytokine cocktail and 
electroporated with caIKK mRNA, we identified DE 
protein-coding genes and miRNAs in the caIKK-DCs. 
The identified DE miRNAs correctly separated the 
caIKK-DCs from the control, suggesting a 
well-defined transcriptional response to caIKK that is 
consistent with our understanding that miRNAs act 
as post-transcriptional regulators of expression in DC 
differentiation and function [93]. Among the 
identified miRNAs there were several, such as 
miR-15a-5p, miR-16-5p, miR-20a-5p, and miR-424-5p, 
which target a considerable number of genes. Such 
hubs have been shown to be important regulators, as 
they represent sites of signalling convergence in gene 
regulatory networks and coordinate cell development 
and function [94–96]. In contrast, other DE miRNAs, 
such as miR-15a-3p and miR-9-3p, exert a narrow 
function by regulating the expression of specific 
protein-coding genes in the caIKK-DCs. 

Integration of the transcriptomic response into 
the curated pathways from Reactome provides an 
understanding of the functional changes at the 
pathway level. The gene set enrichment analysis 
highlighted cytokine, interleukin, and toll-like 
receptor signalling pathways that are involved in 
regulating various aspects of innate and adaptive 
immune responses [97]. Such results may be 
compromised when other pathway databases such as 
KEGG [98] and WikiPathways [99] are employed, as 
the relevant pathways and molecular interactions in 
the pathways are different from Reactome [100,101]. 
To circumvent this issue, one possibility could be to 
extract the overlapped networks between the different 
databases of pathways; however, this is not always 
possible due to the differences in annotation of genes 
and interactions. An alternative option is to integrate 
the data and the detected miRNA-gene interactions 
into comprehensive, manually curated regulatory 
networks based on the current literature on DC 
regulation. This way, one can put the newly 
discovered relevant interactions into the context of the 
existing knowledge and facilitate the mining and 
interpretation of the omics data [102,103]. However, 
when used inappropriately, knowledge-based 
networks mainly rediscover existing knowledge but 
may overlook insights gained from the evaluation of 
an all-encompassing network. 

We reconstructed regulatory networks from 
Reactome pathways and used them to rank genes and 
miRNAs according to their predicted impact on DC 
function. Systematic computation of such a ranking 
supports and facilitates experimental efforts, allowing 

them to focus on the most promising candidates. Gene 
prioritization algorithms have been widely used in 
recent times to rank genes in networks [104,105]. For 
instance, the PageRank algorithm designed to analyse 
the relative importance of websites was adapted to 
identify crucial genes in biological networks [106], 
and diffusion-based methods were used on dense 
networks to prioritize genes [107]. We used a gene 
prioritization algorithm that utilizes the 
guilt-by-association principle to rank genes based on 
their own perturbation, i.e., differential expression 
profile, and their weighted distances to other 
perturbed genes in a network. The algorithm 
prioritized dozens of miRNAs, of which miR-16-5p 
and miR-15a-5p are the top candidates to regulate the 
immunogenic potency of DCs. 

Finally, an in-depth analysis of the identified 
miRNA-gene interactions in immune signalling 
pathways showed diverse roles of the DE miRNAs in 
regulating DC-mediated immune response. For 
instance, miR-16-5p and miR-15a-5p may have strong 
regulatory influence on IKBKB that activates NF-κB 
and on TNFSF9 that controls cytokine secretion of 
DCs; both miRNAs could have weak inhibitory effects 
on BCL2 that maintains DC homeostasis and on 
cytokines (such as CXCL10 and IL15) that regulates 
T-cell response but may cooperate with other 
miRNAs to more efficiently repress the protein- 
coding genes. While these predictions were made 
based on validated miRNA binding sites and negative 
correlation between the expression levels of miRNAs 
and their targets, they cannot quantify the strength of 
individual repression effects [108]. The results 
suggested both miRNAs as potential candidates for 
improving immunogenic potency of caIKK-DCs 
through strengthening NF-κB stimulation and also 
synergistically regulating other genes related with 
immunogenic potency. 

For most identified crucial miRNAs, our analysis 
suggested up- or downregulation of their expression 
levels to improve immunogenic potency of DCs, but 
in some cases the pleiotropic nature of miRNAs in 
regulating gene expression makes it difficult to decide 
how to experimentally modulate their expression. In 
addition, it is worth noting that the results reflect the 
early transcriptional response that may differ from 
that in the long-term. From an experimental 
perspective, the next step would be to analyse the 
kinetics of the expressions of miRNA and mRNA after 
the activation of NF-κB. Further, it remains to be 
tested how co-electroporating the selected miRNAs, 
or artificial antagonists thereof, with caIKK or 
introducing them into the cells after a delay will alter 
the DCs’ phenotype and immunogenic potency. 

Taken together, our approach enables the 
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systematic analysis and identification of functional 
miRNA-gene interactions that can be experimentally 
tested for improving DC immunogenic potency. Since 
the results were produced in a computationally 
reproducible manner and were stored in a public 
database, experimental tests of the predictions can be 
performed in the future not only by our group but 
also by other researchers working on DC-based cancer 
immunotherapy. Additionally, since the approach is 
not specific for DCs, it can be adapted to study 
miRNAs in other immune cells and relevant 
immunotherapies. 
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