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Abstract: For the past two decades, many research groups have investigated new methods for
reducing the size and cost of safe and arm-fire systems, while also improving their safety and
reliability, through batch processing. Simultaneously, micro- and nanotechnology advancements
regarding nanothermite materials have enabled the production of a key technological building
block: pyrotechnical microsystems (pyroMEMS). This building block simply consists of microscale
electric initiators with a thin thermite layer as the ignition charge. This microscale to millimeter-scale
addressable pyroMEMS enables the integration of intelligence into centimeter-scale pyrotechnical
systems. To illustrate this technological evolution, we hereby present the development of a smart
infrared (IR) electronically controllable flare consisting of three distinct components: (1) a controllable
pyrotechnical ejection block comprising three independently addressable small-scale propellers,
all integrated into a one-piece molded and interconnected device, (2) a terminal function block
comprising a structured IR pyrotechnical loaf coupled with a microinitiation stage integrating
low-energy addressable pyroMEMS, and (3) a connected, autonomous, STANAG 4187 compliant,
electronic sensor arming and firing block.

Keywords: microenergetics; MEMS; pyroMEMS; IR flare; nanothermite

1. Introduction

In 1995, the pyroMEMS concept, which involves the integration of energetic material
on an electronic chip, was introduced for medical applications using mechanical power
derived from the combustion of a propellant [1] to inject drugs through the skin [2].
This original concept has led to major innovations and has inspired research that has
defined the technological area called micropyrotechnics [3]. The subsequent fabrication of
small pyrotechnic systems includes a wide range of applications: micropropulsion [4–10],
microfluidics [11,12], electrical protection [13,14], in situ welding [13–15], safe arm and
fire devices [16–18], and multipoint initiations [19,20]. The innovation of the pyroMEMS
concept has been explored in several fields at many universities and research institutes:
Berkeley University [21,22], Tohoku University [23], Georgia Tech [24], Sandia National
Laboratory [25] and École polytechnique fédérale de Lausanne [11,26–28].

In the 2000s, pyroMEMS fabrication challenges revealed that is was necessary to
replace conventional CHNO energetic materials with new, safer energetic materials com-
patible with MEMS. These new materials should feature extremely high amounts of
stored chemical energy that can be released quickly and safely. Nanothermites containing
nanoscale metallic fuel in contact with a strong oxidizer emerged as promising candidates
because their burn rate can be tuned from mm/s to m/s, and even km/s in some particular
cases [29–31]. To obtain a high interfacial contact area between the fuel and the oxidizer,
ultrasonication [32], electrospraying/electrospinning [33], mechanical milling [34,35], self-
assembly (static electricity-based [36], ligand-based [30,37,38], sol-gel [39] and DNA-based
assembly [40–42] and, recently, 3D printing [43–46] approaches have been explored with
varying levels of success. An alternative technique for creating high-density, high-interface
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surface area composites is utilizing nanolaminates, wherein nanosized layers of the oxidizer
and the metal are deposited on top of each other using vacuum vapor deposition tech-
niques [47,48]. These nanolaminate materials have a highly controllable architecture and
are compatible with MEMS manufacturing processes [49–55]. Therefore, we anticipate that
the progress made over the two last decades in both micro- and nanotechnologies and nan-
othermite materials will enable the integration of intelligence into pyrotechnical systems at
the centimeter scale and smaller. In particular, to design new, miniature smart systems, we
expect that pyrotechnic engineers will be able to rely on addressable pyroMEMS.

In 2020, a pyroMEMS [56] consists of microscale electric initiators (Figure 1): a thin
thermite layer is deposited on a thin-film resistive layer. When a current is applied to the
resistance, the nanothermite is ignited by the Joule effect. The nanothermite then ignites a
booster charge, the propellant, or the main energetic, which is usually called a secondary
energetic. Because the pyroMEMS is manufactured using MEMS-based manufacturing
techniques that are compatible with electronics, this component is low-cost while also main-
taining high levels of performance and reliability due to its simple function. An additional
advantage of replacing conventional “hot-wire” igniters or resistive bridge wires with py-
roMEMS is that it eliminates the need for dangerous primary energetic formulations, such
as lead styphnate, lead azide, and zirconium potassium perchlorate. Finally, pyroMEMS
can be easily interconnected with electronics chips, which enables controllability over the
ignition process.
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Figure 1. (a) A 3D schematic representation of a pyroMEMS used as an electric micro initiator, (b) a photo of the pyroMEMS,
and (c) a photo taken during the nanothermite reaction.

