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Abstract
Visual comparison—comparing visual stimuli (e.g., fingerprints) side by side and determining whether they originate from 
the same or different source (i.e., “match”)—is a complex discrimination task involving many cognitive and perceptual 
processes. Despite the real-world consequences of this task, which is often conducted by forensic scientists, little is under-
stood about the psychological processes underpinning this ability. There are substantial individual differences in visual 
comparison accuracy amongst both professionals and novices. The source of this variation is unknown, but may reflect a 
domain-general and naturally varying perceptual ability. Here, we investigate this by comparing individual differences (N 
= 248 across two studies) in four visual comparison domains: faces, fingerprints, firearms, and artificial prints. Accuracy 
on all comparison tasks was significantly correlated and accounted for a substantial portion of variance (e.g., 42% in Exp. 
1) in performance across all tasks. Importantly, this relationship cannot be attributed to participants’ intrinsic motivation or 
skill in other visual-perceptual tasks (visual search and visual statistical learning). This paper provides novel evidence of a 
reliable, domain-general visual comparison ability.
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People complete many complex visual tasks in their day-to-
day life. One such task is visual comparison—comparing 
visual stimuli shown side by side and providing judgements 
about whether they originate from the same or different ori-
gins (i.e., “match”). This complex task involves many cogni-
tive and perceptual processes—including visual perception, 

memory, similarity judgements, categorization and decision-
making (Busey & Dror, 2011; Growns & Martire, 2020b), 
and is used in important real-world judgements. For exam-
ple, forensic science examiners in feature-comparison dis-
ciplines “match” evidence samples (e.g., firearms, faces, 
fingerprints) to provide judgments about the source of the 
evidence to investigators or in court (Towler et al., 2018). 
Critically, it is human decision-makers who complete this 
task with limited input from technology (Thompson et al., 
2013; Towler, Kemp, & White, 2017)—making it vital 
to understand how individuals perform these tasks. Yet 
research is only beginning to explore human performance 
in visual comparison.

Professional examiners typically outperform novices on 
tasks within their domain of experience: facial examiners 
outperform novices on facial comparison (Phillips et al., 
2018; Towler, White, & Kemp, 2017; White, Phillips, et al., 
2015; White et al., 2020); fingerprint examiners outperform 
novices on fingerprint comparison (Busey & Vanderkolk, 
2005; Tangen et al., 2011; Ulery et al., 2011); firearm exam-
iners have a higher rate of correct matches than do stand-
ard computer algorithms in firearm comparison (Mattijssen 
et al., 2021); and document examiners are better at avoiding 

Bethany Growns and James D. Dunn contributed equally to this 
work.

 *	 Bethany Growns 
	 bethany.growns@gmail.com

1	 College of Social Sciences and International Studies, 
University of Exeter, Exeter, UK

2	 School of Social and Behavioural Sciences, Arizona State 
University, Phoenix, AZ, USA

3	 School of Psychology, University of New South Wales, 
Sydney, NSW 2052, Australia

4	 Behavioural Science Institute, Radboud University 
Nijmegen & The Netherlands Forensic Institute, Nijmegen, 
the Netherlands

5	 Wilson Center for Science and Justice, Duke University, 
Durham, NC, USA

/ Published online: 7 January 2022

Psychonomic Bulletin & Review (2022) 29:866–881

1 3

http://orcid.org/0000-0002-6665-8134
http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-021-02044-2&domain=pdf


the errors that novices make in handwriting comparison 
(Bird, Found, Ballantyne, & Rogers, 2010; Bird, Found, 
& Rogers, 2010; Kam et al., 1997). This superior visual 
comparison performance is typically attributed to the acqui-
sition of domain-specific knowledge within an examiners’ 
domain of expertise—that is, examiners’ skill is attributed 
to their training and experience. For example, fingerprint 
and document examiners have better knowledge of statisti-
cal frequencies in forensic stimuli within their domain of 
expertise (Growns et al., 2021; Martire et al., 2018; Mat-
tijssen et al., 2020), but not outside their domain (Growns 
& Martire, 2020a, 2020b). Further, fingerprint examiners’ 
also outperform novices in visual search tasks with finger-
prints, but do not outperform novices in the same task with 
nonfingerprint stimuli (Searston & Tangen, 2017a). The 
domain-specific nature of examiners’ skill could be unsur-
prising given that cognitive psychology typically attributes 
superior performance and expertise to deliberate practice 
and experience engaging in a task (Charness et al., 2005; 
Ericsson, 2007, 2014).

Yet something else may be at play in accurate visual com-
parison performance beyond simply experience or deliberate 
practice—something that is hinted at by individual differ-
ences in this task. While forensic examiners outperform nov-
ices as a group, there is substantial variation in visual com-
parison accuracy even among professionals with equivalent 
training and experience (Busey & Vanderkolk, 2005; Mat-
tijssen et al., 2020; Phillips et al., 2018; Searston & Tangen, 
2017b). Further, facial examiners’ accuracy does not increase 
with their length of employment (White, Dunn, et al., 2015), 
and individual differences in fingerprint trainees’ skills are 
maintained even after 12 months of training (Searston & Tan-
gen, 2017b). This variation in visual comparison ability sug-
gests other factors may contribute to accurate performance 
beyond experience, deliberate practice, or training.