In this paper, our goal is to illustrate how pyroMEMS and nanothermite materials
can enable the integration of intelligence into centimeter-scale pyrotechnical systems by
presenting the development of a smart and miniaturized infrared (IR) flare (1′ × 1′′ × 8′′).
We chose IR flares application as they are essential safety elements and could be widely
deployed by planes to counter an infrared homing missiles. Commonly, flares are com-
posed of a magnesium based pyrotechnic composition with burning temperature hotter
than the plane engine exhaust. Among IR flares, smart IR flares integrate decision and
action capacities and should be able to adapt their pyrotechnical response to efficiently
protect different vehicles and perceive various threats. To achieve these goals, we integrate
addressable pyroMEMS as microinitiators to regulate the IR effect. The paper is organized
as follows: we first present the flare design, technological choices, and prototyping for each
block before describing the assembly of a representative IR flare.

2. Smart Flare Design

The IR flare design consists of three main functional blocks that are mechanically
and electronically interconnected (Figure 2): (1) a controllable pyrotechnical ejection block
comprising three independently addressable small-scale ejectors, also called propellers,
(2) a terminal function block comprising a structured IR pyrotechnical loaf coupled with a
low-energy and addressable pyroMEMS ignition stage, and (3) a connected, autonomous
STANAG 4187 compliant electronic sensor arming and firing block (this component is
labeled as “electronics” in Figure 2).
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Figure 2. Smart IR flare structure: (left) block diagram and (right) the corresponding dimensions.

First, the intelligence checks the validity of each electronic and pyrotechnical compo-
nent. If everything passes the validity check, the electrical energy is used to power all
the system parts. Then, the flare ejection from the shuttle or plane is triggered, where the
ejection speed is controlled by the number of propellers ignited. After a period of time
that is preset by the user, usually a few seconds, the safeties are unlocked and the IR loaf is
ignited using one, two or more pyroMEMS, depending on the desired IR signature.

3. Block Fabrication and Testing
3.1. Ejection Blocks Based on Addressable Impellors

To increase the applicability of smart IR flares, our first objective is to control their tube
ejection speed. To this end, we propose and design a multi-impellor concept that integrates
independent propellant charges. The number of charges ignited thus determines the
ejection speed. We use molded interconnect device technology [57], also called plastronic
technology, to metalize the plastic 3D parts (Figure 3). For demonstration purposes, we
restrict the scope of our study to three identical charges (Figure 3b). The thin-film resistor
is patterned onto the bottom of the cavity, which is then filled with nanothermites.

We implement a STANAG 4367-based lumped parameter internal ballistics model
to choose the ejection part size. We conduct a response surface methodology study [2] to
extract the conception parameters corresponding to minimal ejection charges for given
ejection speeds. These parameters include combustion and expansion chamber volumes,
cartridge stopper and ejector lid unsealing pressures. We clearly see on Figure 3c, that the
ejection speed, i.e., the speed at which the pyrotechnical loaf is ejected from the cartridge
ranges from 20 to 40 m/s by choosing to fire one, two or three impulsors.

We manufacture the prototypes and start by molding the 3 cm3 plastic parts, in
which we bore cylindrical chambers (Figure 3b). We use a laser beam to activate the
selected surfaces then dip the parts in metal-oxide baths, creating metalized hot wires on
the bottom of each chamber and communication tracks on the outer sides of each part.
In each chamber, we deposit Al/CuO nanothermites, acting as an ignition charge, and
bore-potassium nitrate grains, acting as propellants. Finally, we close each chamber with
a shouldered aluminum disk then hot-seal a prefragmented aluminized polymer lid on
top of the plastic piece to ensure air and hot-gas tightness. Compared to existing copper
and glass ejectors with soldered nichrome hot wires, using plastronic impellors reduces the
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interfacial and assembly complexity. In particular, plastronics enable several combustion
chambers to interface with electronics in small volumes, therefore allowing for controlled
ejection in 1 inch-squared flares.
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of photos of one metalized plastic prototype made of 3 impulsors (one is filled with propellant and
sealed with the heat-sealed lid), and (c) the ejection speed as a function of the configuration: one, two
or three ignited impulsors.

We validate the triple plastronic impellor prototypes in open air, in closed bombs and
in representative firings. The prototypes are fully functional but exhibit higher initiation
delays than existing Ni-Cr hot-wire igniters (11.2 ms compared to 5 ms for 5 A/1 Ω). These
initiation delays could be easily improved by optimizing the resistive film. The ejection
speed can also be tuned from 20 to 40 m/s when one, two or three impellors are ignited
(Figure 3c).

3.2. The IR Loaf Block

The second objective is to control the IR signal emitted by the combustion of a py-
rotechnic loaf so that a single flare can emulate the IR signature for various vehicles as
seen from various angles. To control this signal, we design a micro multipoint-initiation
stage coupled to a structured pyrotechnical loaf. More precisely, we couple an address-
able 5 × 2.2 mm pyroMEMS [53,58] (Figure 4) with initiation-composition-filled grooves
on the sides of a metal-polymer pyrotechnical loaf, whose surfaces are coated with an
inert epoxy-based resin (Figure 4d,e). We inert the surfaces of the loaf, using the “cap” in
Figure 4c, and ignite the loaf either sequentially or partially using millimeter-scale ignition
points. In doing this, we ensure electronic control of the independent combustion front
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generation and, thus, control the corresponding IR effect. Once again, for demonstration
purposes, we integrate four pyroMEMS coupled to four corresponding grooves, one on
each side of a parallelepiped loaf (Figure 4a,c). We experimentally validated the ignition of
a common initiation source made of magnesium/Teflon/Viton. Each pyroMEMS ignites
reliably (100% success) within 0.7 ms under a 1 A secondary energetic composition source.
Less sensitive source compositions, such as glycidyle azide polymer-based propellant
ignite in 10 to 300 ms under 1 A, depending on their sensitivities. The measured ignition
delays using nanothermites are equivalent to those observed on existing flares, where hot,
pressured gases ignite the initiation sources. A photo taken during one ignition test is
shown in Figure 5a.
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Figure 4. (a) Schematic of the IR loaf comprising 4 grooves (blue) filled with IR pyrotechnical charges
that can be ignited using the 5× 2.2 mm pyroMEMS mounted on the PCBs (green). (b) Enlarged view
of the microinitiation stage comprising 4 addressable pyroMEMS mounted on the PCBs. (c) Enlarged
view of the pyrotechnical loaf components. (d) Photo of the front side of the PCB, which is in contact
with the IR loaf, where the nanothermites can be distinguished. (e) Photo of the back side of the PCB,
where the pyroMEMS can be distinguished.

We also confirmed that the IR signal light intensity varies between the factors of one
and three, the signal duration varies between the factors of one to two and the maximum
light intensity varies between the factors of one and two, depending on the initiation
sequence (Figure 5b). The light produced by the pyrotechnical loaf lasts 57.5 ms when
pyroMEMS are ignited sequentially with 25 ms delay between each. The light produced by
the pyrotechnical loaf lasts 30 ms in the two other cases, i.e., when the four pyroMEMS are
ignited in one single sequence or with a delay of 10 ms. We conclude that a sequencing of
10 ms is not sufficient to see an effect of the IR emission.
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Figure 5. (a) Photo of the flame produced by the propellant used for demonstration, which is made of magne-
sium/Teflon/Viton and was ignited by four pyroMEMS. (b) Light emitted by the IR flare, with curves representing
the different numbers of grooves ignited by the pyroMEMS. Black: 4 pyroMEMS sequentially ignited with a delay of 25 ms.
Red: 4 pyroMEMS sequentially ignited with a delay of 10 ms. Green: 4 pyroMEMS ignited together.