Recent evidence suggests individual differences in vis-
ual comparison could also be driven, at least in part, by a 
domain-general comparison ability. People with superior 
face recognition skills—or the ability to identify faces 
(“super-recognizers”; Noyes et al., 2017; Russell et al., 
2009), also score above average on primate-face and fin-
gerprint-comparison tasks (Towler, Dunn, et al., 2021a). 
Further, fingerprint examiners not only outperform novices 
in fingerprint-comparison (i.e., domain-specific; Busey & 
Vanderkolk, 2005; Tangen et al., 2011), but also on face-
comparison tasks (i.e., domain-general; Phillips et al., 2018). 
Together, this emerging evidence suggests visual compari-
son may be driven by both a domain-specific skill and a 
natural domain-general visual comparison skill.

Overall, this converging evidence provides a first hint that 
there may be a generalizable visual comparison ability in 
specialist populations. However, no research has investigated 
this in the general population to determine whether it is a 

domain-general and naturally varying ability. Similar vari-
able and domain-general abilities have been identified in other 
perceptual processes, such as visual recognition—the ability 
to identify visual objects. This ability is typically seen as a 
generalizable psychological process with substantial natural 
individual variation. For example, people who are better at 
recognizing some visual objects (e.g., faces) are also better at 
recognizing other visual objects (e.g., cars; Geskin & Behr-
mann, 2018; Richler et al., 2019). However, can the same be 
said of visual comparison? Does someone’s ability to “match” 
visual stimuli in one domain (e.g., faces) predict comparison 
performance in other domains (e.g., fingerprints)?

The current paper presents two experiments that are the first 
to explore whether there is a generalizable and domain-general 
psychological ability underpinning the ability to compare dif-
ferent complex visual stimuli, or whether these require separate 
skills. We explore individual differences in four visual compari-
son tasks to investigate the overlap or independence of perfor-
mance in each task: face comparison, fingerprint comparison, 
firearms comparison, and a novel artificial print comparison 
task. Importantly, these tasks vary in familiarity—from familiar 
(faces) to unfamiliar (fingerprints and firearms) to entirely novel 
(artificial prints)—to ensure that accurate performance cannot be 
attributed to prior experience. If there is a generalizable ability 
underpinning visual comparison performance, we would expect 
performance in all comparison tasks to account for a substantial 
portion of shared variance across tasks. Conversely, if these are 
separate processes, we would expect performance in each com-
parison task to account for largely independent portions of vari-
ance. We also explore two alternative hypotheses: that individual 
differences in visual comparison accuracy are driven by intrinsic 
motivation as high performance could be determined by some-
one’s motivation to succeed (Experiment 1); or that individual 
differences in accuracy are driven by a broader visual-perceptual 
skill (Experiment 2). To examine this, participants in Experi-
ment 1 also completed a measure of intrinsic motivation (the 
Intrinsic Motivation Inventory; McAuley et al., 1989; Tsigilis & 
Theodosiou, 2003) to determine whether any overlapping visual 
comparison ability is predicted by individual differences in moti-
vation. In Experiment 2, participants also completed two other 
noncomparison visual-perceptual tasks (visual search and visual 
statistical learning) to determine whether the shared variance can 
be linked to a broader visual-perceptual ability.

Experiment 1

Method

Design

We used a within-subjects design where participants com-
pleted four comparison tasks (described below; see Fig. 1) 
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and a measure of intrinsic motivation (the Intrinsic Motiva-
tion Inventory; McAuley et al., 1989; Tsigilis & Theodosiou, 
2003) as a discriminant validity measure. The study prereg-
istration data and analysis scripts can be found at https://​
osf.​io/​bvzpd/. Images used in this study are available upon 
request.

Participants

We recruited 124 participants online via Prolific Aca-
demic based on an a priori power analysis for detecting a 
two-sided correlation (r = .3) with 90% power (including 
an additional 10% to account for attrition). To be eligible 
for the study, participants were required to have normal or 
corrected-to-normal vision, live in the United States, have a 
Prolific approval rating of at least 95%, and have completed 
the experiment on a tablet or computer (not a mobile phone). 
No participants were excluded from the final sample as no 
participants met our preregistered exclusion criteria, which 
required them to correctly respond on at least three out of 
the five attention-checks (5.65% correctly passed just four 
questions; 94.35% passed all five).

Participants were 32.1 years old on average (SD = 12.1, 
range: 18–73), and the majority (62.9%) self-identified 
as female (36.3% male; 0.8% gender diverse) and White 
(64.5%; 13.7% Asian, 8.9% Black, 6.5% Hispanic, 6.5% 
Biracial, 0.81% Indian). Each participant was compensated 
USD$5.96 for completing the 50-minute experiment.

Tasks

Participants completed each of the four comparison tasks 
below. We selected two existing face and fingerprint com-
parison tasks (with minor modifications; Burton et al., 2010; 
Tangen et al., 2011), and created two additional novel com-
parison tasks: a cartridge case comparison task in firearms 
analysis, and a novel artificial-print comparison task. Pilot 
testing ensured each novel tests’ internal reliability and 
consistency were suitable for the assessment of individual 
differences (Siegelman et  al., 2017; see Supplementary 
Materials on OSF). In cases where Cronbach’s α fell below 
recommended values for standardized tests (α > .8; Streiner, 
2003a, 2003b) for our piloted tasks, we removed selected 
trials until α was ≥ .8.

Are these fingerprints from the same person or two different 
people?

Are these images of the same person or two different people?

Are these prints from the same stamping tool or 
different stamping tools? 

Are these cartridge cases from the same firearm or 
two different firearms? 

Fig. 1   Example “match” trials for each comparison task (face: upper-left panel; fingerprint: middle-left panel; potato print; lower-left panel; fire-
arms: right panel)
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Face comparison  Participants completed 40 face compari-
son trials (20 match and 20 nonmatch) from the Glasgow 
Face-Matching Task (GFMT-short; Burton et al., 2010; see 
upper-left panel of Fig. 1). The GFMT is a standardized face 
comparison task (Burton et al., 2010). Participants viewed 
two faces side by side and were asked, “Are these images 
of the same person or two different people?” on each trial. 
They responded by selecting one of two buttons (“same” or 
“different”) at the bottom of the screen.

Fingerprint comparison  Participants completed 56 finger-
print comparison trials (32 match and 32 nonmatch; see 
middle-left panel of Fig. 1) from the Fingerprint Matching 
Test from Tangen et al. (2011; Thompson & Tangen, 2014). 
Participants viewed two fingerprints side by side and were 
asked, “Are these fingerprints from the same person or two 
different people?” on each trial. They responded by select-
ing one of two buttons (“same” or “different”) at the bottom 
of the screen.

Firearms comparison  Participants completed 98 firearms 
comparison trials (49 match and 49 nonmatch; no trials were 
removed after pilot testing as α was ≥ .8) that were created 
for this experiment (see right panel of Fig. 1). Participants 
viewed two cartridge cases side by side and were asked, “Are 
these cartridge cases from the same firearm or two different 
firearms?” on each trial. They responded by selecting one 
of two buttons (“same” or “different”) at the bottom of the 
screen.

Artificial‑print comparison  Participants completed 94 arti-
ficial-print comparison trials (47 match and 47 nonmatch; 
after excluding 10 trials based on pilot testing so that α ≥ 
.8) that were created for this experiment (see lower-left 
panel of Fig. 1). Artificial prints were created by carving 
the same basic pattern (four vertical lines and two diag-
onal intersecting lines inside a standardized circle) into 
potato halves. We then inked and stamped each half onto 
cardboard, dried the stamps, then scanned and digitized 
all prints.

Participants viewed two artificial prints side by side and 
were asked, :Are these prints from the same stamping tool or 
two different stamping tools?” on each trial. They responded 
by selecting one of two buttons (“same” or “different”) at the 
bottom of the screen.

Intrinsic motivation inventory  Participants completed a 
measure of their intrinsic motivation and subjective experi-
ence during the experiment: the Intrinsic Motivation Inven-
tory (McAuley et al., 1989). The Intrinsic Motivation Inven-
tory is a validated measure of intrinsic motivation as it has 

acceptable reliability and stability (McAuley et al., 1989; 
Tsigilis & Theodosiou, 2003) and has been used across mul-
tiple domains—from education to mental health research 
(Choi et al., 2010; Leng et al., 2010; Monteiro et al., 2015).

Participants completed three subscales of the inventory: 
the Effort, Enjoyment, and Perceived Competence subscales. 
They answered questions on a 7-point Likert scale from not 
at all true to very true. They answered questions such as, 
“I put a lot of effort into this” (effort subscale); “I enjoyed 
doing this activity very much” (enjoyment subscale); and “I 
am satisfied with my performance in this task” (perceived 
competence subscale). A full list of the questions can be 
found at https://​selfd​eterm​inati​onthe​ory.​org/​intri​nsic-​motiv​
ation-​inven​tory/.

Dependent measures

Comparison performance in each task was computed 
using the signal-detection measure sensitivity (d'; Phillips 
et al., 2001; Stanislaw & Todorov, 1999). Higher d' val-
ues indicate higher sensitivity to the presence of a target 
stimulus independent of a tendency to respond “same” or 
“different” (response bias) and higher values are typically 
interpreted as higher “accuracy” in a task. We also calcu-
lated participants’ criterion (C)—a measure of tendency 
to respond ‘same’ or different—in each task and these 
analyses can be found in the Supplementary Materials on 
OSF (https://​osf.​io/​bvzpd/).

Intrinsic motivation scores were calculated by averaging 
participants’ Likert-scale responses on the Effort, Enjoy-
ment, and Perceived Competence inventory subscales 
(including the reverse-scored items).

Procedure

Participants completed the experiment via an online survey 
platform Qualtrics (https://​www.​qualt​rics.​com/). Partici-
pants completed all four comparison tasks in a randomized 
order, and all trials within each comparison task in a pseudo-
randomized order (where one trial order was randomly gen-
erated when coding the experiment in each task and all par-
ticipants completed trials in this order) to minimize error 
variance (Mollon et al., 2017). At the beginning of each 
comparison task, participants received brief task instructions 
and completed two practice trials where they were given 
corrective feedback (one match and one nonmatch). Upon 
completion of the comparison tasks, participants then com-
pleted the three subscales of the intrinsic motivation inven-
tory, provided demographic information, and then viewed a 
debriefing statement.
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Results and discussion

Descriptive results and psychometrics

The descriptive statistics and psychometric properties of all 
five tasks are presented in Table 1. Sensitivity was signifi-
cantly above chance (i.e., above 0) on all four comparison 
tasks—face: t(123) = 27.23, p < .001; fingerprint: t(123) = 
19.90, p < .001; firearms: t(123) = 33.43, p < .001; artifi-
cial-print: t(123) = 21.56, p < .001. Psychometric properties 
for all five measures were close to or above recommended 
values for standardized tests on a typical measure of scale 
reliability (see Table 1; Cronbach's α > .8; Streiner, 2003a, 
2003b), except for the fingerprint comparison task where 
the values fell below typically recommended values for test 
evaluation (α = .61).