3.3. Electronics

To control the micro initiation sequence and ensure safety, the smart flare is integrated
with its own electronic module. The main smart flare functions include self-testing, con-
trolling, arming and firing, detecting ejection through the embedded accelerometer and
gyroscope sensors, communicating with the launcher/plane, and managing the electrical
energy. The electronic circuitry comprises five interconnected printed board circuits (PCBs).
Regarding safety features, we arbitrarily choose to comply with STANAG 4187 (See Sup-
plementary file), which is designed for warheads, to prove that, given our dimensional
constraints, we could comply with any given security requirements. For energy storage,
our prototype integrates less than 25 cm3 of a 0.47F SG supercapacitor from Panasonic.
A PIC microcontroller enables control/command and communication on a CAN bus and
microcurrent sources from LinearTech to reproducibly ignite the MEMS initiators. To detect
nominal ejection and to trigger arming, the circuitry also integrates a 6050 IMU from
InvenSense and a VCNL4040 IR emitter/receptor from Vishay (Figure 6).
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3.4. Device Integration and Concept Validation

To avoid overshadowing the advantages of the aforementioned technological blocks,
we paid careful attention to their interfaces and integration. First, to ensure backward
launcher compatibility, we route the energy and data through the bottom of the cartridge,
where the ejection block lies. This implies that the conductive tracks have to cross the
ejection block before reaching the electronics (see Figure 2). To foster miniaturization,
integration and reliability, we use plastronics to metalize four tracks upon the ejection
block, two for CAN communication and two for electrical power transfer. Second, for
the pyroMEMS, the electric pads and the thermite nanolaminate are placed on the same
side of the chip. Until now, the pyroMEMS interface required wire bonding or conductive
adhesive. We soldered the chips onto PCBs with holes before encapsulation to enable the
system to endure harsher climatic and mechanical conditions and to improve electronic
integration. Last, because of their reliability and relatively small size, we used standard pin
headers for the interconnections between the PCBs. Photos of the smart IR flare prototype
is provided in Figure 7.
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headers for the interconnections between the PCBs. Photos of the smart IR flare prototype 

is provided in Figure 7. 

 

Figure 7. Smart IR flare prototypes (a) using conventional electrical wires for testing. (b) using
electrical wrapped connectors.

As the goal of this research was to demonstrate that the use of pyroMEMS and
associated nanothermites materials instead of conventional pyrotechnical charges, enables
both the miniaturization and integration of intelligence into flares, we assembled five
demonstrators and tested them following different sequences. We could demonstrated that
(1) the flare ejection speed can be tuned from 20–40 m/s by employing plastronic technology
(MID) and nanothermite instead of conventional technology. (2) The emitted light intensity
and duration can be also tuned by simply sequencing the pyroMEMS ignition. We also
succeeded in the miniaturization purpose as all functions are included into 1 inch2 by
8 inches. Next step, taken in charge by the industrial partner will be the characterization of
IR signature as well as addressing the reliability issues.

4. Conclusions

Until now, the size and energy consumption of existing hot-wire igniters have limited
their integration into miniature smart energetic systems. Using pyroMEMS no larger than
8 mm3 and consuming less than 3 mJ to ignite, we integrate a large number of initiators
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in the same volume, which allows us to finely tune the final pyrotechnical effect. In this
paper, we demonstrated the feasibility of a controllable, autonomous, safe and smart
1′′ × 1′′ × 8′′ IR flare. We have therefore developed innovative technological bricks that
enable control over both the flare ejection velocity and the IR effect using an innovative
multipoint-initiation concept. Namely, we developed a plastronic-based triple impellor
and a microinitiation stage powered by a supercapacitor to ignite an IR loaf after ejection.
In doing this, it was essential to use novel initiators and integration techniques to meet
ambitious miniaturization and functionalization requirements.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-666
X/12/2/118/s1.
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