Correlations between comparison performance

To investigate the relationships between task performance, 
we calculated Pearson’s correlations between sensitivity on 
all comparison tasks. Sensitivity on all comparison tasks 
was significantly and positively correlated with one another 
(see Fig. 2, and Table 5 in the Appendix for detailed sta-
tistics).1 We also calculated Bayes Factors to examine the 
likelihood of the observed data under the null hypothesis 
(i.e., the absence of correlations) compared with an alterna-
tive hypothesis (i.e., the presence of correlations) using the 
BayesFactor package in R (Morey et al., 2018). We observed 
a Bayes Factor >10 supporting the alternative hypothesis for 
four of the six comparison sensitivity correlations, provid-
ing strong evidence for the observed positive correlations 
(Wetzels et al., 2011). Smaller Bayes factors were observed 
for the remaining two sensitivity correlations (face and fin-
gerprint: BF = 1.47, face and firearms: BF = 2.26)—provid-
ing weaker support for the presence of correlations between 
these tasks (see Table 5 in the Appendix).

Correlations between comparison performance 
and intrinsic motivation

To investigate the relationship between each comparison task 
and intrinsic motivation, we calculated Pearson’s correla-
tions between intrinsic motivation and sensitivity separately. 

Importantly, intrinsic motivation did not significantly cor-
relate with sensitivity on any comparison tasks (see Table 5, 
in the Appendix, and Fig. 3). We observed a Bayes factor of 
less than or close to .3 for all correlations between intrinsic 
motivation and sensitivity in each comparison task, which 
provides substantial evidence for the absence of correlations 
(Wetzels et al., 2011).

Principal component analysis (PCA)

We explored the shared and unshared variance in sensitivity 
values across the four comparison tasks and intrinsic moti-
vation scores with a Principal Component Analysis (PCA) 
using the prcomp function from the core stats package in R. 
Rotation was not conducted in the PCA. The loadings of all 
tasks on the five components and the proportion of variance 
explained by each component can be seen in Table 2.

Component 1 explained a substantial portion of the vari-
ance across all five tasks (41.99%), and sensitivity on all four 
comparison tasks loaded strongly onto this component, but 
intrinsic motivation did not. This suggests that this compo-
nent represents a generalizable comparison ability unrelated 
to intrinsic motivation. Component 2 explained an important 
portion of the variance across all tasks (20.95%) and intrin-
sic motivation scores loaded strongly onto this component, 
with sensitivity in each comparison task loading weakly or 
not at all onto this component. This suggests intrinsic moti-
vation represents separate and unshared variance to perfor-
mance on all comparison tasks.

Components 3–5 also explained an important portion of 
the variance across all tasks (37.07%; from 16.37–7.60%). 
Face comparison sensitivity strongly loaded onto Compo-
nent 3 alone which explained the next greatest portion of 
variance (16.37%), fingerprint and firearms comparison 
sensitivity strongly loaded on Component 4 (positively 

Table 1   Descriptive statistics for each task (standard deviation in 
parentheses) Task performance for face, fingerprint, firearms, and 
artificial prints are shown in d', while intrinsic motivation is the mean 
response rating

Task performance for face, fingerprint, firearms, and artificial prints 
are shown in d', while intrinsic motivation is the mean response rat-
ing. Cronbach’s alpha was calculated on raw accuracy scores per par-
ticipant (not d' scores)

Mean task 
perfor-
mance

α Skewness Kurtosis

Face comparison 2.21 (.90) .75 −.10 2.59
Fingerprint comparison 1.06 (.59) .61 .11 3.04
Firearms comparison 2.90 (.97) .92 −1.10 3.80
Artificial-print comparison 1.21 (.63) .82 −.01 3.28
Intrinsic motivation 4.88 (1.06) .94 .16 2.40

1  Note we also conducted these analyses with outliers (scores 2 
SD+ above the mean) and negative performers (scores below zero) 
removed and the pattern of results was consistent (see Supplementary 
Materials on OSF: https://​osf.​io/​bvzpd/), except for two face compari-
son correlations when negative performers were removed which may 
be due to face comparison having the highest stimulus-specific vari-
ance.
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correlated with firearms comparison and negatively cor-
related with fingerprint comparison; explaining 13.10% 
of variance), while artificial-print comparison sensitivity 
strongly loaded onto Component 5 alone (explaining 7.60% 
of variance). Overall, these results suggested that sensitivity 
on all comparison tasks reflect a mixture of shared (Compo-
nent 1) and nonshared variance (Components 3, 4, and 5), 
whilst intrinsic motivation scores reflect separate nonshared 
variance (Component 2).

Experiment 1 explored whether there is a generalizable, 
domain-general perceptual skill underlying the compari-
son of visual stimuli and whether this relationship could be 
attributed to intrinsic motivation. Participants’ visual com-
parison sensitivity significantly correlated on all four tasks 
and accounted for a substantial portion of the variance in 
performance across all tasks—but intrinsic motivation did 
not and accounted for a separate portion of the variance. 
These results provide the first indication of a domain-general 

Fig. 2   Pearson correlations between task performance in Experiment 1
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visual comparison ability that varies naturally in the general 
population.

Experiment 2

While the results of Experiment 1 suggest there is shared 
ability across visual comparison performance, these results 
may reflect a broader perceptual visual ability—rather than a 
skill specific to visual comparison. To investigate this possi-
bility, Experiment 2 examined whether there is a relationship 
between visual comparison performance and performance 
on two other tasks that rely on visual-perceptual skills: vis-
ual search and visual statistical learning.

Visual search tasks are measures of attentional deploy-
ment and control that ask participants to search for a tar-
get among surrounding distractors (for review, see Chan & 
Hayward, 2013). Visual statistical learning is the ability to 
extract and encode statistical information from the visual 
environment around you (e.g., learning that black or white 
cars are more common than yellow cars; Fiser & Aslin, 
2001; Turk-Browne et al., 2005). We selected these two 
tasks as they both engage processing of visual-perceptual 
information and show stable individual differences (e.g., 
visual search: Ericson et al., 2017; and, e.g., visual statistical 

learning: Growns et al., 2020). Importantly however, these 
tasks are theoretically unrelated to the ability to compare 
and evaluate similarity between visual stimuli. Therefore, 
we predict that if there is a domain-general ability specific 
to visual comparison, performance across visual comparison 
tasks will correlate and load similarly onto the same com-
ponent in the PCA, but visual search and visual statistical 
learning performance will not.

Method

Design

We used a within-subjects design where participants com-
pleted six tasks: face comparison, fingerprint comparison, 
firearms comparison, artificial-print comparison, visual 
search, and visual statistical learning. The study preregis-
tration, data and analysis scripts can be found at https://​osf.​
io/​bvzpd/.

Participants

We recruited 124 participants online via Prolific Academic 
informed by the same power analysis as in Experiment 1. 
To be eligible for the study, participants were required to 

Fig. 3   Two discriminant validity tasks used in Experiment 2: Visual search (left panel) and visual statistical learning (right panel)

Table 2   Results of the principal components analysis (loadings matrix and percentage of variance explained)

Component 1 Component 2 Component 3 Component 4 Component 5

Face comparison .40 −.32 .80 .08 −.32
Fingerprint comparison .50 .27 −.26 −.64 −.45
Firearms comparison .48 −.00 −.42 .73 −.26
Artificial-print comparison .59 −.01 .02 −.10 .79
Intrinsic motivation <.01 .91 .36 .21 .02
Variance explained 41.99% 20.95% 16.37% 13.10% 7.60%
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have normal or corrected-to-normal vision, live in the United 
States, have a Prolific approval rating of at least 95%, and 
have completed the experiment on a tablet or computer (not 
a mobile phone). All participants passed our preregistered 
exclusion criteria which required them to correctly respond 
to at least three of five attention-checks to be included in the 
final sample (0.81% correctly passed just three questions, 
21.77% passed just four questions, and 77.42% just passed 
all five).

Participants were 29.3 years old on average (SD = 11.2, 
range: 18–66), and the majority (62.1%) self-identified 
as male (37.1% female; 0.8% gender diverse) and White 
(77.4%; 9.7% Asian, 6.5% Black, 3.2% Hispanic, 3.2% 
Other). Each participant was compensated £5.85 for com-
pleting the 70-minute experiment.

Tasks and dependent measures

Participants completed four visual comparison tasks: face 
comparison, fingerprint comparison, firearms comparison, 
and artificial-print comparison). The firearms and artificial-
print tasks from Experiment 1 were retained, but participants 
completed two new face and fingerprint comparison tasks 
(described further below). Performance in visual compari-
son tasks was measured by calculating a signal detection 
measure of sensitivity as in Experiment 1. Participants also 
completed two additional tasks as measures of discrimi-
nant validity which were both pilot-tested to ensure they 
were reliable and variable enough to appropriately measure 
individual differences: visual search and visual statistical 
learning.

Face comparison  Participants completed 80 face compari-
son trials (40 match and 40 nonmatch) from the Glasgow 
Face Matching Task 2—Short Form (GFMT2-S; White 
et al., 2021). The GFMT2-S is an updated version of the 
GFMT that was created to be more difficult and representa-
tive of real-world face identification tasks (i.e., variation in 
head angle, pose, expression, and image quality) than the 
original task. Participants were asked to answer the same 
question (“Are these images of the same person or two dif-
ferent people?”) as in Experiment 1 and responded by select-
ing one of two buttons (“same” or “different”) at the bottom 
of the screen.

Fingerprint comparison  Participants completed 40 finger-
print comparison trials (20 match and 20 nonmatch) which 
were a subset from the fingerprint task in Growns and Kuku-
cka (2021). This subset was chosen to be most representative 
of fingerprint comparison skill using the same method to 
select trials in the GFMT-2: item-to-test correlations were 
calculated for each trial from pilot data for Growns and 
Kukucka (2021) and the 20 match and 20 nonmatch trials 

with the highest correlations were then selected. Participants 
were asked to answer the same question (“Are these finger-
prints from the same person or two different people?”) as in 
Experiment 1 and responded by selecting one of two buttons 
(“same” or “different”) at the bottom of the screen.

Visual search  Participants completed 120 trials in a visual 
search task developed for use in this experiment (10 blocks 
of 12 trials + 1 practice block with 12 trials; see left panel 
of Fig. 3). On each trial, participants were instructed to indi-
cate if a target object (e.g., the deer in Fig. 3) was present or 
absent in an array of 16 objects by pressing “P” on the key-
board if the target was present or “A” if the target was absent 
in the array. The target object was present on 50% of trials 
in each block and each block had a different target object. 
Performance on this task was measured by calculating the 
mean reaction time (RT) on correct target-present trials only 
(Cunningham & Wolfe, 2012; Wolfe, 2012). Shorter reaction 
times indicate better visual search performance.

Visual statistical learning  Participants completed a visual 
statistical learning task adapted from previous research 
(Growns et al., 2020; Growns & Martire, 2020a) where par-
ticipants first completed an exposure phase and then a test 
phase. During the exposure phase, participants viewed 60 
complex patterns (see right panel of Fig. 3) in a randomized 
order (each pattern displayed for 3-sec with a 200-ms inter-
val in-between) and were instructed to pay attention to them 
as they would be asked some questions about them after-
wards. Each pattern contained different features (see right 
images in the right panel of Fig. 3) on the ends of the pat-
tern ‘arms’ that occurred with different statistical frequen-
cies across all patterns (e.g., feature “A” appeared in 10% of 
patterns, whilst feature “B” appeared in 20% of patterns).

During the test phase, participants completed 45 trials 
where they were tested on how well they learned the fre-
quencies, by being asked which of 2, 3, or 4 features were 
more familiar to them. Performance on this task was meas-
ured by calculating the number of trials participants cor-
rectly chose the most frequent feature, where higher scores 
indicated better statistical learning. Chance performance on 
this task was 16.62 trials (36.9% accuracy).

Procedure

Participants completed the experiment via an online test-
ing platform (Testa​ble.​org) that better captures reaction 
time data than other online platforms (e.g., Qualtrics; de 
Leeuw & Motz, 2016; Rezlescu et al., 2020). Participants 
first provided demographic information and then completed 
all six tasks in a randomized order and completed all trials 
in each task in a randomized order. Note this differs from 
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Experiment 1 where participants completed tasks in a ran-
domized order but completed trials within each task in a 
pseudo-randomized order. At the beginning of each task, 
participants received brief task instructions and completed 
two practice trials where they were given corrective feed-
back. Upon completion of all tasks, participants viewed a 
debriefing statement.

Results and discussion

Descriptive results and psychometrics

The descriptive statistics and psychometric properties of all 
six tasks are presented in Table 1. Sensitivity was signifi-
cantly above chance (i.e., above 0) on all four comparison 
tasks—face: t(123) = 30.51, p < .001; fingerprint: t(123) = 
9.86, p < .001; firearms: t(123) = 35.84, p < .001; artificial-
print: t(123) = 21.68, p < .001. Visual search performance 
was within the range seen within previous experiments 
(Cunningham & Wolfe, 2012; Wolfe, 2012), and statistical 
learning performance was also significantly above chance 
(i.e., above 36.9%), t(123) = 12.63, p < .001. Psychometric 
properties for all six measures were close to or above recom-
mended values for standardized tests on a typical measure 
of scale reliability (see Table 3; Cronbach's α > .8; Streiner, 
2003a, 2003b), except for the fingerprint comparison task 
(α = .62).

Correlations between visual comparison performance

To investigate the relationship between visual comparison 
tasks, we calculated Pearson’s correlations between each. 
Sensitivity on all comparison tasks was significantly and 
positively correlated with one another (see Fig.  4, and 

Table 6 in the Appendix). We also observed Bayes Factors 
>10 for five of the six comparison sensitivity correlations 
which provides strong support for the presence of all correla-
tions, with weaker support for the presence of a correlation 
between face and firearms comparison (BF = 4.57).

Correlations between visual comparison performance, 
visual search, and visual statistical learning

To investigate the relationship between each comparison 
task, visual search, and visual statistical learning perfor-
mance, we calculated Pearson’s correlations (see Fig. 4, 
and Table 6 in the Appendix). Neither visual search nor sta-
tistical learning performance significantly correlated with 
comparison sensitivity on any task—except for correlations 
between visual search and firearms sensitivity (r = .212, 
p = .018) and between statistical learning and artificial-
print sensitivity (r = .191, p = .033). Yet it is important to 
note that the correlation between visual search and firearms 
sensitivity is likely spurious and driven by an outlier (see 
Fig. 4). Visual search and visual statistical learning were 
also not significantly correlated with each other (r = −.135, 
p = .136). It is important to note that these correlations 
were weaker than any of the correlations between visual 
comparison tasks. We also calculated correlations between 
log-transformed reaction-time data and the pattern of cor-
relations was consistent (see Supplementary Materials on 
OSF; except for the significant correlation between visual 
search performance and artificial-print sensitivity which was 
no longer significant).

Based on Bayesian analysis, there was substantial support 
(BF <.33) for the absence of correlations between four of 
the eight correlations between comparison performance and 
visual search/statistical learning, anecdotal support (BF >.33 
& <1.0) for the absence of two of the eight correlations, 
and anecdotal support for the presence of the correlations 
between visual search/firearms sensitivity and statistical 
learning/artificial-print sensitivity.

Principal component analysis (PCA)

We explored the shared and unshared variance in sensitiv-
ity values across the four comparison tasks and two discri-
minant validity tasks with a Principal Component Analysis 
(PCA) using the prcomp function from the core stats pack-
age in R. Rotation was not conducted in the PCA. The load-
ings of all tasks on the six components and the proportion 
of variance explained by each component can be seen in 
Table 4.

Component 1 explained a substantial portion of the vari-
ance across all six tasks (34.92%) and sensitivity on all four 
comparison tasks loaded strongly onto this component, but 
visual search and visual statistical learning did not. This 

Table 3   Descriptive statistics for each task (standard deviation in 
parentheses)

Task performance for face, fingerprint, firearms, and artificial prints 
are shown in d’, visual search is mean reaction time (ms) on correct 
target-present trials, and visual statistical learning is percentage cor-
rect. Cronbach’s alpha was calculated on raw accuracy scores per par-
ticipant for all tasks

Task performance α Skewness Kurtosis

Face comparison 1.97 (0.72) .79 .24 3.30
Fingerprint compari-

son
.58 (0.66) .62 −.21 3.36

Firearms comparison 2.81 (0.88) .90 −.76 3.49
Artificial-print com-

parison
1.00 (0.51) .74 −.30 3.10

Visual search 1002 (636.57) .86 .65 4.22
Visual statistical learn-

ing
58.15% (18.74) .88 .39 2.24
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suggests that this component represents a generalizable 
comparison ability unrelated to performance on the other 
two tasks. Component 2 explained an important portion 
of the variance across all tasks (19.07%) and both visual 
search and visual statistical learning loaded strongly onto 
this component, while sensitivity on each comparison task 
loaded weakly. As lower visual search scores indicate bet-
ter performance, this pattern of results suggests that high 

statistical learning performance is associated with high vis-
ual search performance. Together, this pattern suggests that 
visual comparison performance is explained by a shared 
factor that is independent of the other visual-perceptual 
tasks and demonstrates discriminant validity between these 
two constructs.

Components 3–6 also explained an important portion of 
the variance across all tasks (43.01%; from 15.35%–7.89%). 

Fig. 4   Pearson correlations between task performance in Experiment 2
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Visual search and statistical learning strongly loaded onto 
Component 3 alone which explained the next greatest por-
tion of variance (15.35%; negatively correlated with both), 
and face comparison and firearms comparison sensitivity 
strongly loaded onto Component 4 (negatively correlated 
with face comparison and positively correlated with fire-
arms sensitivity; explaining 11.55% of variance). Firearms 
comparison, face comparison, fingerprint comparison, and 
visual search strongly loaded onto Component 5 (positively 
correlated with fingerprint comparison and negatively cor-
related with firearms, face, and visual search; explaining 
11.21% of variance), and fingerprint and artificial-print 
comparison sensitivity strongly loaded onto Component 
6 (positively correlated with fingerprint comparison and 
negatively correlated with artificial-print comparison; 
explaining 7.89% of variance). Overall, these results sug-
gested that sensitivity on all comparison tasks reflects a 
mixture of shared (Component 1) and nonshared variance 
(Components 3, 4, 5, and 6), whilst visual search and vis-
ual statistical learning reflect separate nonshared variance 
(Components 2 and 3).

Experiment 2 explored whether individual differences 
in visual performance could be accounted for by broader 
perceptual skill in visual tasks. Consistent with Experiment 
1, participants’ visual comparison sensitivity significantly 
correlated on all four comparison tasks and accounted for 
a substantial portion of the variance in performance across 
all tasks—but visual search and visual statistical learning 
performance did not and accounted for a separate portion 
of variance (except for correlations between firearms/visual 
search and artificial-print comparison/statistical learning 
which were significant but weaker than all visual compari-
son correlations). These results provide further evidence that 
there is an underlying generalizable ability for comparing 
visual stimuli that is largely unrelated to other visual-per-
ceptual tasks.

General discussion

Across two experiments, we explored whether there is a 
generalizable and domain-general perceptual skill underpin-
ning the ability to compare—or “match”—different visual 
stimuli. Participants’ sensitivity in four different comparison 
tasks were all significantly correlated with each other, and a 
substantial portion of variance (41.99% in Experiment 1 and 
34.92% in Experiment 2) across all tasks was accounted for 
by one shared “matching” component in both experiments. 
Together, these results support the conclusion that individ-
ual differences in visual comparison accuracy are explained 
by a shared ability that generalizes across a range of visual 
stimuli. Notably, intrinsic motivation (Experiment 1), visual 
search and visual statistical learning (Experiment 2) did not 
significantly correlate with sensitivity in any comparison 
task and loaded onto separate components that accounted for 
large proportions of the variance across all tasks (20.95% in 
Experiment 1 and 19.07% in Experiment 2). This suggests 
that individual differences in visual comparison cannot be 
attributed to individual differences in intrinsic motivation or 
other visual-perceptual tasks.

Importantly, our study also provides evidence of stimu-
lus-specific individual differences. This is reflected in the 
moderate correlations seen between sensitivity in all com-
parison tasks across both experiments, and the principal 
components analysis, where additional components featured 
loadings from just one or a subset of comparison tasks. This 
suggests there are also likely individual stimulus-specific 
skills where some people are better at comparing specific 
stimuli over other stimuli. Overall, our results are the first 
to suggest that visual comparison is an interplay between 
an overarching generalizable comparison ability, as well as 
individual stimulus-specific ability.

This stimulus-specific skill may be partially attributed 
to stimulus familiarity and experience. Face-comparison 
performance—the most familiar stimuli—demonstrated the 

Table 4   Results of the principal components analysis (loadings matrix and percentage of variance explained)

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6

Face comparison .40 −.35 .35 −.63 −.42 −.10
Fingerprint comparison .53 −.21 −.08 .00 .44 .69
Firearms comparison .44 .25 .26 .62 −.53 .11
Artificial-print comparison .53 −.17 −.23 .19 .33 −.70
Visual search −.16 −.69 −.51 .25 −.40 .10
Visual statistical learning .24 .51 −.70 −.34 −.28 .07
Variance explained 34.92% 19.07% 15.35% 11.55% 11.21% 7.89%
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highest stimulus-specific variance: face-comparison sensi-
tivity had the lowest average correlation with all other tasks 
(r = .267 in Experiment 1 and .289 in Experiment 2); and 
accounted for the third to fourth-largest portion of varia-
tion (16.37% in Experiment 1 and 11.55% in Experiment 
2) across all tasks. In contrast to faces, fingerprint, firearms 
and artificial-print sensitivity accounted for less variance in 
our data—where familiarity with these stimuli ranges from 
unfamiliar to entirely novel. This is consistent with research 
that suggests there is a shift from domain-general to domain-
specific mechanisms with increased perceptual experience 
in a domain (Chang & Gauthier, 2020, 2021; Sunday et al., 
2018; Wong et al., 2014; Wong & Gauthier, 2010, 2012), 
and research that links experience and visual comparison 
performance (Thompson & Tangen, 2014).

Our results highlight visual comparison as a natural 
and generalizable ability that varies in the general popula-
tion—yet the precise mechanisms underpinning this skill 
are only beginning to be explored (see Growns & Mar-
tire, 2020b, for review). It is possible that holistic process-
ing—or the ability to view images as a ‘whole’ rather than 
a collection of features (Maurer et al., 2002)—underpins 
visual comparison performance: both facial and fingerprint 
examiners show evidence of holistic processing when view-
ing domain-specific stimuli (Busey & Vanderkolk, 2005; 
Towler, White, & Kemp, 2017b; Vogelsang et al., 2017). In 
contrast, featural processing—or the ability to view images 
as separate features—is also important in visual compari-
son. Professional performance is improved when exam-
iners have an opportunity to engage featural processing: 
both facial and fingerprint examiners demonstrate greater 
performance gains than novices in domain-specific visual 
comparison tasks (Thompson et al., 2014; Towler, White, 
& Kemp, 2017; White, Phillips, et al., 2015). Novices’ 
face-comparison performance also correlates with featural 
processing tasks such as the NAVON and figure-matching 
tasks (Burton et al., 2010; McCaffery et al., 2018), and nov-
ices’ comparison performance is improved by instructing 
participants to rate or label features (Searston & Tangen, 
2017c; Towler, White, & Kemp, 2017b). Low-performing 
novices also derive greater benefit from featural comparison 
training than high-performers—suggesting high-performers 
may already use such strategies (Towler, Keshwa, et al., 
2021b). The role of holistic and featural processing in visual 
comparison performance remains an important avenue for 
future research.

These results have important applied implications. 
Whilst empirically based training for existing examiners 
is important to improve ongoing professional performance 

(Growns & Martire, 2020a), our results suggest that larger 
gains in performance could be achieved by selecting trainee 
examiners based on visual comparison ability. A similar 
approach has been used in applied domains: recruiting 
individuals with superior face recognition improves per-
formance in real-world face identification tasks (Robertson 
et al., 2016; White, Dunn, et al., 2015). Professional per-
formance in other forensic feature-comparison disciplines 
could likely be similarly improved by recruiting individu-
als with superior performance on a test battery of visual 
comparison tasks. Importantly, our results do not suggest 
that examiners would benefit from practicing outside of 
their primary domain of experience. Despite identifying a 
generalizable visual comparison ability, we also identified 
individual differences in stimulus-specific skills that suggest 
part of accurate visual comparison performance is domain 
specific.

As the participants in this study were untrained nov-
ices, it is unclear whether these results could generalize 
to practicing professionals. While investigating individual 
differences in the general population requires a novice 
sample, it is entirely plausible that a domain-general 
visual comparison mechanism may be diminished or 
negated for experts in this task as expertise is typically 
conceptualized as narrow and domain-specific (Charness 
et  al., 2005; Ericsson, 2007, 2014). However, emerg-
ing evidence suggests domain-specific expertise may 
lend advantages to domain-general skill. For example, 
although facial examiners outperform fingerprint exam-
iners in face comparison (i.e., facial examiners’ domain-
specific expertise), fingerprint examiners outperform 
novices in the same task—despite it being outside their 
primary area of expertise (Phillips et al., 2018). Whether 
this domain-general advantage is developed alongside 
domain-specific expertise or is the result of preexisting 
individual differences in this ability will be an important 
avenue for future research.

This study provided the first evidence of a generalizable 
ability to underpinning the ability to compare or “match” 
different, complex visual stimuli. We demonstrated that the 
ability to compare stimuli such as faces, fingerprints, fire-
arms, and artificial prints is in part due to a generalizable 
and domain-general ability—although subject to stimulus-
specific constraints. These results have important theoretical 
and applied implications for both behavioural and forensic 
science. Importantly, test batteries of visual comparison 
tasks could be used to identify and recruit top-performing 
individuals to improve performance in forensic feature-com-
parison disciplines.
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Appendix

Table 5   Correlations for performance between tasks in Experiment 1 (Pearson correlations reported with p values in parentheses, with Bayes 
factors displayed below)

Face comparison Fingerprint comparison Firearms comparison Artificial-
print com-
parison

Face comparison –
Fingerprint comparison .182 (.043)

BF = 1.47
–

Firearms comparison .201 (.026)
BF = 2.26

.334 (< .001)
BF = 202.73

–

Artificial-print comparison .418 (<.001)
BF = 1.50e4

.530 (<.001)
BF = 4.47e7

.470 (<.001)
BF = 4.30e5

–

Intrinsic motivation −.066 (.468)
BF = .27

.083 (.360)
BF = .31

−.023 (.801)
BF = .21

−.007 (.937)
BF = .21

Table 6   Correlations for performance between tasks in Experiment 2 (Pearson correlations reported with p values in parentheses, with Bayes 
factors displayed below).

Face comparison Fingerprint comparison Firearms comparison Artificial-print 
comparison

Visual search

Face comparison –
Fingerprint comparison .346 (<.001)

BF = 346.33
–

Firearms comparison .228 (.011)
BF = 4.57

.287 (.001)
BF = 30.65

–

Artificial-print comparison .294 (<.001)
BF = 39.56

.516 (<.001)
BF = 1.37e7

.313 (<.001)
BF = 83.84

–

Visual search −.020 (.823)
BF = .21

−.053 (.562)
BF = .24

−.212 (.018)
BF = 3.04

−.019 (.835)
BF = .21

–

Visual statistical learning −.00 (.997)
BF = .21

.138 (.126)
BF = .63

.161 (.073)
BF = .96

.191 (.033)
BF = 1.80

−.135 (.136)
BF = .60
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